EXERCISES #4

CROSS PRODUCT

Exercise 1. Find $\vec{u} \times \vec{v}$:

- (1) $\vec{u} = \langle 0, 5, -4 \rangle, \vec{v} = \langle 1, 2, -1 \rangle$
- (2) $\vec{u} = \langle 5, 6, 2 \rangle, \vec{v} = \langle 0, -4, -3 \rangle$
- (3) $\vec{u} = \langle -1, -5, -3 \rangle, \vec{v} = \langle 4, -1, -3 \rangle$
- (4) $\vec{u} = \langle 100, 200, 300 \rangle, \vec{v} = \langle -1, -2, -3 \rangle$

Exercise 2. True or False:

- (1) If $\vec{u} \times \vec{v} = \vec{0}$, then \vec{u} and \vec{v} are parallel to each other.
- (2) $\vec{u} \cdot (\vec{u} \times \vec{v}) = 0.$
- (3) If $\vec{u} \times \vec{v} = \vec{0}$ and $\vec{u} \times \vec{w} = \vec{0}$, then $\vec{v} \times \vec{w} = \vec{0}$.
- (4) If $\vec{u} \cdot (\vec{v} \times \vec{w}) = 0$, then \vec{u} is either parallel to \vec{v} or parallel to \vec{w} .

Exercise 3. Show that $|\vec{u} \times \vec{v}|^2 + |\vec{u} \cdot \vec{v}|^2 = |\vec{u}|^2 |\vec{v}|^2$.

Exercise 4. Explain why $|\vec{u} \times \vec{v}|$ is the area of the parallelogram formed by \vec{u} and \vec{v} .

Exercise 5. Compute the volume of the parallelepiped formed by $\vec{u} = \langle 2, -5, 0 \rangle$, $\vec{v} = \langle -3, 0, 0 \rangle$, $\vec{w} = \langle 0, 1, 4 \rangle$.