EXERCISES #9

CALCULUS FOR CURVES AND MOTIONS

Exercise 1. Find the arclength of the curve segment.

- (1) $\vec{r}(t) = \langle t, 3\cos t, 3\sin t \rangle, -5 \le t \le 5.$
- (2) $\vec{r}(t) = \langle t, t^2, \frac{2t^3}{3} \rangle, 0 \le t \le 1.$ (3) $\vec{r}(t) = \langle t^2, 9t, 4t^{3/2} \rangle, 1 \le t \le 4.$

Exercise 2. Find the arclength parametrization.

- (1) $\vec{r}(t) = \langle \cos(t^3), \sin(t^3) \rangle$, starting from t = 0, to the direction of increasing t.
- (2) $\vec{r}(t) = \langle \cos(t^4), \sin(t^4) \rangle$, starting from t = 0, to the direction of decreasing t.
- (3) $\vec{r}(t) = \langle 5 t, 4t 3, 3t \rangle$, starting from (5, -3, 0), to the direction of increasing t.
- (4) $\vec{r}(t) = \langle e^t \sin t, e^t \cos t, \sqrt{2}e^t \rangle$, starting from $(0, -e^{\pi}, \sqrt{2}e^{\pi})$, to the direction of decreasing
- (5) $\vec{r}(t) = \langle e^t \sin t, e^t \cos t, \sqrt{2}e^t \rangle$, starting from $(0, -e^{\pi}, \sqrt{2}e^{\pi})$, to the direction of increasing

Exercise 3. Explain why the parametrization of $\vec{r}(t) = \langle \cos(t^2), \sin(t^2) \rangle$ with respect to arclength, starting from t = -3, to the positive direction, does not exist.

Exercise 4. An object moves with position function $\vec{r}(t) = \langle t^2, e^t \sin t, e^t \cos t \rangle$. Find the velocity and acceleration $\vec{v}(t)$ and $\vec{a}(t)$.