EXERCISES #14

CHAIN RULE

Exercise 1. Find the derivative(s).

(1) $\frac{d}{dt}f(x(t),y(t))$, where

$$f(x,y) = xy^2$$
, $x(t) = t^3$, $y(t) = \frac{1}{t}$

(2) $\frac{d}{dt}f(x(t),y(t))$, where

$$f(x,y) = e^{xy}, \quad x(t) = \ln(t), \quad y(t) = t$$

(3) $\frac{d}{dt}f(x(t),y(t))$, where

$$f(x,y) = x^3 + xy^2$$
, $x(t) = \sin(t)$, $y(t) = \cos(t)$

(4) $\frac{d}{dt}f(x(t),y(t),z(t))$, where

$$f(x, y, z) = xy + yz$$
, $x(t) = t^2 - 1$, $y(t) = 2t$, $z(t) = t^3$

(5) $\frac{d}{dt}f(x(t), y(t), z(t))$, where

$$f(x, y, z) = x^2yz$$
, $x(t) = 2t$, $y(t) = t^3 + t$, $z(t) = t^2 - 1$

(6) $\frac{d}{dt}f(x(t), y(t), z(t))$, where

$$f(x, y, z) = \sqrt{x + yz}, \quad x(t) = \sin^2(t), \quad y(t) = \cos(t), \quad z(t) = \cos(t)$$

(7) $\frac{d}{dt}f(x(t), y(t), z(t))$, where

$$f(x, y, z) = \ln(1 + xyz), \quad x(t) = t^2, \quad y(t) = \frac{1}{t}, \quad z(t) = e^t$$

(8) $\frac{\partial}{\partial s} f(x(s,t),y(s,t))$ and $\frac{\partial}{\partial t} f(x(s,t),y(s,t))$, where

$$f(x,y) = x^2 + xy$$
, $x(s,t) = s + t$, $y(s,t) = st$

(9) $\frac{\partial}{\partial s}f(x(s,t),y(s,t))$ and $\frac{\partial}{\partial t}f(x(s,t),y(s,t))$, where

$$f(x,y) = xe^{xy}, \quad x(s,t) = s^2t, \quad y(s,t) = s - t$$

(10) $\frac{\partial}{\partial s}f(x(s,t),y(s,t))$ and $\frac{\partial}{\partial t}f(x(s,t),y(s,t)),$ where

$$f(x,y) = \sin(\ln(x^2y)), \quad x(s,t) = e^{st}, \quad y(s,t) = e^{st^2}$$

Exercise 2. Find the critical points.

(1) f(x(t), y(t)), where

$$f(x,y) = xye^y$$
, $x(t) = t - 2$, $y(t) = t$

(2) f(x(t), y(t)), where

$$f(x,y) = xy^3 - x^2y$$
, $x(t) = (t+1)^2$, $y(t) = t$

(3) f(x(t), y(t), z(t)), where

$$f(x, y, z) = xy + yz$$
, $x(t) = -2\sin(t^2)$, $y(t) = t^2$, $z(t) = t^2\cos(t^2)$

(4) f(x(t), y(t), z(t)), where

$$f(x, y, z) = -2xy + 2z + 2y^2 + 4x - 15y + 13$$
, $x(t) = (t - 1)^2$, $y(t) = 2t + 1$, $z(t) = (t - 1)^3$

Exercise 3. Find the distance.

(1) The distance between the point P = (0,0) and the ellipse

$$x(t) = 2\cos t + \sin t$$
, $y(t) = 2\cos t - \sin t$

(2) The distance between the point P=(0,0,0) and the parametric curve

$$x(t) = \ln(t), \quad y(t) = \cos t + \sin t, \quad z(t) = \cos t - \sin t$$

(3) The distance between the point P=(1,0,0) and the parametric curve

$$x(t) = t^2, \quad y(t) = \sqrt{3}t, \quad z(t) = -t$$