EXERCISES #15

DIRECTIONAL DERIVATIVES AND THE GRADIENT

Exercise 1. Find the gradient of f.

(1) $f(x, y) = 3x^2y - xy^3$ (2) $f(x, y) = \frac{x}{x+y}$ (3) $f(x, y) = \sqrt{x^2 + y^2}$ (4) $f(x, y) = x \ln(x) + y \ln(y)$ (5) $f(x, y) = e^{x \sin(y)}$ (6) $f(x, y, z) = \frac{x}{y+z}$ (7) $f(x, y, z) = x \ln(yz)$ (8) $f(x, y, z) = xyze^{xyz}$

Exercise 2. Find the directional derivative.

(1) $D_{\vec{u}}f(1,1)$, where $f(x,y) = x^2 + y^2$ and $\vec{u} = \langle \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \rangle$ (2) $D_{\vec{u}}f(3,0)$, where $f(x,y) = x^2 e^y$ and $\vec{u} = \langle \frac{3}{5}, -\frac{4}{5} \rangle$.

Exercise 3. Find the maximum rate of increase of *f* at the given point, and the direction in which it occurs.

(1) $f(x, y) = \sin(xy)$ at (1, 0). (2) $f(x, y) = 2xy^2 + xy^3$ at (1, 2). (3) $f(x, y, z) = xyz^2 + x^2y^2$ at (1, 0, -1)

Exercise 4. Find the tangent plane.

- (1) Tangent plane to xyz = 6 at (1, 2, 3)
- (2) Tangent plane to $x + y + z = e^{xyz}$ at (0, 0, 1)
- (3) Tangent plane to $x^4 + y^4 + z^4 = 3x^2y^2z^2$ at (1, 1, 1)

Exercise 5. Shown is a topographic map of Blue River Pine Provincial Park in British Columbia. Draw curves of steepest descent from point A (descending to Mud Lake) and from point B.

