EXERCISES #19

GLOBAL MAXIMA AND MINIMA III

Exercise 1. List all the nonempty boundary pieces of the domain. Mark every boundary piece that is a bunch of points.

- (1) $\{(x, y) \mid 0 \le x + y \le 1\}$ (2) $\{(x, y) \mid x^2 + 4y^2 \le 4, x \ge 1\}$
- (3) $\{(x,y) \mid x+2y^2 \le 0, x+y \le -1\}$
- (4) $\{(x,y) \mid 0 \le x \le 2, \ 0 \le y \le 2\}$ (5) $\{(x,y,z) \mid x^2 + y^2 + z^2 \le 1, \ x + y \le 1, \ x \ge \frac{1}{2}\}$ (6) $\{(x,y,z) \mid x^2 + y^2 = z^2, \ x + y \ge 1, \ z \le 5\}$

Exercise 2. Find the global maximum and minimum values of f(x, y) on the domain D.

- (1) $f(x,y) = x^2 + y^2 2x$, on the domain D, which is the triangular domain with vertices (2,0), (0,2) and (0,-2), including boundaries.
- (2) f(x,y) = x + y + xy, on the domain D, which is the triangular domain with vertices (0,0), (0,2), and (4,0), including boundaries.

- (3) $f(x,y) = x^2 + y^2 + x^2y + 4$, on the domain $D = \{(x,y) \mid -1 \le x \le 1, -1 \le y \le 1\}$. (4) $f(x,y) = x^2 + xy + y^2 6y$, on the domain $D = \{(x,y) \mid -3 \le x \le 3, 0 \le y \le 5\}$. (5) $f(x,y) = x^2 + 2y^2 2x 4y + 1$, on the domain $D = \{(x,y) \mid 0 \le x \le 2, 0 \le y \le 3\}$.

Exercise 3. Find the global maximum and minimum values of f on the given domain.

- (1) $f(x,y) = x^2y$, on the domain $\{(x,y) \mid x^2 + y^2 = 1, y \ge 0\}$.
- (2) $f(x,y) = e^{-x^2 y^2} (x^2 + 2y^2)$, on the domain $\{(x,y) \mid x^2 + y^2 = 4, x + y \ge 0\}$. (3) f(x,y,z) = xyz, on the domain $\{(x,y,z) \mid x^2 + y^2 + z^2 = 3, z \ge 0\}$.

Exercise 4. Find the global maximum and minimum values of f on the given domain.

(1) $f(x, y) = x^3 - 12x + y^3 - 12y$ on the domain

$$D = \{(x, y) \mid (x+2)^2 + (y+2)^2 \le 13, \ x \ge -5\}$$

(2) f(x, y) = x + y on the domain

$$D = \{(x, y) \mid 0 \le x \le 1, \ ex^2 \le y \le e^x\}$$

(3) $f(x, y, z) = x^4 + y + z^2$ on the domain

$$D = \{(x, y, z) \mid x^2 + y^2 + z^2 \le \frac{1}{4}, \ x \ge 0\}$$

(4) f(x, y, z) = xz + yz - xy on the domain

$$D = \{(x, y, z) \mid z^2 \ge x^2 + y^2, \ z^2 \le 4\}$$