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We attempt to go over the higher Hida theory part of Pilloni’s GSp4 paper, with notations

in accordance with [LPSZ]. Mostly it is about carefully analyzing integral Hecke operators on

coherent cohomology groups.

There is a very recent Boxer–Pilloni preprint that seems to bypass all these by using Scholze

theory. I am not yet sure what’s exactly the scope of it.

1. Outline

We want to use the Igusa tower. One would have such thing over the ordinary locus, but it’s

a�ne so it has no higher coherent cohomology.

Luckily we have a �ner strati�cation, and over X≥1
Kl(p) (etale rank ≥ 1) there is another Igusa

tower, just trivializing H . This is one-variable, as opposed to the Igusa tower over the ordinary

locus where it has two variables. Using the Igusa tower is not too di�cult.

The more subtle part is to relate the ordinary cohomology of X and X≥1
, and this involves

careful analysis of Hecke operators.
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2. Algebraic preliminaries

2.1. Ordinary projector on complexes. Let R be a complete local noetherian ring with �nite

residue �eld. Then a typical construction of “ordinary projector” in Hida theory can be summa-

rized by the following

Proposition 2.1. LetM be amR-adically separated, completeR-module, and T ∈ EndR(M). Sup-
pose thatT acts locally �nitely onM , then there is an idempotent e ∈ EndR(M), the ordinary projector,
which is de�ned as

ev = lim
N→∞

TN !v (in mR-adic topology),

for any v ∈M .

De�nition 2.1. (1) For T ∈ EndR(M), T is locally �nite if T ∈ EndR/mn
R

(M/mn
R) is locally

�nite for all n. By easy induction it is equivalent to requiring this for only n = 1.
(2) Over an artinian local ring (like R/mn

R), local �niteness means the module is a union of
T -stable �nite type submodules.

Quick proof of Proposition 2.1. It’s enough to show TN !v(modmn
R) becomes stationary for N �

0. Because T is locally �nite, one can take a �nite type T -stable submodule and work there. Then

{TN !M} is decreasing chain of submodules of an artinian module so it becomes constant after

N � 0. Then this module that one eventually ends up with is a module of �nite order, and T
de�nes a permutation which becomes trivial after possibly enlarging N . �

So what is the corresponding de�nition/statement for complexes? Note that we want to work

with derived categories.

De�nition 2.2. Let Kom(R) be the category of bounded complexes of mR-separated complete �at
R-modules. LetD(R) be the category generated byKom(R) inside the derived categoryDb(Mod(R)).

• ForM• ∈ Kom(R) and T ∈ EndKom(R)(M
•), T is locally �nite if T is locally �nite on each

M i.
• ForM• ∈ D(R) and T ∈ EndD(R)(M

•), T is locally �nite if there is a representative on the
level of Kom(R) which is locally �nite.

Now on the ordinary projector on complexes:

• On the level of Kom(R), one has ordinary projector on each M i
, and this de�nes a pro-

jector e ∈ EndKom(R)(M
•).

• On the level of D(R), one chooses a lift and de�ne a projector on the level of Kom(R).

One can easily show that this does not depend on the choice of lift.

There is a more concrete way of realizing locally �nite endomorphisms on D(R).

Lemma 2.1. ForM• ∈ D(R) and T ∈ EndD(R)(M
•), T is locally �nite if and only if both of the

following hold.

(1) There exists a representative of (M•, T ) over Kom(R) (doesn’t have to be locally �nite).
(2) T acts locally �nitely on cohomology groups H i(M• ⊗L

R R/mR) for all i.
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2.2. Cohomological correspondences. To geometrically de�ne Hecke operators, one uses co-

homological correspondences. Things get complicated here because we ought to work with in-

tegral models of Shimura varieties (as coherent cohomology is what we want to interpolate, so it

has to be integral) and they often get complicated. Nevertheless with a slightly more sophisticated

theory we can stop worrying.

Very formally a cohomological correspondence would consist of a diagram of the sort

C
p1

��

p2

~~
X Y

with coherent sheaves F on X and G on Y so that “some formally cohomological operations”

will yield a map RΓ(X,F ) → RΓ(Y,G ). Those “cohomological operations” should involve

pulling back and pushing forward (or taking the trace):

RΓ(X,F )
p∗2−→ RΓ(C, p∗2F ) = RΓ(Y,R(p1)∗p

∗
2F )

???−→ RΓ(Y,G )

So it’s fairly reasonable to call the diagram together with a morphism R(p1)∗p
∗
2F → G as a co-

homological correspondence. In many situations (e.g. p1 can be “compacti�ed” into a projective

morphism), there is the functor

p!
1 : D+(QCoh(OY ))→ D+(QCoh(OC))

which is right adjoint to R(p1)∗:

HomD(QCoh(OC))(A , p!
1B)

∼−→ HomD(QCoh(OY ))(R(p1)∗A ,B)

for A ∈ D−(QCoh(OC)), B ∈ D+(QCoh(OY )). This is called coherent duality, or less formally

relative Serre duality. Thus you can guess that p!
1, somewhat abstractly de�ned, should have

something to do with dualizing complex. With this adjunction, a cohomological correspondence

is equivalently the diagram with a morphism p∗2F → p!
1G .

Proposition 2.2.
(1) (−)! is compatible with composition of morphisms.
(2) For A ∈ QCoh(OY ) and B a vector bundle on Y ,

p!
1A ⊗OC

p∗1B = p!
1(A ⊗OY

B)

In particular, p!
1B = p!

1OY ⊗OC
p∗1B.

(a) For A ∈ D−(QCoh(OY )) and B ∈ Db(QCoh(OY )) (B has to be quasi-isomorphic
to a bounded complex of �at sheaves),

p!
1A ⊗L

OC
Lp∗1B = p!

1(A ⊗L
OY

B)

(3) Let f : X → S be a morphism of pure relative dimension n. If f is Cohen-Macaulay
(Gorenstein, resp.), then f !OS = ωX/S[n], where ωX/S is the dualizing sheaf, which is a
coherent sheaf (a line bundle, resp.).

Remark 2.1. Recall Cohen-Macaulay ⊃ Gorenstein ⊃ L.c.i. ⊃ regular.

Using these, we see that if C, Y are S-schemes of the same pure relative dimension n where

f : C → S is Cohen-Macaulay and g : Y → S is Gorenstein, then

ωC/S[n] = f !OS = p!
1(ωY/S[n]) = p!

1OY ⊗OC
p∗1ωY/S[n]
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so p!
1OY = ωC/S ⊗OC

(p∗1ωY/S)−1
.

This �ts quite well with the setting of Hecke correspondences because

• X, Y,C are all integral models of Shimura varieties (or something close to them) with

some level structure, and most of the cases they are normal and Cohen-Macaulay (maybe

local model is always now proven to be so).

• They have codimension ≥ 2 singular locus (generic �ber is smooth, and special �ber is

also generically smooth).

• So, if one in addition knows Y is Gorenstein, then there is the fundamental class OC →
p!

1OY , i.e. a morphism p∗1ωY/S → ωC/S .

(1) Over the smooth locus, this is the same as p∗1Ωn
Y/S → Ωn

C/S , which can be given as

the determinant of the natural map p∗1Ω1
Y/S → Ω1

C/S .

(2) It’s normal, so the section over the smooth locus extends over the singular locus,

which is of codimension ≥ 2.

Given this, now we can give a cohomological correspondence by the usual means, namely

giving a morphism p∗2F → p∗1G , since this gives

p∗2F → p∗1G
fund−−→ p!

1OY ⊗ p∗1G = p!
1G

(usually F and G are vector bundles).

3. Defining optimally integral Hecke operators

We now try to actually de�ne integral Hecke operators for certain situations. The covered cases

are Tp for modular curve and Siegel threefold of spherical level at p, and Up for Siegel threefold

of Klingen level at p.

3.1. Tp of modular curves. Let’s try to consider the simplest case, Tp of modular curve. Let

X1(N)/Q be the modular curve of level Γ1(N), for (N, p) = 1. Then what one would do to

de�ne Tp is to consider the correspondence diagram

X(Γ1(N) ∩ Γ0(p))
p1

((

p2

vv
X1(N) X1(N)

whereX(Γ1(N)∩Γ0(p)) is the (compacti�ed) moduli space of an isogeny π : E1 → E2 of degree

p (plus extra “level N structure”), and pi only remembers Ei. For k ≥ 0 and ωk over X1(N),

the morphism p∗2ω
k → p∗1ω

k
needed for cohomological correspondence is immediately obtained

from the universal isogeny.

Now suppose one would like to do the same thing for the usual integral models over Zp. The

integral model X(Γ1(N)∩Γ0(p)) is not smooth over Zp, but still regular (semistable in fact), and

p1, p2 are still �nite �at. So we can apply the exactly same construction as above to get a Hecke

operator

T naive : RΓ(X1(N), ωk)→ RΓ(X1(N), ωk)

But this is not the correct Tp. Namely, the image of this cohomological correspondence T naive is

always divisible by pinf{1,k}
.
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Proposition 3.1. The naive T naive factors through

RΓ(X1(N), ωk)→ pinf{1,k}RΓ(X1(N), ωk)→ RΓ(X1(N), ωk)

Proof. By normality of integral models of modular curves, we only need to check at the smooth

locus. Since there is nothing to check at the generic �ber, one only needs to check at the generic

points of irreducible components of the special �ber. The special �ber ofX(Γ1(N)∩Γ0(p)) has the

usual picture, that there are two irreducible components, each smooth (Igusa curve), intersecting

transversally at supersingular points. The natural map

ρ : Ig1 → X1(N)0

of forgetting trivialization is generically etale.

In terms of moduli problems, the two components correspond to the kernel of the isogeny

E1 → E2 being multiplicative and etale, respectively.

• Over the “étale” component, namely if ξ is the generic point of the étale component,

(p∗2ω
k)ξ → (p∗1ω

k)ξ is an isomorphism. On the other hand, after identifying the com-

ponent with Ig1, it maps to X1(N)0 via F ◦ ρ, where F is the absolute Frobenius of Ig1.

So, the trace (p∗1O)ξ → (p!
1O)ξ factors through (p∗1O)ξ → p(p!

1O)ξ ↪→ (p!
1O)ξ . Thus, the

morphism p∗2ω
k → p!

1ω
k

over ξ factors through (p∗2ω
k)ξ → p(p!

1ω
k)ξ → (p!

1ω
k)ξ .

• Over the “multiplicative” component, if ξ′ is the generic point of the multiplicative com-

ponent, (p∗2ω)ξ′ → (p∗1ω)ξ′ factors through (p∗2ω)ξ′ → p(p∗1ω)ξ′ → (p∗1ω)ξ′ , so (p∗2ω
k)ξ′ →

(p∗1ω
k)ξ′ factors through (p∗2ω

k)ξ′ → pk(p∗1ω
k)ξ′ → (p∗1ω

k)ξ′ . On the other hand, after

identifying the component with Ig1, it maps to X1(N)0 via ρ, so the trace map (p∗1O)ξ →
(p!

1O)ξ is an isomorphism. Thus, the morphism p∗2ω
k → p!

1ω
k

over ξ factors through

(p∗2ω
k)ξ → pk(p!

1ω
k)ξ → (p!

1ω
k)ξ .

Thus optimally it factors through p∗2ω
k → pinf{1,k}p!

1ω
k → p!

1ω
k
. �

In fact this is a quite typical situation, and one can even predict what could be the optimal

p-power should be. Indeed, T naive is the same as convoluting 1
GL2(Zp)

(
1 0
0 p−1

)
GL2(Zp)

in the spher-

ical Hecke algebra. Thus, if π = πf ⊗ π∞ appears in RΓ(X1(N), ωk), then the local-global

compatibility (really Satake isomorphism) says that

T naive|πp = pTr(Frob−1
p |ρπ),

where ρπ is the Galois representation attached to π. Since ρπ is crystalline and has Hodge-Tate

weights 0 and k − 1, as the Newton polygon should lie over the Hodge polygon,

v(T naive|πp) ≥ 1 + inf{0, k − 1} = inf{1, k}.

In fact by this way we see that the bound is optimal as the equality is achieved at the “ordinary

representations” (in the sense of Katz–Mazur) which really do exist.

3.2. Tp of Siegel threefold with hyperspecial level. Now we construct Tp and Up for Siegel

threefolds. We use the notation of Loe�er–Pilloni–Skinner–Zerbes.

• G = GSp4 associated to J =

(
1

1
−1

−1

)
, and the Siegel (Klingen, resp.) parabolic is

PS =
( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗
∗ ∗

)
(PKl =

( ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗

)
, resp.)
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• Choose a tame level Kp
, and let X (Xpar, XKl(p), resp.) be some toroidal compacti�cation

of integral model over Zp of Siegel threefold of level KpKp with Kp = GSp4(Zp) (Kp =

Kpar =

{(
∗ ∗ ∗ ∗/p
∗ ∗ ∗ ∗/p
∗ ∗ ∗ ∗/p
p∗ p∗ p∗ ∗

)}
, Kp = Kl(p) =

{(
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 0 ∗

)
(mod p)

}
, resp.).

– The open Shimura variety of hyperspecial level Y parametrizes (G, λ, ψ), where G is

an abelian surface, λ is a (Z×p -multiple of) principal polarization, andψ is a prime-to-p
level structure.

– The open Shimura variety of paramodular level Ypar parametrizes (G, λ, ψ) where G
is an abelian surface, λ is a (Z×p -multiple of) degree p2

polarization, ψ is a prime-to-p
level structure.

– The open Shimura variety of Klingen level YKl(p) parametrizes (G,H, λ, ψ), where G
is an abelian surface, λ is a (Z×p -multiple of) principal polarization, H ⊂ G[p] is a

rank p �gs and ψ is a prime-to-p level structure.

– There is a natural map YKl(p) → Y by forgetting H .

– There is a natural map YKl(p) → Ypar (which is visible from group description) by

sending (G,H, λ, ψ) 7→ (G/H⊥, λ′, ψ). Here H⊥ (rank p3
) is obtained from H via

Weil pairing onG[p], so that there is a degree p isogenyG/H⊥ → G/G[p] = G; then

λ′ is a degree p2
isogeny induced from λ and the degree p isogeny.

– By analyzing local models, one knows that X is smooth and Xpar, XKl(p) are l.c.i.

• T is the diagonal, and

X∗(T ) = {(r1, r2; c) ∈ Z3 | c ≡ r1 + r2(mod 2)}

identi�ed via

(r1, r2; c)↔

( st1
st2

st−1
2

st−1
1

)
7→ tr11 t

r2
2 s

c

• The weight λ(r1, r2; c) is PS-dominant i� r1 ≥ r2. Let ω(r1, r2; c) be the corresponding

automorphic vector bundle. Since the central twists can be matched easily we usually

ignore c.

One would like to construct a cohomological correspondence on X related to the classical Hecke

operator T class = [GSp4(Zp)
(
p2

p
p

1

)
GSp4(Zp)]. The �rst natural attempt is to de�ne integral

correspondence

X

(
GSp4(Zp) ∩

(
p2

p
p

1

)
GSp4(Zp)

(
p2

p
p

1

)−1
)

**ttX X

However, GSp4(Zp) ∩
(
p2

p
p

1

)
GSp4(Zp)

(
p2

p
p

1

)−1

is not a parahoric subgroup (this is

a parahoric subgroup only when the diagonal matrix is associated with a miniscule coweight,

whereas

(
p2

p
p

1

)
is associated with t 7→ diag(t2, t, t, 1), which is not miniscule), and we don’t
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know how to de�ne a good integral canonical model of Shimura varieties of non-parahoric level.

There is a roundabout way though: there is a correspondence diagram

XKl(p)

p2

##

p1

||
X Xpar

and one can think of cohomological correspondences going both directions.

• Over YKl(p), there is a universal isogeny G → G/H⊥ (degree p3
), which gives rise to

T naive1 : p∗2ω(k1, k2)[1/p] → p∗1ω(k1, k2)[1/p]. After scaling with some (preferrably opti-

mal) power of p, this restricts to a morphism of lattices. Composed with fundamental class

one gets the direction T1 : RΓ(Xpar, ω(k1, k2)) → RΓ(X,ω(k1, k2)). The corresponding

classical Hecke operator is associated with the double coset [GSp4(Zp)
(
p
p
p

1

)
Kpar].

• Over YKl(p), there is again a universal isogeny, this times G/H⊥ → G (degree p), which

gives rise to T naive2 : p∗1ω(k1, k2)[1/p] → p∗2ω(k1, k2)[1/p]. After scaling with some (pre-

ferrably optimal) power of p, this restricts to a morphism of lattices. Composed with fun-

damental class one gets the direction T2 : RΓ(X,ω(k1, k2)) → RΓ(Xpar, ω(k1, k2)). The

corresponding classical Hecke operator is associated with the double coset [Kpar

(
p

1
1

1

)
GSp4(Zp)].

Thus, the classical Hecke operator corresponding to T := T1 ◦T2 is contained in the double coset

[GSp4(Zp)
(
p
p
p

1

)
Kpar] ? [Kpar

(
p

1
1

1

)
GSp4(Zp)]

= [GSp4(Zp)
(
p2

p
p

1

)
GSp4(Zp)] + (1 + p+ p2 + p3)[GSp4(Zp)

(
p
p
p
p

)
GSp4(Zp)],

which is sort of expected. Even though there is an unwanted “junk”, it is simple, and it can be

”ruled out” as it has higher p-divisibility as we will see below.

Now it is about �nding the optimally integral T1 and T2. We know all integral models are

normal, we can use the same trick and worry only about what happens at the ordinary locus of

YKl(p). It has two components depending on the étale rank of H⊥. Since H⊥ ⊂ G[p], and G is

ordinary, H⊥, which is of rank p3
, can have étale rank 1 or 2 (and correspondingly multiplicative

rank 2 or 1). Using that ω(k1, k2) = Symk1−k2(ωG) ⊗ det(ωG)k2
, it is about p-divisibility of

ωG → ωG/H⊥ and ωG/H⊥ → ωG/H⊥/H′ (easy) and about p-divisibility of trace map from the two

components of (YKl(p))
ord
1 to (Ypar)1 and Y1 (subscript 1 means singular �ber). The latter problem

is analyzed again by local models. One calculates the following.

• Over the locus where H⊥ has etale rank 2, multiplicative rank 1 = H is multiplicative,

– T naive1 has divisibility of pk2
from isogeny and p2

from trace map, so in total pk2+2
,

– T naive2 has divisibility of pk2
from isogeny and none from trace map, so in total pk2

.

• Over the locus where H⊥ has etale rank 1, multiplicative rank 2 = H is etale,

– T naive1 has divisibility of pk1+k2
from isogeny and none from trace map, so in total

pk1+k2
,

– T naive2 has no extra divisibility from isogeny and p from trace map, so in total p.
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Thus, we see that the optimally integral T1 and T2 are

T1 =
1

pinf{k2+2,k1+k2}
T naive1 ,

T2 =
1

pinf{k2,1}
T naive2 .

So, if k2 ≥ 2, then the optimal p-divisibility is obtained at the component ∗ et rk 2, mul rk 1−−−−−−−−→ ∗ et−→ ∗.
Remark 3.1. We realized our promise that we can “rule out” the unwanted piece

[GSp4(Zp)
(
p
p
p
p

)
GSp4(Zp)],

because it corresponds to H ′ = G[p]/H⊥, so the unwanted piece is contained in the components

∗ et rk 1, mul rk 2−−−−−−−−→ ∗ et−→ ∗ and ∗ et rk 2, mul rk 1−−−−−−−−→ ∗ mul−−→ ∗.
Remark 3.2. Despite the above estimates, the optimal p-divisibility of T naive (namely, the naive

cohomological correspondence coming from XKl(p) ×Xpar XKl(p)) is not pinf{k2,1}+inf{k2+2,k1+k2}
.

As a composition of correspondences, the universal isogeny in concern is the composed isogeny

ωG → ωG/H⊥ → ω(G/H⊥)/H′ , and the composed isogeny has some extra constraint, thatG/H⊥/H ′

is principally polarized.

• Firstly H⊥ ⊂ G[p] where G is ordinary, so H⊥ is etale locally isomorphic to either

(Z/pZ)⊕2 ⊕ µp or Z/pZ⊕ µ⊕2
p . And H ′ is etale locally isomorphic to either µp or Z/pZ.

• So the kernel of G → G/H⊥/H ′ is an extension of H ′ by H⊥, and because of this con-

straint, not all extensions can appear. For example, for the component withH⊥ etale rank

2 (=multiplicative rank 1) and H ′ multiplicative, we are led to consider extensions of µp
by (Z/pZ)⊕2 ⊕ µp, so etale locally two things are possible:

0→ (Z/pZ)⊕2 ⊕ µp →
(

(Z/pZ)⊕2 ⊕ µ⊕2
p

(Z/pZ)⊕2 ⊕ µp2

)
→ µp → 0

But the second possibility, (Z/pZ)⊕2 ⊕ µp2 , is impossible, because

(Qp/Zp)⊕2⊕µ⊕2
p∞

(Z/pZ)⊕2⊕µp2
is not

principally polarized (its p2
-torsion is

(Z/p2Z)⊕2⊕µ⊕2

p2

(Z/pZ)⊕2⊕µp2
= (Z/pZ)⊕2 ⊕ µp2 which is not

prinicpally polarizable). Thus the composed universal isogeny has p-divisibility of pk1+k2

for this component. If you compare this with what happened at T1 and T2, they had p-

divisibilites of pk2
and pk2

, respectively, coming from the universal isogenies. This explains

the calculation in [LPSZ19, p.13], and in the case of k2 negative, the optimal p-divisibility

is still obtained at the same component (namely, the component ∗ et rk 2, mul rk 1−−−−−−−−→ ∗ et−→ ∗).
3.3. Up of Siegel threefold with Klingen level. One would again like to construct a cohomo-

logical correspondence onXKl(p) related to the classical Hecke operatorU class = [Kl(p)

(
p2

p
p

1

)
Kl(p)],

and this is again not naively possible by a similar reason. We mimic the process of de�ning Tp
but somewhat worse and more ad hoc. In fact, we can only de�ne Up as a cohomological corre-

spondence over an open subschemeX≥1
of multiplicative rank at least 1. The optimal divisibility

is checked on the ordinary locus so this will anyways give you the optimal divisibility for U class
.

• Let X etc. be the p-adic formal completion.
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• Let X≥1
Kl(p) be the moduli space of H ⊂ G[p] where H is etale locally isomorphic to µp.

• Let X≥1
par be the same moduli space but with multiplicative rank of G being at least 1.

• Let X≥1
par,Kl(p) → X≥1

par be the moduli space where it further parametrizes H ⊂ G[p] with

H etale locally isomorphic to µp.
• Similarly, let Xm

par be the moduli space where the kernel of the degree p2
polarization

λ : G′ → (G′)t contains multiplicative group (from the Klingen moduli, this corresponds

to G[p]/H⊥ being multiplicative), and de�ne Xm
par,Kl(p) similarly as above.

• Now we mimic the construction of Tp by “base-changing over a part of XKl(p) where the

moduli problem makes sense”.

– Let C1(p) ⊂ XKl(p) ×X X≥1
Kl(p) be the open subscheme (here XKl(p) → X sends (G →

G′) 7→ G) where the universal triple (G → G′, H) satis�es ker(G → G′) ∩ H = 0.

It admits a map C1(p)→ Xm
par,Kl(p), (G→ G′, H) 7→ (G′/(ker(G→ G′)⊥), im(H →

G→ G′)). These admit a correspondence diagram

C1(p)
q1

##

q2

zz
Xm
par,Kl(p) X≥1

Kl(p)

– Let C2(p) ⊂ XKl(p) ×Xpar X
m
par,Kl(p) be the open subscheme where the universal triple

(G′ → G,H ′ ⊂ G′) satis�es that ker(G′ → G) is not a multiplicative group. It has

a map r1 : C2(p) → Xm
par,Kl(p) which is a tautology and r2 : C2(p) → X≥1

Kl(p) de�ned

by (G′ → G,H ′ ⊂ G′) 7→ (G, im(H ′ → G′ → G)). These admit a correspondence

diagram

C2(p)

r1

$$

r2

{{

X≥1
Kl(p) Xm

par,Kl(p)

• Now we have

Unaive
1 : RΓ(Xm

par,Kl(p), ω(k1, k2))→ RΓ(X≥1
Kl(p), ω(k1, k2))

using the universal isogeny G→ G′ over C1(p) and

Unaive
2 : RΓ(X≥1

Kl(p), ω(k1, k2))→ RΓ(Xm
par,Kl(p), ω(k1, k2))

using the universal isogeny G′ → G over C2(p). To de�ne optimal integral Hecke opera-

tors, we study the p-divisibilities of isogenies and trace maps.

– For Unaive
1 , the universal isogeny gives rise to the divisibility of pk2

, and the trace map

gives the divisibility of p2
. Thus U1 = 1

pk2+2U
naive
1 .

– For Unaive
2 , the universal isogeny is actually etale, so there is no extra divisibility from

it. The trace map has extra divisibility of p, so U2 = 1
p
Unaive

2 .

The divisibility pattern is actually simpler than T because we are only de�ning the corre-

spondence over a certain part of XKl(p).

• De�ne U = U1 ◦ U2 ∈ End(RΓ(X≥1
Kl(p), ω(k1, k2))).
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4. Integral Hecke operators and (generalized) Hasse invariants

Now we want to know how Up and Tp interact with the Hasse invariant or the second Hasse

invariant. This is about to which extent Hasse invariant satis�es functoriality. One knows that

Hasse invariant satis�es “functoriality” along the isogeny f : G → G′ when it satis�es any of

the following conditions:

• when f is étale;

• when G and G′ are multiplicative;

• when, over each geometric point, ker f ⊂ G[p] and there is an orthogonal complement of

ker f in G[p].

4.1. Tp.

Proposition 4.1. For k1 > 2 and k2 > 1, the Hasse invariant commutes with Tp, namely the
following diagrams commute over X1 and Xpar,1.

p∗2ω(k1, k2)
T1 //

p∗2 Ha

��

p!
1ω(k1, k2)

p!
1 Ha
��

p∗2ω(k1 + p− 1, k2 + p− 1)
T1 // p!

1ω(k1 + p− 1, k2 + p− 1)

p∗1ω(k1, k2)
T2 //

p∗1 Ha

��

p!
2ω(k1, k2)

p!
2 Ha
��

p∗1ω(k1 + p− 1, k2 + p− 1)
T2 // p!

2ω(k1 + p− 1, k2 + p− 1)

Proof. Recall that over the two components of Xord
Kl , the p-divisibilities of T1 and T2 are given by

di�erent formula. The inequalities k1 > 2 and k2 > 1 ensures that, for T1, the component of

multiplicative H is exactly where the optimal divisibility is achieved, and for T2, the component

of etale H is exactly where the optimal divisibility is achieved. So over mod p �ber, T1 and T2

just vanishes at the respective other component.

For T1, the relevant isogeny is G → G/H⊥. Since H⊥ has the maximal etale rank, and since

the quotient is multiplicative, Hasse invariant is functorial under this isogeny. For T2, the relevant

isogeny is G/H⊥ → G, and this is etale, so Hasse invariant is functorial under this isogeny. �

Since there is a distinguished triangle

RΓ(X1, ω(k1, k2))
Ha−→ RΓ(X1, ω(k1+p−1, k2+p−2))→ RΓ(X≤1

1 , ω(k1+p−1, k2+p−1))
+1−→

one has T -action on RΓ(X≤1
1 , ω(k1 + p − 1, k2 + p − 1)) for k1 > 2, k1 > 1, as well as the

long exact sequence of coherent cohomology groups is T -equivariant. Here superscript means

condition on etale rank=multiplicative rank of truncated BT group.

Over X≤1
1 , one has di�erent kind of description of components, so the behaviour of T is not

as obvious as above. Still one has similar kind of statement over X≤1
1 with the generalized Hasse

invariant Ha′:
10



Proposition 4.2. For k1 > 2p + 2 and k2 > p + 1, Ha′ and T commute, namely the following
diagrams commute over X≤1

1 and X≤1
par,1.

p∗2ω(k1, k2)|
X≤1

par,1

T1 //

p∗2 Ha′

��

p!
1ω(k1, k2)|

X≤1
1

p!
1 Ha′

��
p∗2ω(k1 + p2 − 1, k2 + p2 − 1)|

X≤1
par,1

T1 // p!
1ω(k1 + p2 − 1, k2 + p2 − 1)|

X≤1
1

p∗1ω(k1, k2)|
X≤1

1

T2 //

p∗1 Ha′

��

p!
2ω(k1, k2)|

X≤1
par,1

p!
2 Ha′

��
p∗1ω(k1 + p2 − 1, k2 + p2 − 1)|

X≤1
1

T2 // p!
2ω(k1 + p2 − 1, k2 + p2 − 1)|

X≤1
par,1

Moreover, T1 commutes with Ha′ under k2 = p+ 1 too.

Proof. One can check the commutativity over the dense open subscheme YKl(p),1|Y =1
1

. Since the

universal BT group has constant multiplicative kernel, YKl(p),1|Y =1
1

is actually consisted of three

disjoint components, the etale/multiplicative/bi-connected component, where the adjectives de-

scribe the kernel of the universal isogeny G′ → G (namely, over geometric points, the order p
�gs is isomorphic to Z/pZ, µp, αp, respectively). The correspondences T1, T2 then split into three

parts. One prove similarly that T1 and T2 vanish over the multiplicative and bi-connected com-

ponents under the given conditions, and over the etale component commutativity follows by the

functoriality properties we’ve seen before. �

So again T1 descends to a cohomological correspondence over the supersingular locus when

k1 > p2 + 2p+ 1 and k2 ≥ p2 + p.

4.2. Finiteness of Tp-ordinary cohomology. Now one has a following crucial

Proposition 4.3. There is a constant C ≥ 0, independent of Kp, such that for any k1 − k2 ≥ C
and k2 ≥ p2 + p, T1 : p∗2ω(k1, k2)|X=0

par,1
→ p!

1ω(k1, k2)|X=0
1

is zero.

Proof. We just exhibit a heuristic why it could vanish. The correspondence T1 uses the universal

isogeny G → G/H⊥. Over X=0
1 , G has multiplicative rank 0, so H is necessarily killed by F ,

namely H ⊂ kerF . Dually, kerF ⊂ H⊥, which means that the di�erential of the universal

isogeny has yet another divisibility coming up.

That C does not depend onKp
follows from the fact that varying tame level gives rise to �nite

étale base change of situations, so if C works for one tame level, it works for all tame levels. �

Now we can show that T acts locally �nitely on various cohomology groups.

Proposition 4.4.
(1) For k1 > 2p+ 2 and k2 ≥ p+ 1, T acts locally �nitely on H0(X=1

1 , ω(k1, k2)(−D)).
(2) For k1 > 2p+ 3 and k2 > p+ 1, T acts locally �nitely on H i(X=1

1 , ω(k1, k2)(−D)) for all
i.

(3) There is a universal constant C ≥ 0 (the one as above) such that for k1 − k2 ≥ C and
k2 ≥ p+ 1,

e(Tp)H
0(X≤1

1 , ω(k1, k2)(−D)) = e(Tp)H
0(X=1

1 , ω(k1, k2)(−D))
11



(4) If k2 > p+ 1, then

e(Tp)H
>0(X≤1

1 , ω(k1, k2)(−D)) = e(Tp)H
>0(X=1

1 , ω(k1, k2)(−D)) = 0

Proof. For (1), note that as T commutes with Ha′,

H0(X=1
1 , ω(k1, k2)(−D)) = lim−→

n

H0(X≤1
1 , ω(k1 + n(p2 − 1), k2 + n(p2 − 1))(−D))

and X≤1
1 = V (Ha) is projective, so done. Similarly for (2) (bound gets slightly worse because

T Ha′ = Ha′ T holds in higher cohomology under that worse bound). For (3), note that we have

a morphism of long exact sequences

0 // H0(X≤1
1 , ω(k1, k2)(−D))

Ha′ // H0(X≤1
1 , ω(k1 + p2 − 1, k2 + p2 − 1)(−D)) // H0(X=0

1 , ω(k1 + p2 − 1, k2 + p2 − 1)(−D))

0 // H0(X≤1
par,1, ω(k1, k2)(−D))

Ha′ //

T1

OO

H0(X≤1
par,1, ω(k1 + p2 − 1, k2 + p2 − 1)(−D)) //

T1

OO

H0(X=0
par,1, ω(k1 + p2 − 1, k2 + p2 − 1)(−D))

T1

OO

The rightmost vertical map is zero under the bound, so if you apply e(Tp) to the top row (which

you can), then the rightmost term vanish, so we know that multiplying by Ha′ induces an iso-

morphism

e(Tp)H
0(X≤1

1 , ω(k1, k2)(−D))
∼−→ H0(X≤1

1 , ω(k1 + p2 − 1, k2 + p2 − 1)(−D))

Taking the colimit of ×(Ha′)n, we get the desired result. Similarly for (4). �

Proposition 4.5.
(1) For k1 > p+ 3 and k2 ≥ 2, T acts locally �nitely on RΓ(X≥1

1 , ω(k1, k2)(−D)).
(2) For k1− k2 ≥ C and k2 ≥ 2, e(Tp)RΓ(X≥1

1 , ω(k1, k2)(−D)) is a perfect complex of ampli-
tude [0,1].
(a) If k2 ≥ 3, then the naturalmap e(Tp)RΓ(X1, ω(k1, k2)(−D))→ e(Tp)RΓ(X≥1

1 , ω(k1, k2)(−D))
is a quasi-isomorphism.

(b) If k2 = 2, then e(Tp)H0(X1, ω(k1, k2)(−D))
∼−→ e(Tp)H

0(X≥1
1 , ω(k1, k2)(−D)) and

e(Tp)H
1(X1, ω(k1, k2)(−D)) ↪→ e(Tp)H

1(X≥1
1 , ω(k1, k2)(−D)).

Proof. For (1), consider the resolution over X≥1
1 ,

0→ ω(k1, k2)(−D)
Han−−→ ω(k1 + n(p− 1), k2 + n(p− 1))(−D)→ ω(k1 + n(p− 1), k2 + n(p− 1))(−D)/(Han)→ 0.

Since the higher direct image of subcanonical extension from toroidal compacti�cation to mini-

mal compacti�cation vanishes, H i
of the second/third term is H i

of its pushforward to minimal

compacti�cation. Take the colimit over all n:

0→ ω(k1, k2)(−D)
lim−→n

Han

−−−−−→ lim−→n
ω(k1 + n(p− 1), k2 + n(p− 1))(−D)→ lim−→n

ω(k1 + n(p− 1), k2 + n(p− 1))(−D)/(Han)→ 0.

The second term is supported on the etale-rank 2 locus, whereas the third term is supported on

the etale-rank 1 locus. As there are generalized Hasse invariants, one sees that any Ekedahl–Oort

stratum in minimal compacti�cation is a�ne. Thus, the colimit sequence is actually an acyclic

resolution over X≥1
1 . Thus

RΓ(X≥1
1 , ω(k1, k2)(−D)) ∼= [H0(X=2

1 , ω(k1, k2)(−D))→ lim−→n
H0(X≥1

1 , ω(k1 + n(p− 1), k2 + n(p− 1))(−D)/(Han))]

As

H0(X=2
1 , ω(k1, k2)(−D)) = lim−→

n

H0(X1, ω(k1 + n(p− 1), k2 + n(p− 1))(−D))
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T acts locally �nitely on this term. For the second term, note that H0(X≥1
1 , ω(k1 + (p− 1), k2 +

(p−1))(−D)/(Ha)) = H0(X=1
1 , ω(k1 + (p−1), k2 + (p−1))(−D)), on which we already know

T acts locally �nitely, and we have an exact sequence

0→ H0(X≥1
1 , ω(k1 + (n− 1)(p− 1), k2 + (n− 1)(p− 1))(−D)/(Han−1))→ H0(X≥1

1 , ω(k1 + n(p− 1), k2 + n(p− 1))(−D)/(Han))→ H0(X≥1
1 , ω(k1 + (p− 1), k2 + (p− 1))(−D)/(Ha))

so by induction we get the result.

For (2), we see that from the same resolution, we have a morphism between exact sequences

0 // H0(X≥1
1 , ω(k1, k2)(−D)) // H0(X=2

1 , ω(k1, k2)(−D)) // lim−→n
H0(X≥1

1 , ω(k1 + n(p− 1), k2 + n(p− 1))(−D)/Han) // H1(X≥1
1 , ω(k1, k2)(−D)) // 0

0 // H0(X1, ω(k1, k2)(−D)) //

OO

H0(X=2
1 , ω(k1, k2)(−D)) //

OO

lim−→n
H0(X1, ω(k1 + n(p− 1), k2 + n(p− 1))(−D)/Han) //

OO

H1(X1, ω(k1, k2)(−D)) //

OO

0

and also that lim−→n
H i(X1, ω(k1+n(p−1), k2+n(p−1))(−D)/Han) ∼= H i+1(X1, ω(k1, k2)(−D))

for i = 1, 2.

For (a), we need to prove two things.

• eH>0(X1, ω(k1 + n(p− 1), k2 + n(p− 1))(−D)/Han) = 0 for all n ≥ 1.

– For n = 1, this is just eH>0(X≤1
1 , ω(k1 + p − 1, k2 + p − 1)(−D)) = 0, which is

proven already.

– One can use an induction using a s.e.s.

0→ ω(k1 + (n− 1)(p− 1), k2 + (n− 1)(p− 1))(−D)/Han−1 Ha−→ ω(k1 + n(p− 1), k2 + n(p− 1))(−D)/Han → ω(k1 + p− 1, k2 + p− 1)(−D)/Ha→ 0

• e(Tp)H0(X1, ω(k1 +n(p−1), k2 +n(p−1))(−D)/Han)→ e(Tp)H
0(X≥1

1 , ω(k1 +n(p−
1), k2 + n(p− 1))(−D)/Han) is an isomorphism.

– For n = 1, this is just that

e(Tp)H
0(X≤1

1 , ω(k1 +p−1, k2 +p−1)(−D))
∼−→ e(Tp)H

0(X=1
1 , ω(k1 +p−1, k2 +p−1)(−D)),

which was already proven.

– One can use the same s.e.s. and do induction. It’s possible because we just proved

that higher cohomology vanishes.

And (b) works similarly too. �

Remark 4.1. Here we proved something by, apparently, moving things to the minimal compact-

i�cation. You might think that it’s weird to transfer things to minimal compacti�cation because

toroidal compacti�cation seems always better than minimal compacti�cation. But one great ad-

vantage of minimal compacti�cation is that it is constructed as Proj
⊕

H0(X,ωn). This means

that there is an apparent extension of ω which is ample. This is not the case for toroidal com-

pacti�cation; namely, (sub)canonical extension is not ample. So the upshot is:

The nonvanishing locus of an automorphic form is a�ne in minimal compacti�cation only.

4.3. Up. The construction of Up was much more horrible than Tp, but as we are only working

on a “nice part”, we have much better statements for commutativity with (generalized) Hasse

invariant.

Proposition 4.6.
(1) Over X≥1

1 , U commutes with Ha.
(2) Over X=1

1 , U commutes with Ha′.

Proof is much easier, in fact. Note that we don’t have any weight constraints.
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5. Relation between Up and Tp

We want analogous cohomological �niteness for Up. We achieve it by relating Up and Tp.

5.1. Ordinary locus. We want

Proposition 5.1.

(1) For k1 − k2 ≥ 1 and k2 ≥ 2, U acts locally �nitely on H0((X=2
Kl(p))1, ω(k1, k2)(−D)).

(2) For k1 − k2 ≥ 2 and k2 ≥ 2, the natural pullback map

e(T )H0(X=2
1 , ω(k1, k2)(−D))→ e(U)H0((X=2

Kl(p))1, ω(k1, k2)(−D))

is an isomorphism.
(3) For k1 − k2 ≥ 2 and k2 ≥ 2, the natural pullback map

e(T )H0(X=2, ω(k1, k2)(−D))→ e(U)H0(X=2
Kl(p), ω(k1, k2)(−D))

is an isomorphism.

Proof. Note that under this condition, T1 and T2 mod p can be only accounted for half of the

correspondence each. Namely what would matter is the correspondence

(Xord,m
Kl(p) )1 ×(Xord,ét

par )1
(Xord

Kl(p))1

))uu
Xord

1 Xord
1

where the correspondence space parametrizes

{(H ⊂ G[p], H ′ ⊂ G′[p]) | G,G′ ordinary, G/H⊥ ∼= G′/(H ′)⊥, H multiplicative, H ′ étale}

Inspired by this, we construct a yet another correspondence

D
g1

!!

g2

}}
Xord Xord

where D parametrizes (L ⊂ G[p2]), where G is ordinary and L is a totally isotropic subgroup

scheme of G[p2], which is an extension

0→ Lm → L→ Lét → 0

where Lm is etale locally isomorphic to µp and Lét
is etale locally isomorphic to Z/pZ⊕ Z/p2Z.

Let g1((G,L)) = G and g2((G,L)) = G/L. Then the correctly normalized cohomological cor-

respondence for this (using G → G/L) is the same as T modulo p; the two constructions are

related as

0→ H⊥
etale 2, mul 1

→ L→G′[p]/(H ′)⊥
etale

→ 0
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From this, we can see that g2 actually factors through g2 : D→ Xord
Kl(p), (G,L) 7→ (G/L,G[p]/L)

(G[p]/L is actually rank p in G/L because L ∩G[p] is rank p3
, “H⊥”). So T factors through

H0((Xord
Kl(p))1, ω(k1, k2)(−D))

++
H0(Xord

1 , ω(k1, k2)(−D))
T

//

OO

H0(Xord
1 , ω(k1, k2)(−D))

Complete this into a square and name the new correspondences:

H0((Xord
Kl(p))1, ω(k1, k2)(−D))

T ′′

++

T ′′′ // H0((Xord
Kl(p))1, ω(k1, k2)(−D))

H0(Xord
1 , ω(k1, k2)(−D))

T=T ′
//

i

OO

H0(Xord
1 , ω(k1, k2)(−D))

i

OO

We can then note several things:

• (T ′′′)n = iT n−1T ′′, so actually T ′′′ acts locally �nitely on H0((Xord
Kl(p))1, ω(k1, k2)(−D))

(as T acts locally �nitely).

• We see that U mod p has a correspondence diagram
(G→ G′, H ⊂ G,G′ → G,H ′ ⊂ G′), where

ker(G→ G′) ∩H = 0, ker(G′ → G) is

multiplicative, and

(G′/(kerG→ G′)⊥, im(H → G′)) = (G′, H ′)


))tt

(G, im(H ′ → G)) (G→ G′)

so this is the same as the correspondence for T ′′′, except that there is extra condition on

ker(G → G′) ∩ H = 0. So T ′′′ = U + F where F accounts for nontrivial intersection.

In this way T ′′′ and U are related, and by studying moduli problem one can show that

U ◦ T ′′′ = U ◦ U . At this point (1) is deduced. Also, the natural pullback

e(T )H0(X=2
1 , ω(k1, k2)(−D))→ e(U)H0((X=2

Kl(p))1, ω(k1, k2)(−D))

is surjective, because given G in the target, e(U)ie(T )T ′′U−1G = G. By Nakayama, the

surjectivity of (3) is deduced.

• Now consider Tr ◦Un ◦ iEnd(H0(Xord, ω(k1, k2)(−D))), which is associated with the

correspondence
(G,H,Ln), where G is ordinary, H ⊂ G[p] is multiplicative

order p and Ln ⊂ G[p2n] totally isotropic, sitting inside

0→ Lmn → Ln → Lét
n → 0 where Lét

n is etale locally

isomorphic to Z/pnZ⊕ Z/p2nZ and Lmn is etale locally

isomorphic to µpn , such that Ln ∩H = 0


By moduli interpretation, we have Tr ◦Un ◦ i = pT n,ét

where T n,ét
is the part of T n

where G→ G′ has maximally etale kernel. There is p because of extra datum of H where
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there are exactly p choices. Then as before T n,ét
has the least divisibility under the given

condition, and in fact T n ≡ T n,ét(mod pk1−k2). Thus, Tr ◦Un ◦ i ≡ pT n(mod pk1−k2).

• Now injectivity of (2) follows from injectivity of (3) (the modules are complete �at Zp-
modules). The injectivity of (3) uses that Tr ◦Un ◦ i = pT n(mod pk1−k2) which says that

if it’s in the kernel then it’s a p-multiple (here we use k1 − k2 ≥ 2). By induction we get

the vanishing.

�

5.2. Rank 1 locus. Note that over rank 1 locus, (X=1
Kl(p))1 → X=1

1 is an isomorphism. By de�ni-

tion, over X=1
1 , U = T ét

1 ◦ T ◦2 . So by the same reasoning we have

Proposition 5.2. U = T if k1 > 2p+ 2 and k2 ≥ p+ 1

5.3. Finiteness of Up-ordinary cohomology.

Theorem 5.1.
(1) If k2 ≥ 2 and k1 − k2 > p + 1, U acts locally �nitely on RΓ((X≥1

Kl(p))1, ω(k1, k2)(−D)).
Also, the natural pullback map

e(T )RΓ(X≥1
1 , ω(k1, k2)(−D))→ e(U)RΓ((X≥1

Kl(p))1, ω(k1, k2)(−D))

is a quasi-isomorphism.
(2) If k2 ≥ 2 and k1 − k2 ≥ C (as before), e(U)RΓ(X≥1

1 , ω(k1, k2)(−D)) is a perfect complex
of Fp-vector spaces of amplitude [0, 1].

We can combine this with e(T )RΓ(X1, ω(k1, k2)(−D))
∼−→ e(T )RΓ(X≥1

1 , ω(k1, k2)(−D)) for
k2 ≥ 3, k1 − k2 ≥ C .

Proof. One uses similar exact sequence to show that

RΓ((X≥1
Kl(p))1, ω(k1, k2)(−D)) ∼= [H0((X=2

Kl(p))1, ω(k1, k2)(−D))→ lim−→n
H0((X≥1

Kl(p))1, ω(k1 + n(p− 1), k2 + n(p− 1))(−D)/Han)]

and argue as before. �

One can use a similar acyclic resolution but with pn-congruences:

0→ ω(k1, k2)(−D)→ lim−→l,×Hap
n−1 ω(k1 + lpn−1(p− 1), k2 + lpn−1(p− 1))(−D)→ lim−→l

ω(k1 + lpn−1(p− 1), k2 + lpn−1(p− 1))(−D)/Halp
n−1 → 0

and this can be seen as a s.e.s on X≥1
n , as Hap

n−1

lifts to Xn. By the same reason this is an acyclic

resolution of Z/pnZ-sheaves, and one can argue exactly in the same way to gain the following.

Theorem 5.2.
(1) For k2 ≥ 2 and k1−k2 > p+1, T andU acts locally �nitely onRΓ(X≥1, ω(k1, k2)(−D)) and

RΓ(X≥1
Kl(p), ω(k1, k2)(−D)), respectively. These complexes have cohomologies concentrated

in degree [0, 1].
(2) The natural pullback map

e(T )RΓ(X≥1, ω(k1, k2)(−D))→ e(U)RΓ(X≥1
Kl(p), ω(k1, k2)(−D))

is a quasi-isomorphism.
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(3) If k1 − k2 ≥ C , then e(U)RΓ(X≥1
Kl(p), ω(k1, k2)(−D)) is a perfect complex of Zp-modules

with amplitude [0, 1]. If furthermore k2 ≥ 3,

e(T )RΓ(X, ω(k1, k2)(−D))→ e(U)RΓ(X≥1
Kl(p), ω(k1, k2)(−D))

is a quasi-isomorphism. If k2 = 2, then its bijective on H0 and injective on H1.

6. Interpolation

Now one can use the Igusa tower over X≥1
.

• Let X≥1
Kl(pn) be the moduli of Hm ⊂ G[pm] where Hm is etale locally isomorphic to µpm .

Taking the inverse limit we have a formal scheme X≥1
Kl(p∞) too.

• Let IG(pm) = Isom(µpm , Hm) over X≥1
Kl(pm). This is a (Z/pmZ)×-torsor. Also IG(p∞)→

X≥1
Kl(p∞) is a Z×p -torsor.

• Let π : IG(p∞) → X≥1
Kl(p) and let Λ = Zp[[Z×p ]]. Let κ : Z×p → Λ be the universal

character.

• Let Fκ = (π∗OIG(p∞)⊗̂ZpΛ)Z
×
p

, where Z×p acts diagonally via the torsor structure and κ.

• For any χ : Z×p R×, Fχ := Fκ ⊗Λ,χ R.

• We have truncated and modulo p-power version. Namely Fm,n means it’s modulo pn and

Igusa tower is truncated at the m-th level.

• X≥1
Kl(pn) → X≥1

Kl(p) is a�ne,

• Quite obviously, over (X≥1
Kl(pn))n, Fn,n

∼−→ ωHn , where Hn is the universal order pn sub-

groupscheme.

• LetKω(k1, 0) = ker(ω(k1, 0)→ ωk1
Hn

), andKω(k1, k2) = Kω(k1−k2, 0)⊗ωk2
. The map

is “projection to the highest weight vector.”

• We have

0→ Kω(k1, k2)→ ω(k1, k2)→ Fk1−k2
n,n ⊗ ωk2 → 0

On the level of sheaves, one proves easily that U acts with extra p divisibility on non-

highest weight vector, namely

U ∈ pEnd(RΓ((X≥1
Kl(pn))n, Kω(k1, k2)))

Theorem 6.1. Let k2 ≥ 2, andMκ,k2 ∈ D(Mod(Λ)) be de�ned as

Mκ,k2 = RΓ(X≥1
Kl(p),F

κ ⊗ ωk2(−D))

(1) U acts locally �nitely onMκ,k2 .
(2) e(U)Mκ,k2 is quasi-isomorphic to a perfect complex of Λ-modules with amplitude [0, 1].
(3) There is a quasi-isomorphism

e(U)RΓ(X≥1
Kl(p), ω(k1, k2))

∼−→ e(U)Mκ,k2 ⊗L
Λ,k1−k2

Zp

Here in (3), there is an improvement of previously proven statement, that we have local �niteness

of U on ω(k1, k2) for k1 ≥ k2.

Proof. Proof is really similar. For m ≥ n, one has an acyclic resolution of Fκm,n ⊗ ωk2(−D) over

(X≥1
Kl(p))n,

0→ Fκm,n ⊗ ωk2(−D)→ lim−→l,×Hap
n−1 Fκm,n ⊗ ωk2+lpn−1(p−1)(−D)→ lim−→l

Fκm,n ⊗ ωk2+lpn−1(p−1)(−D)/Halp
n−1 → 0
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Also using 0→ Kω(k1, k2)→ ω(k1, k2)→ Fk1−k2
n,n ⊗ ωk2 → 0, one easily shows that

• U acts locally �nitely on RΓ((X≥1
Kl(p))1,F

k1−k2
1,1 ⊗ ωk2(−D)),

• there is a natural quasi-isomorphism

e(U)RΓ((X≥1
Kl(p))1, ω(k1, k2)(−D))

∼−→ e(U)RΓ((X≥1
Kl(p))1,F

k1−k2
1,1 ⊗ ωk2(−D))

Now we will be done if we prove that the natural map is a quasi-isomorphism,

e(U)RΓ((X≥1
Kl(p))1,F

k1−k2
1,1 ⊗ ωk2(−D))

∼−→ e(U)RΓ((X≥1
Kl(p))1,F

k1−k2
m,1 ⊗ ωk2(−D)),

namely one can climb up the Igusa tower without changing cohomology. This will give the local

�niteness of Mκ,k2 by Nakayama applied twice (mod p and speci�c weight). Now specializing

at any k1 ≥ k2, U acts locally �nitely on Mk1,k2 mod p, the cohomology of Fk1−k2
1,1 ⊗ ωk2(−D),

and as Kω has divisibility by p, this means U acts locally �nitely on ω(k1, k2)(−D) mod p. This

means U acts locally �nitely on ω(k1, k2)(−D) without mod p.

To climb up the Igusa tower, what we want to show is that “Igusa tower contains the Um
-

correspondence”. What’s the correspondence for Um
?

(G,H1, Gm) where H1 ⊂ G[p] is etale-locally µp
and G→ Gm is an isogeny where

Lm = ker(G→ Gm) has Lm ∩H1 = 0 and Lm is

an extension of etale group scheme locally

isomorphic to Z/p2mZ by truncated BT group of

level m, height 2 dimension 1


z1

((

z2

vv
(Gm, im(H1)) (G,H1)

But z2 actually lifts to a map z2 : whatever → (X≥1
Kl(pm))1, (G,H1, Gm) → (Gm, im(G[pm] →

Gm)) (something like G[pm]/H⊥, which is multiplicative). So Um
on (X≥1

Kl(p))1 factors through

RΓ((X≥1
Kl(p))1,F

k1−k2
m,1 ⊗ ωk2(−D))

++

RΓ((X≥1
Kl(p))1,F

k1−k2
1,1 ⊗ ωk2(−D))

OO

Um
// RΓ((X≥1

Kl(p))1,F
k1−k2
1,1 ⊗ ωk2(−D))

which can be completed into a square of commuting U ’s in the Igusa tower,

RΓ((X≥1
Kl(p))1,F

k1−k2
m,1 ⊗ ωk2(−D))

++

Um
// RΓ((X≥1

Kl(p))1,F
k1−k2
m,1 ⊗ ωk2(−D))

RΓ((X≥1
Kl(p))1,F

k1−k2
1,1 ⊗ ωk2(−D))

OO

Um
// RΓ((X≥1

Kl(p))1,F
k1−k2
1,1 ⊗ ωk2(−D))

OO

Thus, local �niteness of U on Fm,1 as well as isomorphism of ordinary part along Igusa tower

follows. �
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