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Abstract. We reinterpret the notion of harmonic Maass forms in the context of coherent coho-

mology of modular curves. This suggests a natural generalization of weakly holomorphic modular

forms and harmonic Maass forms to the case of Hilbert modular varieties. Furthermore, the the-

ory of Fourier expansions for higher coherent cohomology classes is developed. In particular, the

Borcherds lift of [Br2] is reinterpreted as being applied to harmonic Hilbert Maass forms in our

sense.

Contents

1. Introduction 1

1.1. Related problems 2

1.2. Notation 3

2. Cohomological interpretation of harmonic Maass forms 3

3. Beyond Koecher’s principle: weakly holomorphic Hilbert modular forms 6

4. Fourier expansions of higher coherent cohomology classes 10

4.1. Analytic q-expansions 10

4.2. Algebraic q-expansions, using geometry of toroidal compacti�cations 12

5. Borcherds lift of harmonic Hilbert Maass forms 15

References 16

1. Introduction

The theory of harmonic Maass forms was initiated by Ramanujan and its theoretical founda-

tion was set by Zwegers in his thesis. Although harmonic Maass forms have been shown to be

closely related to arithmetic, they have not been connected to the realm of arithmetic geometry

or automorphic forms. Indeed, it was spectulated that harmonic Maass forms are related to a

still-speculative concept of “extensions of automorphic representations” (e.g. [BK]), which does

not exist in the current theory of automorphic representations.

In this manuscript, we recast the theory of harmonic Maass forms in terms of complex/arithmetic

geometry of modular curves. In particular, we give a purely algebro-geometric interpretation of

the principal parts of harmonic Maass forms using the local cohomology of modular curves at

cusps
1

. Such interpretation would make sense over any base, for example Z or Fq. On the other

hand, harmonic Maass forms are expressed using the complex geometry of modular curves, by

1
This is in accordance with the usual analogy between harmonic Maass forms and overconvergent modular forms.

Indeed, overconvergent modular forms are recently also realized to be related with local cohomology at a cusp (see

[BP], [Pa]).
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using Hodge theory and the relative Dolbeault cohomology of modular curves. We believe that

this re-interpretation is new, and this would help us to set up a correct picture of the theory,

amenable to further development.

As an example, we develop a generalization of harmonic Maass forms in the context of Hilbert

modular forms. Such generalization, or even a generalization of weakly holomorphic modular

forms (namely, modular holomorphic functions on the upper half plane of at most linear expo-

nential growth), has not been realized, due to the Koecher’s principle. Namely, any singularity of

a holomorphic function of codimension ≥ 2 can always be �lled, and Hilbert modular varieties

can be compacti�ed so that the boundary is a �nite collection of points, which is of codimension

≥ 2 as soon as one escapes the case of modular curves.

Under the coherent-cohomological interpretation of harmonic Maass forms developed in this

paper, we realize that one can avoid Koecher’s principle using higher coherent cohomology of

Hilbert modular varieties. Namely, it is realized in [La2, §9] that the analogue of Koecher’s prin-

ciple for coherent cohomology of Shimura varieties must fail in a certain cohomological degree,

which is usually not H0
. For example, for a Hilbert modular variety associated to a totally real

�eld F of degree d, the failure of Koecher’s principle occurs inHd−1
(andHd

, although the state-

ment is trivial in that case). We de�ne (principal parts of) weakly holomorphic Hilbert modular
forms and harmonic Hilbert Maass forms using the coherent cohomology of an open Hilbert mod-

ular variety and its toroidal compacti�cation.

To have a hold on them, we compute the space of principal parts of harmonic Hilbert Maass

forms using the analogue of Fourier expansions for higher coherent cohomology classes. The

computation exploits the geometry of toroidal compacti�cation. In contrast to the q-expansion

of holomorphic Hilbert modular forms, we see the following exotic features.

(1) This “higher” q-expansion is a UF -coinvariance class of Laurent polynomials with totally

negative exponents, whereUF = O×F . This is in contrast with the fact that the q-expansion

of holomorphic Hilbert modular forms has only totally positive exponents.

(2) The higher q-expansion of those coming from cuspidal holomorphic Hilbert modular

forms is zero. Thus, the higher q-expansion map exactly detects the principal parts of

weakly holomorphic Hilbert modular forms.

In [Br2], an attempt to overcome Koecher’s principle for Hilbert modular forms was made.

As harmonic Maass forms are spanned by non-holomorphic Poincaré series, built out of “bad”

Whittaker function, op. cit. uses bad Whittaker functions, named harmonic Whittaker forms, in

place of harmonic Hilbert Maass forms. In particular, the Borcherds lift of harmonic Whittaker

forms is constructed, and its relation to Kudla–Millson lift is studied as in [BF].

In the �nal part of this paper, we observe that the standard harmonic Whittaker forms are

harmonic Hilbert Maass forms with q-expansion qν for some ν < 0. In this way, the Borcherds

lift of [Br2] can be regarded as lifting harmonic Hilbert Maass forms in our sense.

1.1. Related problems. As the primary objective of this manuscript is to suggest a correct view-

point, various directions can stem out of it.

(1) Clearly, one can try to generalize the concept of harmonic Maass forms to other higher-

dimensional Shimura varieties. The analogues of Whittaker functions of exponential

growth for Sp2n is developed in [BFK], which can be useful in developing the theory

for Siegel modular varieties.
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(2) One can explicitly compute the Dolbeault representative of harmonic Hilbert Maass forms.

This might suggest how to directly connect Whittaker functions with the harmonic Hilbert

Maass forms, or to directly construct the Borcherds lift of harmonic Hilbert Maass forms

using their Dolbeault representatives.

(3) It would be interesting to investigate the principal parts of harmonic Maass forms over

more general base ring, say Z or Fq. Such consideration can make the analogy between

harmonic Maass forms and overconvergent modular forms more rigorous.

(4) It is still unclear how the full harmonic Maass forms are related to arithmetic geometry.

For weakly holomorphic modular forms, one can indeed just use the cohomology of open

modular curve. On the other hand, the local cohomology long exact sequence starts from

the cohomology of closed modular curve, and it is not clear how to detach this term from

others.

1.2. Notation. The upper half plane H is de�ned as {τ = u+ iv ∈ C | v > 0}. Every algebraic

variety is de�ned over C unless otherwise noted. Any complex analytic manifold will have an
in its superscript, to distinguish it from its algebraization. For example, H0(A1,O) = C[z] is the

algebraic coherent cohomology, whereas H0(A1,an,O) is the space of all holomorphic functions

on C. Given an automorphic vector bundle E over an open Shimura variety M , Ecan
, E sub

are

the canonical and subcanonical extensions of E over a toroidal compacti�cation M tor
(where we

do not specify the choice of a datum if possible), respectively, and E will also denote its natural

extension to the minimal compacti�cationMmin
. The boundary divisorsM tor−M andMmin−M

are all denoted D if there is no confusion. Over M tor
, we also tend to use the same letter E for

its canonical extension and E(−D) for its subcanonical extension.

2. Cohomological interpretation of harmonic Maass forms

We �rst reinterpret the classical theory of harmonic Maass forms in terms of coherent coho-

mology and Dolbeault cohomology.

De�nition 2.1. Let Γ ≤ SL2(Z) be a congruence subgroup. A harmonic Maass form of level Γ
and weight k is a real analytic function f : H→ C such that

(1) for all γ ∈ Γ, f(γτ) = j(γ, τ)kf(τ), where j(γ, τ) is the usual factor of automorphy,

(2) f is at most of exponential growth towards +i∞,

(3) and ∆kf = 0, where ∆k is the hyperbolic Laplacian of weight k,

∆k = −v2

(
∂2

∂u2
+

∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

)
.

The space of such forms is denoted Hk(Γ).

Since ∆k = −Rk−2Lk, whereRk and Lk are the raising and lowering operators, respectively, it

follows that, for a harmonic Maass form f , Lkf is closely related to a (weakly) anti-holomorphic

modular form.

De�nition 2.2. For f ∈ Hk(Γ), let

ξk(f)(τ) := vk−2Lkf(τ).

This is an antilinear map ξk : Hk →M !
2−k. We let H+

k be ξ−1
k (S2−k).
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Under this de�nition, there is a short exact sequence

0→M !
k → H+

k

ξk−→ S2−k → 0.

In terms of coherent cohomology of open and closed modular curves Y (Γ) and X(Γ), we can

express two terms of the three in above:

0→ H0(Y (Γ), ωk)→ H+
k → H1(X(Γ), ωk)→ 0.

Here, the cohomology groups are coherent cohomology groups of complex algebraic varieties. A

variant of this would be:

0→ H0(X(Γ), ωk)→ H0(Y (Γ), ωk)→ H+
k

Mk

→ H1(X(Γ), ωk)→ 0.

On the other hand, we can think of a local cohomology exact sequence in algebraic geometry:

0→ H0(X(Γ), ωk)→ H0(Y (Γ), ωk)→ H1
D(X(Γ), ωk)→ H1(X(Γ), ωk)→ 0,

where D = X(Γ) − Y (Γ); the �rst term is exact trivially, and the last term is exact as Y (Γ) is

a�ne.

Therefore, we can suspect that H1
D(X(Γ), ωk) ∼= H+

k

Mk
in a natural way. This is indeed made

possible via the notion of relative Dolbeault cohomology.

De�nition 2.3 ([Suw, De�nition 2.14]). Let i : Y ↪→ X be an open embedding of topological

spaces, and letF• be a cohomologically graded complex of sheaves onX . Then, the relative sheaf
cohomology H∗i (F•) is the cohomology of the complex F̃•, where

F̃ q = F q(X)⊕F q−1(Y ), d(a, b) = (da, i∗a− db).
IfX, Y are complex manifolds andF• is the Dolbeault complex of a coherent sheafF onX , then

H∗Y−X(X,F) := H∗i (F•) is also called the relative Dolbeault cohomology.

Proposition 2.4 ([Suw, Theorem 2.23]). There is a canonical isomorphism between the relative
Dolbeault cohomology and the analytic local cohomology, respecting the long exact sequences.

This is not di�cult, as F̃• is just constructed as the mapping cone of two Dolbeault complexes.

We cannot just naively use this version of relative Dolbeault cohomology as it computes analytic
local cohomology. We therefore need to recast algebraic coherent cohomology in terms of ana-

lytic coherent cohomology. The key is that, if we denote i : Y (Γ) ↪→ X(Γ) be the natural open

embedding, then Rai∗ω
k = 0 for a > 0, and i∗ω

k = lim−→n→∞ ω
k(nD). Thus, by Leray spectral

sequence and GAGA over X(Γ),

H i(Y (Γ), ωk) = lim−→
n→∞

H i(X(Γ), ωk(nD)) = lim−→
n→∞

H i(X(Γ), ωk(nD))an.

Thus, by the mapping cone construction as above, H1
D(X(Γ), ωk) is H1

of the complex

0→ A0,0(X(Γ), ωk)→ A0,1(X(Γ), ωk)⊕lim−→
n≥0

A0,0(X(Γ), ωk(nD))→ lim−→
n≥0

A0,1(X(Γ), ωk(nD))→ 0.

Since lim−→n≥0
A0,0(X(Γ), ωk(nD)) is precisely consisted of real analytic functions H → C with

modular property and polar growth property, we can denote

A0,0(Y (Γ), ωk)polar := lim−→
n≥0

A0,0(X(Γ), ωk(nD)),
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namely the space of those of at most polar growth at boundary. Then,

H1
D(X(Γ), ωk) =

{(ω, g) ∈ A0,1(X(Γ), ωk)⊕A0,0(Y (Γ), ωk)polar : ω|Y (Γ) = ∂g}
{(∂f, f |Y (Γ)) : f ∈ A0,0(X(Γ), ωk)}

.

Proposition 2.5. There is a natural isomorphism

j :
H+
k

Mk

∼−→ H1
D(X(Γ), ωk),

given by
j(f) = (∂f, f),

for f ∈ H+
k .

Proof. Certainly the above map de�nes a mapH+
k → H1

D(X(Γ), ωk), because ∂f = ξk(f)dz, and

this, a priori only de�ned over Y (Γ), extends toX(Γ) because ξk(f) can be extended. The kernel

is precisely consisted of holomorphic f ’s, namely weakly holomorphic f ’s. This constructs an

injection j :
H+
k

Mk
→ H1

D(X(Γ), ωk). Both sit in a diagram of short exact sequences where the �rst

and the third terms are identical, so j is automatically a surjection by the �ve-lemma. �

Thus, the space of principal parts of harmonic Maass forms �t perfectly into algebraic geometry

of modular curves. In particular, it can be given a natural Q-structure.

Remark 2.6. It is easy to see that the natural Q-structure is consisted of harmonic Maass forms

whose holomorphic parts (a mock modular form) have Q-rational principal parts.

The space of harmonic Maass forms itself, H+
k , can be also seen as follows.

Proposition 2.7. Let (A0,∗, ∂) denote the Dolbeault complex of a complex manifold, and let H p,q

be the space of (p, q)-harmonic di�erential forms. Then H+
k is naturally identi�ed with

H+
k = ∂

−1 (
H 0,1(X(Γ), ωk)

)
⊂ A0,0(Y (Γ), ωk)polar,

and the exact sequence 0→M !
k → H+

k → S2−k → 0 can be naturally identi�ed with

0→ H0(Y (Γ), ωk)→ H+
k → H1(X(Γ), ωk)→ 0.

Proof. Because of Hodge theory, the quotient map q : A0,1(X(Γ), ωk) → H1(X(Γ), ωk) from

Dolbeault cohomology gives rise to an isomorphism

q|H 0,1(X(Γ),ωk) : H 0,1(X(Γ), ωk)
∼−→ H1(X(Γ), ωk).

Thus, H1
D(X(Γ), ωk) =

H+
k

Mk
can be rewritten as

H1
D(X(Γ), ωk) =

{
(ω, g) ∈H 0,1(X(Γ), ωk)⊕ A

0,0(Y (Γ), ωk)polar

ωk(Y (Γ))
: ω|Y (Γ) = ∂g

}
,

and by the same reason, H+
k can be rewritten as

H+
k = {(ω, g) ∈H 0,1(X(Γ), ωk)⊕A0,0(Y (Γ), ωk)polar : ω|Y (Γ) = ∂g}.

Since ω is uniquely determined by g (it is the extension of ∂g, and it is unique if it exists), one

can remove ω and simply identify with the preimage of ∂. �
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Thus, in some sense, weakly holomorphic modular forms and harmonic Maass forms exist

precisely because of the discrepancy between the coherent cohomology of open and closed modular
curves.

It is also notable that the space of principal parts of harmonic Maass forms is something arising

from local picture around cusps. Namely, harmonic Maass forms are often regarded analogous to

overconvergent modular forms, and the space of overconvergent modular forms is also the “stalk

at∞” (see [Pa, §5.2.4]).

3. Beyond Koecher’s principle: weakly holomorphic Hilbert modular forms

Koecher’s principle prevents naively generalizing the de�nition of weakly holomorphic mod-

ular forms and harmonic Maass forms to higher rank cases. On the other hand, the slogan can

be extended to other Shimura varieties, thanks to the following work of Lan on higher Koecher’s
principle:

Theorem 3.1 ([La2, Theorem 2.5]). LetM be a Shimura variety,Mmin be its minimal compacti�-
cation, andM tor be a toroidal compacti�cation ofM , which sit in the diagram

M tor

π
��

M
- 

jtor
<<

� �

jmin

// Mmin

Let E be an automorphic vector bundle, and let Ecan be its canonical extension overM tor. Let cM =
codim(Mmin −M,Mmin).

(1) The natural map Riπ∗(Ecan)→ Rijmin
∗ E induced by jtor is an isomorphism for i < cM − 1

and is an injection for i = cM − 1.
(2) The natural restriction mapH i(M tor, Ecan)→ H i(M, E) is an isomorphism for i < cM −1,

and is an injection but not an isomorphism for i = cM − 1.

We record the following facts used in the course of proof of Theorem 3.1.

Proposition 3.2. Retaining the notations of Theorem 3.1, we have the following.
(1) ([La2, (3.1)]) jtor

∗ E = lim−→n≥0
Ecan(nD) and Rajtor

∗ E = 0 for a > 0, where D = M tor −M .
(2) ([La2, (3.2)]) Rajmin

∗ E ∼= lim−→n≥0
Raπ∗(Ecan(nD)) for a ≥ 0.

(3) ([La2, Theorem 3.9]) Raπ∗E sub(−nD) = 0 for any n ≥ 0.

Proof. The only di�erence between this statement and that in [La2] is that D′ is used in place of

D in op. cit., but one can obtain this statement as there is ` ∈ N such that D ≤ D′ ≤ `D. �

Let us restrict to the case of Hilbert modular forms. Let F be a totally real �eld of degree d > 1,

and let Γ ≤ SL2(OF ) be a congruence subgroup. Then, the Hilbert modular variety M = Y (Γ)
has cM = d − 1. Thus, H i(X(Γ)tor, Ecan) and H i(Y (Γ), E) can only di�er in degrees i = d − 1
and d:

H i(X(Γ)tor, Ecan)
∼−→ H i(Y (Γ), E), i ≤ d− 2,

Hd−1(X(Γ)tor, Ecan) ( H i(Y (Γ), E),

Hd(X(Γ)tor, Ecan) � Hd(Y (Γ), E) = 0.

Using the facts we have stated so far, we obtain the following
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Proposition 3.3.
(1) We have H i

D(X(Γ)tor, Ecan) = 0 for 0 ≤ d− 1, and an exact sequence

0→ Hd−1(X(Γ)tor, Ecan)→ Hd−1(Y (Γ), E)→ Hd
D(X(Γ)tor, Ecan)→ Hd(X(Γ)tor, Ecan)→ 0.

(2) We have

Hd
D(X(Γ)tor, Ecan) = Hd−1

(
X(Γ)tor,

lim−→n≥0
Ecan(nD)

Ecan

)
=

H0(X(Γ)min,Rd−1jmin
∗ E)

H0(X(Γ)min,Rd−1π∗Ecan)
=
Hd
D(X(Γ)min, E)

Hd
π(X(Γ)min, E)

.

Proof. The �rst part is a part of the local cohomology exact sequence for Y (Γ) ↪→ X(Γ)tor
. The

sequence breaks into parts because of higher Koecher’s principle, and the exact sequence in (1)

is the end piece of the long exact sequence. By Proposition 3.1(1), the local cohomology exact

sequence is also the same as long exact sequence of

0→ Ecan → jtor
∗ E →

jtor
∗ E
Ecan

→ 0,

because of Leray spectral sequence. This impliesHd
D(X(Γ)tor, Ecan) = Hd−1

(
X(Γ)tor,

lim−→n≥0
Ecan(nD)

Ecan

)
.

By Leray spectral sequence for π : X(Γ)tor → X(Γ)min
, we have

Ha

(
X(Γ)min,Rbπ∗

lim−→n≥0
Ecan(nD)

Ecan

)
⇒ Ha+b

(
X(Γ)tor,

lim−→n≥0
Ecan(nD)

Ecan

)
.

We have a long exact sequence

· · · → Riπ∗Ecan → Riπ∗(lim−→
n≥0

Ecan(nD))→ Riπ∗
lim−→n≥0

Ecan(nD)

Ecan
→ · · · .

Since Riπ∗
lim−→n≥0

Ecan(nD)

Ecan is supported onX(Γ)min−Y (Γ), Ha

(
X(Γ)min,Rbπ∗

lim−→n≥0
Ecan(nD)

Ecan

)
=

0 for a > dim(X(Γ)min − Y (Γ)) = 0. Thus,

Hd−1

(
X(Γ)tor,

lim−→n≥0
Ecan(nD)

Ecan

)
= H0

(
X(Γ)min,Rd−1π∗

lim−→n≥0
Ecan(nD)

Ecan

)
.

Also, since Riπ∗(lim−→n≥0
Ecan(nD)) = Rijmin

∗ E by Proposition 3.1(2), by the higher Koecher’s

principle the long exact sequence of higher direct image sheaves breaks into pieces, and the end

piece is

0→ Rd−1π∗Ecan → Rd−1jmin
∗ E → Rd−1π∗

lim−→n≥0
Ecan(nD)

Ecan
→ 0,

from which we get the rest of (2). �

The situation is entirely analogous to that of harmonic Maass forms. Thus, we are led to the

following

De�nition 3.4. The space of weakly holomorphic Hilbert modular formsM !
k(Γ) is de�ned to be

M !
k(Γ) := Hd−1(Y (Γ), ωk).
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The space of principal parts of weakly holomorphic Hilbert modular forms is de�ned to be

M !
k(Γ)

Mk(Γ)
:=

Hd−1(Y (Γ), ωk)

Hd−1(X(Γ)tor, ωk)
.

Finally, the space of principal parts of harmonic Hilbert Maass forms is de�ned to be

H+
k (Γ)

Mk(Γ)
:= Hd

D(X(Γ)tor, ωk),

so that they �t into the exact sequence

0→ M !
k(Γ)

Mk(Γ)
→ H+

k (Γ)

Mk(Γ)
→ Hd(X(Γ)tor, ωk)→ 0.

Remark 3.5. The �nal part Hd(X(Γ)tor, ωk) can be regarded as S2−k by Serre duality, so the

situation is entirely analogous to the case of harmonic Maass forms.

We now compute this using relative Dolbeault cohomology. As in the case of harmonic Maass

forms, the algebraic local cohomology is not the same as the analytic local cohomology, and

we would instead have to use Hd
D(X(Γ)tor, Ecan) = Hd−1

(
X(Γ)tor,

lim−→n≥0
Ecan(nD)

Ecan

)
and use the

mapping cone construction overX(Γ)tor
where now GAGA can be used. Namely,Hd

D(X(Γ)tor, Ecan)
would be the Hd

of the complex

0→ A0,0(X(Γ)tor, Ecan)→ A0,1(X(Γ)tor, Ecan)⊕ lim−→
n≥0

A0,0(X(Γ)tor, Ecan(nD))→

· · · → A0,d(X(Γ)tor, Ecan)⊕lim−→
n≥0

A0,d−1(X(Γ)tor, Ecan(nD))→ lim−→
n

A0,d(X(Γ)tor, Ecan(nD))→ 0.

Namely,

Hd
D(X(Γ)tor, Ecan) =

{(ω1, ω2) ∈ A0,d(X(Γ)tor, Ecan)⊕ lim−→n≥0
A0,d−1(X(Γ)tor, Ecan(nD)) : ω1 = ∂ω2}

{(∂ν1, ν1 − ∂ν2) : (ν1, ν2) ∈ A0,d−1(X(Γ)tor, Ecan)⊕ lim−→n≥0
A0,d−2(X(Γ)tor, Ecan(nD))}

.

To obtain the whole space of harmonic Maass forms, we use the Hodge theory ofX(Γ)tor
. Namely,

as X(Γ)tor
is a compact Kähler manifold, the quotient map for Dolbeault cohomology

A0,d(X(Γ)tor, Ecan) � Hd(X(Γ)tor, Ecan),

restricts to an isomorphism

H 0,d(X(Γ)tor, Ecan)
∼−→ Hd(X(Γ)tor, Ecan),

by Hodge theory, where H is the space of harmonic forms. This means that any form in

A0,d(X(Γ)tor, Ecan) can be modi�ed into H 0,d
via adding an appropriate ∂ of a (0, d− 1)-form.

Thus, Hd
D(X(Γ)tor, Ecan) has the following description,

Hd
D(X(Γ)tor, Ecan) =(ω1, ω2) ∈H 0,d(X(Γ)tor, Ecan)⊕

lim−→n≥0
A0,d−1(X(Γ)tor,Ecan(nD))

ker(A0,d−1(X(Γ)tor,Ecan)
∂−→A0,d(X(Γ)tor,Ecan))+∂

(
lim−→n≥0

A0,d−2(X(Γ)tor,Ecan(nD))

) : ω1 = ∂ω2

 =

8



ω ∈ lim−→n≥0
A0,d−1(X(Γ)tor,Ecan(nD))

ker(A0,d−1(X(Γ)tor,Ecan)
∂−→A0,d(X(Γ)tor,Ecan))+∂

(
lim−→n≥0

A0,d−2(X(Γ)tor,Ecan(nD))

) : ∂ω ∈H 0,d(X(Γ)tor, Ecan)

 .

Removing the part in the denominator on cohomology of Ecan
, we arrive at the following de�ni-

tion.

De�nition 3.6. Let the space of harmonic Hilbert Maass forms H+
k (Γ) be de�ned as

H+
k (Γ) =

ker ∂
−1 (

H 0,d(X(Γ)tor, ωk)
)

im ∂
⊂

lim−→n≥0
A0,d−1(X(Γ)tor, ωk(nD))

im ∂
.

Proposition 3.7. The space of harmonic Hilbert Maass formsH+
k (Γ) sits in a short exact sequence

0→M !
k(Γ)→ H+

k (Γ)→ Hd(X(Γ)tor, ωk)→ 0.

Proof. This is proven similarly as in the case of harmonic Maass forms. Namely, consider the

diagram of Dolbeault complexes for ωk ⊂ ωk(∞D) over X(Γ)tor
:

A0,0(X(Γ)tor, ωk)
∂ //

� _

��

· · · ∂ // A0,d−1(X(Γ)tor, ωk)
� _

��

∂ // A0,d(X(Γ)tor, ωk)
� _

��
lim−→n≥0

A0,0(X(Γ)tor, ωk(nD))
∂ // · · · ∂ // lim−→n≥0

A0,d−1(X(Γ)tor, ωk(nD))
∂ // lim−→n≥0

A0,d(X(Γ)tor, ωk(nD))

Since lim−→n≥0
Hd(X(Γ)tor, ωk(nD)) = Hd(Y (Γ), ωk) = 0, we have a diagram of exact sequences

0 // ker ∂ //

��

A0,d−1(X(Γ)tor, ωk)
� _

��

∂ // A0,d(X(Γ)tor, ωk) //
� _

��

Hd(X(Γ)tor, ωk) //

��

0

0 // ker ∂ // lim−→n≥0
A0,d−1(X(Γ)tor, ωk(nD))

∂ // lim−→n≥0
A0,d(X(Γ)tor, ωk(nD)) // 0

Quotienting out by im ∂, we have

0→ Hd−1(Y (Γ), ωk)→
lim−→n≥0

A0,d−1(X(Γ)tor, ωk(nD))

im ∂
→ lim−→

n≥0

A0,d(X(Γ)tor, ωk(nD))→ 0.

By taking the preimage of the image of H 0,d(X(Γ)tor, ωk) in lim−→n≥0
A0,d(X(Γ)tor, ωk(nD)), we

get the desired result. �

We now explain elementarily what a harmonic Hilbert Maass form is. Note that the Dol-

beault complex for a Shimura variety is identi�ed with the Chevalley–Eilenberg complex for

(p, K)-cohomology of certain functions on adelic quotient of G (cf. [Su]). The harmonic forms

H 0,d(X(Γ)tor, ωk) are, by Serre duality, all of form f ∧di=1 dzi, for a Hilbert modular cusp form f
of parallel weight 2−k, antiholomorphic in all variables. Under the same choice of dz1, · · · , dzd,
an element of A0,d−1(Y (Γ), ωk) is of form

d∑
i=1

fidz1 ∧ · · · ∧ d̂zi ∧ · · · ∧ dzd,

where hat means the entry is missing, and fi is a smooth function over Y (Γ) that transforms like

a modular form of weight (2−k, · · · , k, · · · , 2−k) (k at the i-th entry, 2−k at the other entries).
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Similarly, an element of lim−→n≥0
A0,d−1(X(Γ)tor, ωk(nD)) is of the same form, where fi now has

at most linear exponential growth towards cusps (when regarded as a function over Hd
).

4. Fourier expansions of higher coherent cohomology classes

We develop the theory of Fourier expansion for higher coherent cohomology classes of Hilbert

modular variety, by computing its local cohomology. This will enable us to relate our de�nition of

harmonic Hilbert Maass forms and weakly holomorphic Hilbert modular forms with the work of

[Br2]. Our method of computation of local cohomology using explicit structure of the boundary

has its origin in [Fr]. The scope of the theory developed here is only for Hilbert modular varieties,

but a similar strategy would work for more general Shimura varieties.

4.1. Analytic q-expansions. In this section, we work with the analytic category. Analytically,

the Fourier expansion would be cxomputed after restricting a Dolbeault class to a neighborhood

of a cusp. For simplicity, let us assume that Γ = SL2(OF ) and hF = 1, so that there is only one

cusp,∞. The isotropy group of∞ in Γ is

C∞ :=

{(
ε µ
0 ε−1

)
: ε ∈ UF , µ ∈ OF

}
/{±1},

where UF is the group of units. More neatly, one can express this as{(
ε µ
0 1

)
: ε ∈ U2

F , µ ∈ OF
}
.

This contains a subgroup Γ∞ = {
(

1 µ
0 1

)
: µ ∈ OF}, and C∞/Γ∞ ∼= U2

F , which is by Dirichlet’s

unit theorem isomorphic to Zd−1
. A base of open neighborhoods of ∞ in X(Γ)min

is given by

{C∞\VR ∪ {∞} : R� 0}, where

VR = {(z1, · · · , zd) ∈ Hd :
d∏
i=1

Im(zi) > R}.

The q-expansion of a classical Hilbert modular form is obtained by taking the Fourier expansion

of the restriction of the Hilbert modular form to C∞\VR for a large enough R, or more precisely

its pullback to C∞\VR. To deal with higher cohomology of C∞\VR, we �rst prove

Lemma 4.1 ([Fr, Hilfssatz 5.1]). For R ≥ 0, C∞\VR ∪ {∞} is Stein.

Proof. Note that as Γ∞ acts via translation by real vectors, Im(zi) : VR → R+
descends to a

function Γ∞\VR → R+
. Furthermore, U2

F = C∞/Γ∞ acts so that

∏d
i=1 Im(zi) is unchanged. It

is clear that

1∏d
i=1 Im(zi)

: Γ∞\VR ∪ {∞} → R+,

is a smooth, strictly plurisubharmonic, exhaustive function on Γ∞\VR∪{∞}, where the function

is de�ned to be zero at {∞}. Thus, by Oka’s theorem, it is Stein. �

Now the local cohomology H i
{∞}(C∞\VR ∪ {∞},F) for any coherent sheaf F �ts into the

local cohomology long exact sequence

· · · → H i
{∞}(C∞\VR ∪ {∞},F)→ H i(C∞\VR ∪ {∞},F)→ H i(C∞\VR,F)→ · · · ,
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and by Lemma 4.1, we thus know that

H i
{∞}(C∞\VR ∪ {∞},F) ∼= H i−1(C∞\VR,F),

for any i > 1. Now the excision says that the left hand side is the same as H i
{∞}(X(Γ)min,F), if

F came from a coherent sheaf over X(Γ)min
denoted by the same letter F .

Thus, as in [Fr, §5], the Grothendieck spectral sequence degenerates and yields

H i−1(C∞\VR,F) = H i−1(U2
F , H

0(Γ∞\VR,F)),

for any coherent sheaf F on C∞\VR (here, the same letter F is used for its pullback to Γ∞\VR).

In practice, F would all come from automorphic vector bundles of the Hilbert modular varieties.

There is a canoncial section of F over Γ∞\VR coming from the canonical di�erential of relative

sheaf of di�erentials on the universal abelian scheme, which enables us to regard a holomorphic

section of F as a holomorphic function. For such functions, we can take Fourier expansion with

respect to Γ∞-invariance,

H0(Γ∞\VR,F)→ C〈qν〉ν∈O∨F ,
where qν stands for exp(2πiTr νz), 〈−〉means the formal Laurent series is the Fourier expansion

of a germ of a meromorphic function, and O∨F = {λ ∈ F : Trλµ ∈ Z ∀µ ∈ OF}. Thus, we have

a q-expansion map for higher coherent cohomology of Hilbert modular varieties,

q expi : H i(Y (Γ), ωk)→ H i+1
{∞}(X(Γ)min, ωk)

∼←− H i(C∞\VR, ωk)
∼−→ H i(Zd−1, H0(Γ∞\VR, ωk))→ H i(Zd−1,C〈qν〉ν∈O∨F ).

We note that the action of U2
F = C∞/Γ∞ ∼= Zd−1

on C〈qν〉ν∈O∨F is, for µ ∈ U2
F , just µ · qν = qµν .

In this optic, we can recast the (failure of) Koecher’s principle as follows.

Proposition 4.2. For i = d − 1, the image of q expd−1, which a priori lies in the space of U2
F -

coinvariants (C〈qν〉ν∈O∨F )U2
F
, lies in (C〈qν〉ν∈O∨F ,ν≤0)U2

F
, where ν ≤ 0 means ν is either 0 or totally

negative. Furthermore, im(Hd−1(Xmin, ωk)→ Hd−1(Y, ωk)) = ker(q expd−1).

Proof. The second statement is precisely the consquence of local cohomology long exact se-

quence. We now prove the �rst statement. it is su�cient to prove that any

∑
ν∈O∨F ,ν 6≤0 aνq

ν ∈
C〈qν〉ν∈OεF is in (U2

F − 1)C〈qν〉ν∈O∨F . Let σ1, · · · , σd be d real embeddings of F , and for I ⊂
{1, · · · , d} and x ∈ F , we de�ne the expression x ∼ (−1)I to mean that σi(x) < 0 if i ∈ I
and σi(x) > 0 if i /∈ I . Then, it is su�cient to prove the same for the Laurent series of form

g =
∑

ν∈O∨F ,ν∼(−1)I aνq
ν

for I 6= {1, · · · , d}.
We can �nd a unit µI ∈ U2

F such that σi(µI) < 1 for i ∈ I , as I 6= {1, · · · , d}. Then, consider

f(z) :=
∑

ν∈O∨F ,ν∼(−1)I

aν

(
∞∑
n=1

qµ
n
I ν

)
.

The in�nite sum is uniformly convergent, and de�nes a germ of a meromorphic function with d
variables. Furthermore, by uniform convergence,

µ−1
I · f =

∑
ν∈O∨F ,ν∼(−1)I

aν

(
∞∑
n=0

qµ
n
I ν

)
,

so (µ−1
I − 1)f = g, as desired. �

11



We would like to say that the q-expansion map precisely detects the failure of Koecher’s prin-

ciple. Proposition 4.1 is very close to what we would like, except that the computation relates

Hd−1(X(Γ)min, ωk) instead of Hd−1(X(Γ)tor, ωk). These two spaces are indeed di�erent, but

they are not too di�erent: the di�erence is precisely due to the Eisenstein series (which is one-

dimensional in our case, as we assumed that there is only one cusp for simplicity).

Proposition 4.3. The cokernel of the natural map Hd−1(X(Γ)min, ωk) → Hd−1(X(Γ)tor, ωk) is
naturally identi�ed with the dual of the space of Eisenstein series of weight 2− k.

Proof. Note that there is a long exact sequence of relative sheaf cohomology

· · · → Hd−1(Xmin, ωk)→ Hd−1(Xtor, ωk)→ Hd
π(Xmin, ωk)→ Hd(Xmin, ωk)→ Hd(Xtor, ωk)→ 0.

Thus,

coker(Hd−1(Xmin, ωk)→ Hd−1(Xtor, ωk)) =
Hd−1(Xtor, ωk)

im(Hd−1(Xmin, ωk)→ Hd−1(Xtor, ωk))

=
Hd−1(Xtor, ωk)

ker(Hd−1(Xtor, ωk)→ Hd
π(Xmin, ωk))

= im(Hd−1(Xtor, ωk)→ Hd
π(Xmin, ωk))

= ker(Hd(Xmin, ωk)→ Hd(Xtor, ωk))

= coker(Hd(Xtor, ωk)∗ → Hd(Xmin, ωk)∗)∗,

where (−)∗ is the C-linear dual. By Kodaira–Spencer isomorphism and (classical) Koecher’s prin-

ciple,

coker(Hd(Xtor, ωk)∗ → Hd(Xmin, ωk)∗) = coker(H0(Xtor, ω2−k,sub)→ H0(Xmin, ω2−k))

= coker(H0(Xtor, ω2−k,sub)→ H0(Xtor, ω2−k)),

as desired. �

4.2. Algebraic q-expansions, using geometry of toroidal compacti�cations. We now com-

pute the local cohomology group using the geometry of compacti�cation, as in [La2]. This will

help us identify the image of the q-expansion map.

By Proposition 3.2(2), we would like to compute

lim−→
n≥0

H0

(
X(Γ)min,

Rd−1π∗(Ecan(nD))

Rd−1π∗Ecan

)
= lim−→

n≥0

H0(X(Γ)min,Rd−1π∗Qn),

where Qn = Ecan(nD)
Ecan . Since Rd−1π∗Qn is supported at {∞}, we are to compute

lim−→
n≥0

Hd−1((X(Γ)tor)∧∞, (Qn)∧∞),

where (X(Γ)tor)∧∞ is the pullback of X(Γ)tor
under the strict localization at ∞ (regarded as a

geometric point), (X(Γ)min)∧∞ → X(Γ)min
. This is because (X(Γ)min)∧∞ is a�ne. Since Qn is

supported at Dtor = X(Γ)tor − Y (Γ), we are to compute

lim−→
n≥0

Hd−1(X(Γ)tor,Qn).
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We use Serre duality, noting that by Kodaira–Spencer, ω2,sub
is the dualizing sheaf of X(Γ)tor

:

Hd−1(X(Γ)tor,Qn) = H0(X(Γ)tor, Ext1(Qn, ω2,sub))∗ =

(
H0

(
X(Γ)tor,

Hom(Ecan, ω2,sub)

Hom(Ecan, ω2,sub)(−nD)

))∗
.

In particular, if E = ωk, we have

Hd
D(X(Γ)tor, ωk) = lim−→

n≥0

(
H0

(
X(Γ)tor,

ω2−k,sub

ω2−k,sub(−nD)

))∗
.

Thus, we would like to compute what H0
(
X(Γ)tor, ω2−k,sub

ω2−k,sub(−nD)

)
is.

Proposition 4.4. The two Serre duality pairings are compatible with each other, namely

Hd(X(Γ)tor, ωk) × H0(X(Γ)tor, ω2−k,sub)

��

// C

Hd
D(X(Γ)tor, ωk)

OO

× H0
(
X(Γ)tor, ω2−k,sub

ω2−k,sub(−nD)

)
// C

commutes.

Proof. By the setup of coherent duality, namely that the coherent duality is a consequence of the

construction of the trace 2-functor as in [Ha, Corollary VII.3.4], the Serre duality is compatible

with long exact sequences. �

We now invoke more speci�c geometry of compacti�cations, as recalled in [La2, §4].

(1) There is a split torus Ξ = Spec
(⊕

`∈S Ψ(`)
)

over∞, with character group S.

(2) Each cone τ ⊂ S∨R = HomZ(S,R) de�nes a toroidal embedding Ξ ↪→ Ξ(τ) = Spec
(⊕

`∈τ∨ Ψ(`)
)
,

where τ∨ = {` ∈ S : 〈`, y〉 ≥ 0 ∀y ∈ τ}.
(3) Let Uτ be the formal completion of Σ(τ) along Σ(τ) − Σ. These, for τ ∈ Σ+

for some

rational polyhedral cone decomposition Σ+
, glue to form a formal scheme X over∞. Let

Ñ be the nerve of the covering induced by the closures of the cones in Σ+
.

(4) For each γ ∈ U2
F , there is a canonical isomorphism γ : Uσ

∼−→ Uγσ over∞, induced by the

isomorphisms γ∗Ψ(γ`)
∼−→ Ψ(`). These isomorphisms give an action of U2

F on X, whence

a local isomorphism X→ X/U2
F .

(5) Now, X/U2
F
∼= (X(Γ)tor)∧∞.

(6) Let E (n)
be the pullback of E(nD) to X/U2

F , and N = Ñ/U2
F . Let H d(M ), for a quasico-

herent sheaf M onX/U2
F , be the constructible sheaf overNwhich has stalksHd(Uσ,M |Uσ)

over σ. There is a nerve spectral sequence

H i(N,H j(E (n)))⇒ H i+j(X/U2
F ,E

(n)).

Each term of spectral sequence also admits a Hochschild–Serre spectral sequence

Ha(U2
F , H

b(Ñ,H c(E (n))))⇒ Ha+b(N,H c(E (n))).

(7) There exists an R>0-valued polarization function pol on the positive cone P which is piece-

wise linear on each cone σ ∈ Σ.

(8) For E = ωk, we de�ne FJ0,(`)(E ) = H0(∞,Ψ(`)), which coincides with [La2, Corollary

5.9], as E0 = O∞ for E = ωk.
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Aruging similarly to [La2], we compute lim−→n≥0
Hd−1(X/U2

F ,E
(n)).

Proposition 4.5. Let n ≥ 0.
(1) The sheaf H c(E (n)) = 0 for c > 0.
(2) The natural map

Hd−1(X/U2
F ,E

(n)) � Hd−1(U2
F , H

0(Ñ,H 0(E (n)))),

becomes an isomorphism after taking the limit,

lim−→
n≥0

Hd−1(X/U2
F ,E

(n))
∼−→ lim−→

n≥0

Hd−1(U2
F , H

0(Ñ,H 0(E (n)))).

(3) If E = ωk, we have

lim−→
n≥0

Hd−1(U2
F , H

0(Ñ,H 0(E (n))) ∼= Hd−1

(
U2
F ,

⊕
`∈−P∨,+

FJ0,(`)(E )

)
.

Proof. (1) follows from the fact that Uσ’s are a�ne in our case. To prove (2), we need to argue

similarly as [La2, Proposition 7.8]. That the natural map is surjective comes from the spectral

sequence. To prove the full statement, it is su�cient to prove that lim−→n≥0
H i(Ñ,H 0(E (n))) = 0

for i > 0. We will prove that the direct system {H i(Ñ,H 0(E (n)))} is eventually zero. Now

the cohomology of simplicial complex H i(Ñ,H 0(E (n))) is identi�ed with the local cohomology

with support at Ñ − Ñ`,(n)
. As lim−→n≥0

Ñ`,(n) = Ñ, any cohomology class over Ñ would have

vanishing image when restricted to local cohomology with support in Ñ− Ñ`,(n)
for n� 0. To

prove (3), �rst we note that U2
F
∼= Zd−1

, and one can take a basis ε1, · · · , εd−1 such that σi(εi) > 1

and σj(εi) < 1 for j 6= i. If `i > 0, then H1(εZi ,
∏

`′∈εZi ·`
FJ0,(`′)(E )) = 0 as in the proof of [La2,

Proposition 7.16] by Shapiro’s lemma. Now

lim−→
n≥0

Hd−1(U2
F , H

0(Ñ,H 0(E (n)))) = Hd−1

(
U2
F ,
⊕̂
`∈S

FJ0,(`)(E )

)
,

where the completion is taken with respect to

⊕
`∈P∨,+ FJ0,(`)(E ). Thus, the sub

Hd−1

U2
F ,

⊕̂
`∈S−(−P∨,+)

FJ0,(`)(E )

 ⊂ Hd−1

(
U2
F ,
⊕̂
`∈S

FJ0,(`)(E )

)
,

has consituents of the formHd−1(U2
F ,
⊕̂

`∈U2
F ·`0

FJ0,(`)(E )) for `0 /∈ −P∨,+, and this is isomorphic

to

∏d−1
i=1 H

1(εZi ,
⊕̂

`∈εZi ·`0
FJ0,(`′)(E )). As one of the multiplicands is zero, this is zero. Thus, the

result follows. �

As algebraic and analytic Fourier–Jacobi coe�cients coincide [La1], we see the following.

Proposition 4.6. The image ofHd−1(X(Γ)tor, ωk) ⊂ Hd−1(Y (Γ), ωk) under q expd−1 is identi�ed
with the image ofC in (C〈qν〉ν∈O∨F )U2

F
. The space of principal parts of harmonic Hilbert Maass forms,

H+
k

Mk
, is identi�ed with the totally negative Laurent polynomials, up to U2

F -coinvariance.
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Example 4.7 (Harmonic Maass forms). As always, we would like to see how this is analogous

to an existing feature of harmonic Maass forms. These correspond to the q-expansions of the

principal parts of harmonic Maass forms. Recall that a harmonic Maass form f has a decom-

position f = f+ + f−, where f+
is the holomorphic part (mock modular form), and f− is the

non-holomorphic part. Furthermore, the datum of the shadow ξk(f) is equivalent to the datum

of f−.

Now the key is that f− is determined by f+
, or even better, the principal parts of f+

, by [DL,

Proposition 2.6]. Namely, the principal parts de�ne a linear functional on S2−k, and this by Serre

duality pins down the (complex conjugate of the) shadow.

Example 4.8. In the case of Hilbert modular surfaces, Proposition 4.5 implies that, given ν < 0,

there exists a nonholomorphic function fγ,ν , for each γ ∈ U2
F , so that γ ·fγ−fγ = qν . One would

hope that fγ =
∑∞

n=1 γ
−n · qν would formally work, but this is actually a divergent series! This

is one of the reasons why the naïve generalization of harmonic Maass forms does not work.

5. Borcherds lift of harmonic Hilbert Maass forms

In [Br2], in a view towards constructing Borcherds lift for Hilbert modular forms, a way to

avoid Koecher’s principle for Hilbert modular forms was suggested. This starts by realizing that

the usual Borcherds lift is constructed for each non-holomorphic Poincaré series in the sense of

[Br1], as the space of harmonic Maass forms is spanned by such forms. In the regularization

process for singular theta integrals, one realizes that it is rather a Whittaker function that is used

in the integral, which is the analogue of exponential function for the usual Poincaré series. Now,

[Br2] uses the fact that the analogue of Whittaker functions has no Koecher’s principle, and one

can think such Whittaker functions (named harmonic Whittaker forms) as alternatives for then

non-existent harmonic Hilbert Maass forms.

Using our new de�nition of harmonic Hilbert Maass forms and their q-expansions, we can

now identify harmonic Whittaker forms with principal parts of harmonic Hilbert Maass forms.

Namely,{
Principal parts of harmonic Hilbert

Maass forms

}
=

{
Laurent polynomials, with totally

negative exponents

}
/U2

F .

De�nition 5.1 (Scalar-valued version of [Br2, De�nition 4.1]) . A harmonic Whittaker form of

weight k is a linear combination of functions of form

fm(τ) =
(4πm2)k−1 · · · (4πmd)

k−1

Γ(1− k)Γ(k − 1)d−1
(Γ(1− k)− Γ(1− k, 4πm1v1))e4πm1v1e(tr(−mτ)),

where m ∈ O∨F , m � 0, τ = (τ1, · · · , τd), τa = ua + iva, and Γ(s, v) is the incomplete Gamma

function.

It is computed that

vk−2
1 L

(1)
k fm(τ) =

(4πm1)1−k(4πm2)k−1 · · · (4πmd)
k−1

Γ(1− k)Γ(k − 1)d−1
e(tr(mτ)),

where L
(1)
k is the lowering operator in variable τ1.

Using this, we de�ne the non-holomorphic Hilbert Poincaré series.
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De�nition 5.2 (Non-holomorphic Hilbert Poincaré series). We de�ne a non-holomorphic Hilbert
Poincaré series Fm, for m ∈ O∨F with m � 0, to be a harmonic Hilbert Maass form whose q-
expansion is q−m.

Note that this only de�nes a class in H+
k /Mk, but this is enough as an input for Borcherds lift.

De�nition 5.3 (Borcherds lift of harmonic Hilbert Maass forms). Let (V,Q) be a quadratic space

overF of dimensionn+2 and signature ((n, 2), (n+2, 0), · · · , (n+2, 0)). LetH = ResF/Q GSpin(V ),

K ⊂ H(A) be an open compact subgroup andXK be the Shimura variety associated withH and

level K . For f ∈ H+
k

Mk
, the Borcherds lift Φ(f) is de�ned to be

Φ(f) =
∑

m∈O∨F ,m�0

cmΦ−m(z, h, 1− k),

where the q-expansion of f (see Proposition 4.5) is

q expd−1(f) =
∑

m∈O∨F ,m�0

cmq
m,

and Φ−m(z, h, 1− k) is as in [Br2, (5.2)].

Proposition 5.4. Our de�nition of non-holomorphic Poincaré series coincides with the non-holomorphic
Poincaré series in the case of elliptic modular forms. In particular, our Borcherds lift of harmonic
Hilbert Maass forms coincides with the usual Borcherds lift in the case of harmonic Maass forms.

Proof. This follows from the computation of Fourier expansion of non-holomorphic Poincaré

series in the context of harmonic Maass forms. Indeed, [Br1, Proposition 1.0] computes that the

principal part of holomorphic part of Fm is e−m. Furthermore, using the formula of loc. cit., the

shadow of Fm is the holomorphic Poincaré series associated to
(4πm)1−k

Γ(1−k)
e(mτ), which coincides

with the normalization of De�nition 5.2. �
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