
IRREGULAR SINGULARITY AND STOKES PHENOMENON

GYUJIN OH

1. Formal reduction theory

Reference: Turrittin, Convergent solutions of ordinary linear homogeneous di�erential equations
in the neighborhood of an irregular singular point

Think about formally solving a linear ODE in one variable,

du

dz
= A(z)u

for u = (ui)1≤i≤n, given a matrix A = (aij)1≤i,j≤n of meromorphic functions. Fuchs’ theorem

says this is a regular singularity if A has at worst simple pole, so suppose it has a pole of order

≥ 2. Write it as

A = A0z
−r + A1z

−r+1 + · · ·

Theorem 1.1 (**Spoiler alert**). It has a formal fundamental solution of the form

H(z)zJ exp(Q(z))

where for some positive integer p,
• Q(z) is a diagonal matrix with diagonals polynomials of degree at most p(r−1)with variable
z−1/p

• J is a constant matrix commuting with every Q(z),
• H(z) is a formal series in the variable z1/p, where H(z)−1 can also be written as a formal
Laurent series in the variable z1/p.

I will copy the way it’s written in Turrittin. If you transform u′ = Au to v = gu (gauge

transformation) then the new v′ = Bv is with B = gAg−1 + g′g−1.

(1) r = 0. There is no worry because just plugging u =
∑∞

k=0Hkz
k

will give a recursive

relation so that H0 will determine H1, H2, · · · in order.

(2) r > 0, n = 1. This is also not super mysterious because one can separate variables. Let’s

do this in a little more suggestive way:

• Substitute

u = exp

(
Ar−1 log z − Ar−2

z
− Ar−3

2z2
− · · · A0

(r − 1)zr−1

)
v

Then if you expand, basically everything bad goes away:

dv

dz
= (Ar + Ar+1z + Ar+2z

2 + · · · )v

• Then it becomes Case 1.
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(3) For the rest of the cases, if we make any transformation of the sort

u = Pv

where P is a constant nonsingular matrix, then the original equation will be written as

dv
dz

= P−1APv. Thus one can WLOG assume that A0 is in the Jordan normal form. We

assume

A0 =


M1 0 · · · 0
0 M2 · · · · · ·
· · · · · · · · · 0
0 · · · 0 Mm


where each Mi is of form

Mi =


ρi 0 0 · · · 0
βi ρi 0 · · · 0
0 βi ρi · · · · · ·
· · · · · · · · · · · · 0
0 · · · 0 βi ρi


where βi is either 0 or 1.

Now consider the casem = 1 and β1 = 0. Namely supposeA0 = ρ1I is a scalar matrix.

Then we make the following transformation:

u = v exp

(
− ρ1

(r − 1)zr−1

)
if r > 1, and

u = v exp(ρ1 log z)

if r = 1. Basically this removes the lowest order term and transforms into

dv

dz
= (A1z

−r+1 + A2z
−r+2 + · · · )v.

This is then subject to induction.

(4) Now the next natural thing is to subdivide everything into Jordan blocks. This is possible

because if you use the transformation

u = (I + zkQk)v,

then the ODE transforms into

dv

dz
= z−r(A0 + · · ·+ Ak−1z

k−1 + Ckz
k + Ck+1z

k+1 + · · · )v,

whereCk = Ak+A0Qk−QkA0 if r > 1 andCk = Ak+A0Qk−QkA0−kQk if r = 1. The

point is that it does not change A0, · · · , Ak−1. If you do a small calculation then you can

discover that, upon a good choice of Qk, you can make Ck into a block diagonal matrix

where each block corresponds to an eigenvalue of A0. If g = 1, then one can’t eliminate

the (r, s)-block where k = ρr − ρs but other o�-diagonal blocks are eliminated. So using

a transformation

u = ((I + zQ1)(I + z2Q2)(I + z3Q3) · · · )v
one can subdivide the ODE into Jordan blocks of A0.
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(5) If g = 1 and ρi’s are the same to ρ, then we can assume βi = 1 for some i. LetA0 = ρI+E.

Then one just dictates that there should be a solution of form

u(z) = (H0 +H1z + · · · ) exp((ρI + E) log z)

If you put this, you get

du

dz
=
∞∑
k=0

((k + 1)Hk+1z
k +Hkz

k+1(ρI + E)) exp((ρI + E) log z)

If you equate both sides, then you getH0 = I ,H1+H1E = EH1+A1, · · · , kHk+HkE =
EHk +A1Hk−1 +A2Hk−2 + · · ·+Ak−1H1 +Ak. In general you can uniquely solve H for

kH +HE = EH + A

given A. So you can solve H1, H2, · · · . This if you write out means ui is

zρ(formal power series involving log(z) to the power at most n)

which is what I know from regular singularities knowledge.

(6) If g = 1 and eigenvalues di�er by integers, then you can still apply the same simpli�cation

process

u = ((I + zQ1)(I + z2Q2)(I + z3Q3) · · · )v

but some of the o�-diagonal matrices survive. WLOG we order ρi’s in an increasing order.

Then the simpli�ed ODE becomes

dv

dz
=
A0 + zD +K

z
v

where D is the diagonal term and K is the o�-diagonal term. Because we ordered eigen-

values, K is upper triangular, and the (r, s)-block is a constant matrix Krs times z−ρs+ρr .

Now we use the transform

v = diag(zρ1I1, · · · , zρmIm)w

Then every o�-diagonal term becomes a constant matrix! More precisely the ODE be-

comes

dw

dz
=
D3 + zD

z
w

where D3 is a constant block-upper triangular matrix where the diagonal terms are sub-

diagonal part of Jordan blocks and upper triangular part is precisely Krs’s. In particular

all generalized eigenvalues of D3 are 0! Now it is reduced to the Case 5.

(7) Now what remains is the g > 1 case where all eigenvalues are the same. A similar sub-

stitution can enable us to assume that ρi = 0. WLOG we order so that nontrivial Jordan

blocks are ordered in the bottom side and larger such block is located in the latter part of
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the order. For example an example of a right ordering is

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0


Then again

u = ((I + zQ1)(I + z2Q2)(I + z3Q3) · · · )v
can do a certain job. In the above example each Ak, for k ≥ 1, will be reduced into a form

∗ ∗ 0 ∗ 0 0 0 ∗
∗ ∗ 0 ∗ 0 0 0 ∗
∗ ∗ 0 ∗ 0 0 0 ∗
∗ ∗ 0 ∗ 0 0 0 ∗
∗ ∗ ∗ ∗ 0 0 0 ∗
∗ ∗ ∗ ∗ 0 0 0 ∗
∗ ∗ ∗ ∗ 0 0 0 ∗
∗ ∗ ∗ ∗ 0 0 0 ∗


Now for µ > 0 consider making a sheraing transform v = diag(zµ(n−1), · · · , zµ, 1)w.

Then it has an e�ect (more or less) that (i, j)-part is multiplied by zµ(i−j). In particular

the subdiagonal parts appearing in A0 will now have zµ. If the above-diagonal parts have

power series starting with large enough power, then we can take µ = 1 so that the result-

ing matrix is actually a multiple of z! One can talk about the crticial value µ0 of µwhere

zµ gets equal to the decreased leading power in the upper triangle. So if µ0 ≥ 1, then we

can take µ = 0 to reduce r to r − 1.

(8) Now if µ0 < 1, then µ0 = q
p

for some positive integers q < p, (q, p) = 1. Then now we go

to a cover t = z1/p. The order gets larger but weirdly one can prove that one can repeat

the above process again and again and basically you terminate after a �nite number of

steps..! It is hard to imagine that it leads anywhere, but here is an example. Suppose you

have, for a 6= 0,

A =

0 0 0
1 0 0
0 1 0

 z−2 +

0 0 a
0 0 0
0 0 0

 z−1.

Then the gauge transformation for g =

z−2/3 0 0
0 0 0
0 0 z2/3

 yields a new B with

B =

0 0 a
1 0 0
0 1 0

 z−5/3 +

−1/3 0 0
0 0 0
0 0 1/3

 z−1

so the leading term actually is semisimple..!
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The idea behind this termination is that the dimension of the nilpotent orbit increases after

each process.

There are two fancy recast of the theory:

• If you see u′ = Au as the solution of∇d/dzu = 0 where∇d/dz = d
dz
−A, then this becomes

a �at meromorphic connection over some base.

• If one is interested in local behavior, then one gets a di�erential module over Cz,cgt where

Cz,cgt is the �eld of convergent Laurent series. It has not only an interpretation as the

germs of holomorphic vector bundle with meromorphic connection but also equipped

with a gauge adjoint action of GLn(Cz,cgt) and also one could just make it algebraic and

just study di�erential modules.

In terms of gauge equivalence class, one have the following classical theorem.

De�nition 1.1. Let K be an algebraically closed �eld of characteristic zero, and let Kz,∞ =
∪n≥1K[[z1/n]][z−1/n]. A canonical form is an element of gln(Kz,∞) of the form

B = D1z
r1 + · · ·+Dmz

rm + z−1C

where r1 < · · · < rm < −1 are rational numbers, C,D1, · · · , Dm ∈ gn(K) commute with each
other, and Dj’s are nonzero and diagonal if m 6= 0. The rj’s are called canonical levels, r1 is the
principal level=Katz invariant. D1z

r1 + · · · + Dmz
rm is the irregular part of B. We say B

is unrami�ed if all rj’s are integers. It is defined over Kz,b if rj’s are in 1
b
Z. The smallest such b

is called the ramification index. For such b, it is b-reduced all eigenvalues of C has real parts
0 ≤ Reλ < 1

b
.

Theorem 1.2 (Hukuhara, Levelt, Turrittin). AnyA ∈ gln(Kz,∞) is gauge equivalent to a canonical
form whose canonical levels depend only on the gauge equivalence class of A (namely, any two
canonical forms that are gauge equivalent have the same canonical levels). If A ∈ gln(Kz) and b
is the rami�cation index of the canonical form to which A is equivalent, then one can �nd a gauge
equivalent b-reduced canonical form. Two gauge-equivalent b-reduced canonical forms over Kz,b

are conjugate by ana element in GLn(K). Finally, if A ∈ gln(Kz), then every canonical level has
denominator ≤ n, so that its canonical forms are de�ned over Kz,n! and are n!-reduced, and the
gauge transformation traking A to its canonical form may be chosen to be in GLn(Kz,n!).

In this context the shearing transformation of A ∈ gln(Kz) with nilpotent leading term is

basically by zqH for some q ∈ Q where H is the H coming from applying Jacobson-Morozov to

the leading term. This gives that one can gauge-transform so that either the leading term has two

distinct eigenvalues or it is still nilpotent but lies in an a�ne subspace of gln(K) that contains the

leading term but the space is transversal to the nilpotent orbit and the new nilpotent leading

term is obtained by deforming along the a�ne subspace while staying nilpotent throughout the

deformation. This implies that if it stays nilpotent the dimension of the nilpotent orbit has to

increase.

Theorem 1.3 (Babbitt-Varadarajan). If A ∈ gln(Cz,∞) is a connection of order r for r < −1 (i.e.
the smallest power of z), and letM = n(|r| − 1), then if A ≡ B(mod zM), then the irregular parts
of the canonical forms of A and B are the same. Moreover, we can �nd a rational number k ≥ 0
depending only on the Ar+s, 0 ≤ s ≤M , such that if A ≡ B(mod zM+k), then A and B are gauge
equivalent.
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2. Stokes phenomenon

Now we see that for irregular singularities one needs things like z1/p or worse ez
1/p

. This

is why formal structure around irregular singularity does not determine the analytic structure.

However if we restrict to a small sector one can talk about asymptotic solution. Here a sector

means a fan of form r > 0, a < θ < b. Given a sector Γ, let Γδ be Γ ∩ {r < δ}. An open set

Ω ⊂ Γ is asymptotic to the sector Γ if for each sector Γ′ b Γ there is δ > 0 such that Γ′δ ⊂ Ω.

Let A(Γ) be the C-algebra of germs of analytic functions f de�ned on open sets asymptotic to

Γ, two such functions de�ning the same germ if thy coincide on an open set asymptotic to Γ,

such that there is an element f̃ ∈ Cz which is asymptotic, which means that for any integer

N ≥ 1 and sector Γ′ b Γ, we have f(z) =
∑

r≤N frz
r + O(|z|N+1) uniformly in Γ′ as z → 0.

It is a di�erential C-algebra with unit, and f 7→ f̃ is a homomorphism of di�erential algebras.

Furthermore,A(Γ)→ Cz is surjective (Borel-Ritt). Those in the kernel are called flat. A famous

example is e−1/z .
In this language the remark we made at the beginning of this section can be rephrased as

follows: even if two elements A1, A2 ∈ gln(Cz,cgt) are gauge-equivalent under GLn(Cz), they

are not necessarily gauge-equivalent under GLn(Cz,cgt). But from the asymptotic analysis one

can reduce to GLn(A(Γ))..!

Theorem 2.1. Over a sector Γ, consider the system

zm+1dui
dz

= δiui + fi(u1, · · · , un)(z), 1 ≤ i ≤ n

where δi’s are nonzero complex numbers, fi’s are polynomials in the u’s with coe�cients in A(Γ)
and the coe�cients of fi are asymptotically of order ≥ 0; those of the terms of degree ≤ 1 in the ui
have asymptotic order > 0. Consider its formalization

zm+1dûi
dz

= δiûi + f̂i(û1, · · · , ûn)(z).

Suppose that the vertex angle of Γ is ≤ π/m. If v = (vi), vi ∈ C[[z]], is a solution to the formalzed
system, and the order of vi is> 0 for all i, then we can �nd a solution to the original system inA(Γ)
asymptotic to this.

Theorem 2.2. Let Γ be any sector, and let A1, A2 ∈ gln(A(Γ)) be such that ξ[Â1] = Â2 for some
ξ ∈ GLn(Cz). Let r1 be the common principal level of Âi’s. If the angle of Γ is ≤ π/(|r1| − 1), we
can �nd x ∈ GLn(A(Γ)) such that x ∼ ξ and x[A1] = A2.

Now one can systematically study this kind of obstruction.

De�nition 2.1. Let A0 ∈ gln(Cz,cgt). The Stokes sheaf of A0, St(A0), is the sheaf of groups on
S1 whose stalk at any point θ ∈ S1 is the group of germs of n×n-matrix-valued analytic functions
on Γδ for δ > 0, Γ a sector containing θ, such that

• u ∼ 1 in some sector containing θ,
• u[A0] = A0.

This is just the collection of ambiguity on taking asymptotic lifts. Said di�erently, we can

formulate the following.
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• Let (A, ξ) for A ∈ gln(Cz,cgt) and ξ ∈ GLn(Cz) with ξ[A] = A0 be called a marked pair.
Two marked pairs are equivalent if ξ’s are gauge equivalent over Cz,cgt. Let M(A0) be the

set of equivalence classes of marked pairs.

• Given a marked pair (A, ξ) we can �nd a �nite open covering Ui of S1
by arcs, δ > 0

and holomorphic maps xi : Γ(Ui)δ → GLn(C) such that xi ∼ ξ on some part of sector

containing Γ(Ui)δ and xi[A] = A0.

• Then (xix
−1
j ) forms a 1-cocycle of St(A0). Furthermore, the class of this cocycle does not

depend on any choice, so we get a well-de�ned map

Φ : M(A0)→ H1(S1, St(A0)).

Theorem 2.3 (Malgrange–Sibuya). Φ is a bijection that sends (A0, id) to the trivial class.

One can similarly consider a sheaf of groups G on S1
where one only requires u ∼ 1 (thus it does

not depend on A0). Then the analogous consideration gives a map

Θ : GLn(C[[z]])/GLn(C{z})→ H1(S,G).

This is also a bijection (Malgrange–Sibuya).

• If (A, ξ) is a marked pair for A0, then St(A) and St(A0) are locally isomorphic, in fact

using the same terminology, St(A0)|Ui
∼ St(A)|Ui

, and St(A) is obtained by gluing the

sheaves St(A0)|Ui
along Ui ∩Uj by the isomorphisms St(A0)|Uj

|Ui∩Uj

∼−→ St(A0)|Ui
|Ui∩Uj

given by s 7→ (xix
−1
j )s(xix

−1
j )−1. We denote this “twisting” by St(A) = St(A0)

(γ)
where

γ indicates the corresponding 1-cocycle. ThenH1(St(A0)) ∼= H1(St(A)), where γ(γ) = 1.

Thus as far as H1
of Stokes sheaves is concerned one can use formal reduction.

• At each small open arc there is the notion of which spectrum is bigger than the others, and

this shows that certain spectrum could be seen in the formal level whereas certain spectra

are not (e.g. e−1/z). In any case, the Stokes sheaf over a small open arc has sections which
have a natural structure as a unipotent linear algebraic group, and restriction maps

are morphisms of algebraic groups.

• There is a Lie algebra version of Stokes sheaf, st(A0), which could be de�ned analogously

using in�nitesimal gauge transformation. Then H i(S1, st(A0)) is not nonabelian coho-

mology anymore and could be discussed. dimH1(S1, st(A0)) is called the irregularity
of the connection adA0, denoted Irr(adA0).

• Using this one can de�ne the notion of Stokes lines (or anti-Stokes lines) which are the

lines where the largest asymptotic solution gets changed.

• Stokes sheaf can be �ltered by normal subsheaves where each successive subquotient is

Stokes sheaf for elementary connection, namely a connection whose canonical form has

only one level. Furthermore, if A is an elementary connection of level r whose lift to th

eplane of ζ = z1/b is unrami�ed, consider f : ζ 7→ z be the covering map f : S1,b → S1

where S1,b
means it is a unit circle with total length 2bπ. Then for any arc I ⊂ S1,b

of

length π/(|r| − 1) whose endpoints are not on Stokes lines for A, we have

H0(I, f ∗ St(A)) = H1(I, f ∗ St(A)) = 0.

• H1(S1, St(A)) can be given a structure of complex a�ne variety. This you can expect

because this basically means you can write formal solutions with parameters where at a

small neighborhood it only depends on the parameter and everything is formally the same

(“isoformal family”). One shows this by either realizing as cocycle space mod coboundary

7



space, or rather cleverly by realizing H1(S1, St(A)) as a functor of points over more gen-

eral C-algebras. Then it is pretty much a formality thatH1(S1, St(A)) is an a�ne scheme

of dimension Irr(adA0) (bc St(A0) is sheaf of unipotent groups).

3. Examples

• Bessel functions

• Whittaker functions

• Airy functions

• Con�uent hypergeometric functions
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