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Abstract. In this short note, we deduce the classical Néron–Ogg–Shafarevich criterion on good

reduction of abelian varieties from its archimedean analogue: a holomorphic family of abelian vari-

eties over a punctured disc extends to the whole unit disc if and only if the topological monodromy

representation is trivial.
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1. Introduction

There is a folklore analogy between the rami�cation theory of `-adic Galois representations

and the singularity of vector bundles with integrable connections. A general dictionary is that

the unrami�ed, tamely rami�ed, and wildly rami�ed Galois representations correspond to the

removable, regular, and irregular singularities, respectively. Furthermore, an integrable connec-

tion with at worst regular singularities is encoded by its topological monodromy representation

by the Riemann–Hilbert corresopndence. Thus, one expects that the unrami�edness of `-adic

monodromy representation is related to the triviality of topological monodromy representation.

On the other hand, the classical Néron–Ogg–Shafarevich criterion relates the good reduction

of an abelian variety with the unrami�edness of its `-adic monodromy representation. Guided

by the viewpoint of the previous paragraph, we �rst formulate and prove the corresponding

criterion regarding the triviality of topological monodromy representation of a family of abelian

varieties, which we call the archimedean analogue of the Néron–Ogg–Shafarevich criterion. To

avoid confusion, from now on, we will refer to the classical Néron–Ogg–Shafarevich criterion as

the `-adic Néron–Ogg–Shafarevich criterion.

The main purpose of the note is to deduce the `-adic Néron–Ogg–Shafarevich criterion from

the archimedean Néron–Ogg–Shafarevich criterion. The proof crucially uses the arithmetic toroidal

compacti�cation of the moduli of principally polarized abelian varieties as in the work of Faltings–

Chai [FC]. This new proof of the `-adic criterion explicitly realizes the folklore analogy between
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the rami�cation theory of `-adic Galois representations and the singularities of topological mon-

odromy representations.

The idea of the proof is to use the “degeneration of degenerations.” Namely, we use the fact

that Mumford’s degeneration of abelian varieties can realize all semi-abelian degeneration of

abelian varieties, and also that such degeneration can be put into a family. Perhaps the most

well-known instance of this fact is that, for elliptic curves, the Tate uniformization can be put

into a universal family, called the universal Tate elliptic curve of Raynaud. The idea of relating

`-adic and topological monodromy via a family of degenerations was prominently used in [Oda],

which studies the Galois representation of a higher-genus curve using the information about its

topological monodromy.

The article is organized as follows. In §2, we will �rst precisely formulate and prove the

archimedean Néron–Ogg–Shafarevich criterion. Then, in §3, we will �rst deduce the `-adic

Néron–Ogg–Shafarevich criterion from the archimedean criterion in the case of elliptic curves,

using the more familiar universal Tate elliptic curve. In §4, we will end with the proof of the

`-adic criterion in the general case by using Mumford’s construction of degeneration of abelian

varieties.

Acknowledgements. We thank John Halliday for pointing out a mistake in a previous version.

2. Archimedean Néron–Ogg–Shafarevich criterion

We �rst formulate the “archimedean analogue” of the Néron–Ogg–Shafarevich criterion, which

is considerably easier to prove than the `-adic Néron–Ogg–Shafarevich criterion.

Proposition 2.1 (Archimedean Néron–Ogg–Shafarevich criterion). Let f : A → D× be a holo-
morphic family of abelian varieties of dimension g over the punctured disc D×. Then, f extends to
a family of abelian varieties over D if and only if the monodromy representation ρ : π1(D

×, t0) ∼=
Z→ AutH1(At0 ,Z) is trivial, where t0 ∈ D× is a �xed base point.

Proof. If the family extends to the unit disc D, the monodromy representation factors through

π1(D, t0), which is trivial. Conversely, suppose the monodromy representation is trivial. We �rst

prove this direction assuming that the family f : A → D× is a family of principally polarized
abelian varieties. Then, the family f de�nes a period morphism fromD×modulo the monodromy

to the Siegel upper half plane Hg. As the monodromy is trivial, the period morphism is a holo-

morphic map p : D× → Hg. As Hg is conformally equivalent to a bounded domain, 0 = D−D×
is a removable singularity of p.

Now let us prove the converse direction in the general case. By Zahrin’s trick, there is a family

of principally polarized abelian varieties A′ → D× whose topological monodromy representa-

tion is trivial and which contains A ⊂ A′ as a family of abelian subvarieties. By the previous

paragraph, A′ → D× extends to a family of principally polarized abelian varieties Ã′ → D. Let

Ã be the closure of A in Ã′, with its reduced scheme structure. We claim that Ã → D is a fam-

ily of abelian varieties, or that Ã0 is an abelian variety. Note that the �berwise group structure

µ : Ã′ ×D Ã′ → Ã′ restricts to µ′ : Ã ×D Ã → Ã′. Since µ′|A×D×A factors through A ⊂ Ã′,

µ′ factors through Ã. This shows that Ã0 is a reduced closed algebraic subgroup of the abelian
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variety Ã′0. Since a reduced connected closed algebraic subgroup of an abelian variety over a

characteristic zero �eld is an abelian variety, it is now su�cient to show that Ã0 is connected,

which is true as it is the continuous image of the closure of a connected set A ×D× A, which is

itself connected. �

Using this, we would like to prove the `-adic Néron–Ogg–Shafarevich criterion. From now

on, we �x a �nite extension K/Qp.

Theorem 2.2 (`-adic Néron–Ogg–Shafarevich criterion). Let A/K be an abelian variety. Let
ρ : GK → GL(T`A) be the `-adic monodromy representation for ` 6= p. Then, A has good reduction
if and only if ρ|IK is trivial.

The rest of the article will be dedicated to proving Theorem 2.2. As one direction is immedi-

ate, we are left to prove the other nontrivial direction, namely proving the good reduction of A
assuming that ρ|IK is trivial.

As the �rst reduction step, we note that both sides of the statement of Theorem 2.2 are in-

variant under an unrami�ed base change. Furthermore, by Zahrin’s trick, one can assume that A
is principally polarized.

Next, we note that only semistable abelian varieties need to be considered, using the geometry

of the arithmetic toroidal compacti�cation of the moduli of abelian varieties with level structures.

Proposition 2.3. Let A/K be a principally polarized abelian variety, and ρ be the `-adic mon-
odromy representation of A for ` 6= p. If ρ|IK is trivial, then A has at worst semistable reduction.

Proof. Let g be the dimension of A. By assumption, A[`n] is unrami�ed for any n ≥ 1. Take a

�nite unrami�ed extension L/K over which A[`3] splits. Then, A[`3](L) ∼= (Z/`3Z)2g
. Fix one

such isomorphism ι. Then, (A, ι) de�nes a point P ∈ Ag,`3(L), where Ag,`3 is the moduli space

of principally polarized abelian varieties of dimension g with full level `3
structure. By [Mum,

Theorem 7.10], it is known that Ag,`3 is represented by a smooth quasi-projective scheme over

Z[1/`]. Furthermore, by [FC, Theorem IV.6.7], for a good enough choice of auxiliary data, there is

a smooth projective Z[1/`]-scheme Ag,n, which contains Ag,n as a dense open subscheme. By the

valuative criterion for properness, the point P ∈ Ag,`3(L) extends to anOL-pointP ∈ Ag,`3(OL).
Recall that there is a semi-abelian schemeG→ Ag,`3 , extending the universal abelian scheme

G → Ag,n. After pulling back this family via the OL-point P : SpecOL → Ag,`3 , we obtain

a semi-abelian scheme over OL whose generic �ber is AL. This implies that AL has at worst

semistable reduction. As the reduction type is invariant under an unrami�ed base change, we

conclude that A has at worst semistable reduction, as desired. �

3. Warm-up: the case of elliptic curves

Mumford’s construction of degenerating abelian varieties in the case of elliptic curves is ex-

actly the Tate uniformization. By the means of Raynaud’s universal Tate elliptic curve, one even

knows that the degeneration of elliptic curves can be put into a one-dimensional family. In this

section, we show how to prove Theorem 2.2 using the universal Tate elliptic curve, to illustrate

the usefulness of a family of degenerations.
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Proof of Theorem 2.2, in the case of elliptic curves. Suppose that an elliptic curveA overK has bad

reduction but also has trivial monodromy over the inertia group IK . As we know from Proposition

2.3, A has semistable reduction. We will leverage the fact that A has the Tate uniformization,

and furthermore that the Tate uniformization is obtained from the universal Tate elliptic curve of

Raynaud. Our reference for the construction is [Bos, §9.2] and [Con, §2.5].

Let Knr
be the maximal unrami�ed extension of K . Then, the universal Tate elliptic curve is a

family f : T → S = SpecOKnr [[q]] such that, if E is an elliptic curve over Knr
with semistable

bad reduction, then the (semistable) Néron model E of E over SpecOKnr is obtained by pulling

backT along the mapOKnr [[q]]→ OKnr , q 7→ q(E), the q-parameter ofE. The familyT used here

is obtained by taking the base-change of Tate1 in [Con, §2.5], which is in turn the algebraization

of the (formal) universal Tate elliptic curve in [Bos, §9.2], from Z[[q]] to OKnr [[q]].

Let V = SpecOKnr be the closed subscheme of S de�ned by the mapOKnr [[q]]
q 7→q(A)−−−−→ OKnr ,

and let η be the generic point of V. Let i : V ↪→ S be the closed embedding. Then,

f |V : i∗T→ V,

is a semistable model ofAKnr . This in particular means that f |Vη : (i∗T)η → Vη is identi�ed with

AKnr → Spec(Knr). Upon choosing a geometric generic point η : Spec(K)→ Spec(Knr)→ V,

the pro-`-part of the monodromy representation

ρVη ,η : π1,ét(Vη, η)` → Aut(R1(f |η)∗Q`),

is identi�ed with the `-adic monodromy representation of A restricted to the pro-`-part of the

inertia group (IK)`,

ρ|(IK)` : (IK)` → Aut(H1(AK ,Q`)).

On the other hand, as AKnr → Spec(Knr) is put in a larger family, the above monodromy repre-

sentation ρVη ,η factors through the monodromy over a larger baseU = {q 6= 0} = SpecOKnr((q)) ⊂
V:

π1,ét(Vη, η)`

''

ρVη,η // Aut(R1(f |Vη)∗Q`)

π1,ét(U, η)`

ρU,η

66

namely, the left arrow is the natural map π1,ét(Vη, η)` → π1,ét(U, η)` via OKnr((q))
q 7→q(A)−−−−→ Knr

.

Note that, by Abhyankar’s lemma, all étale `-covers of both U and Vη are Kummer covers, so both

π1,ét(Vη, η)` and π1,ét(U, η)` are isomorphic toZ`. After identifying both withZ`, the natural map

is multiplication by `n for some n ≥ 0.
1

By assumption, ρVη ,η = ρ|(IK)` is trivial, so we conclude

that ρU,η has �nite image.

On the other hand, T is smooth and proper over U, so the specialization map of étale fun-

damental groups identi�es the monodromy over U at η is identi�ed with the monodromy over

1
This was pointed out to us by John Halliday.
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U at ι, where ι = SpecKnr((q)) is a geometric generic point of U = SpecOKnr((q)). Thus, the

monodromy representation

ρU,ι : π1,ét(U, ι)` → Aut(R1(f |ι)∗Q`),

has �nite image. Now π1,ét(OKnr) = 1, so ρU,ι will stay the same even if we base change OKnr to

a characteristic zero algebraically closed �eld. We �x an abstract �eld embedding j : Knr ↪→ C
and consider the base-change to C using this embedding. Therefore, the monodromy of the C-

base-change

ρUC,ιC : π1,ét(UC, ιC)` = Gal(C((q))/C((q)))` → Aut(R1(f |ιC)∗Q`),

has �nite image.

The crucial point is that the family TC[[q]] → SpecC[[q]], obtained by base-changing f :

T → S via OKnr ↪→ Knr j−→ C, is the formal germ of a complex-analytic family f ′ : T → D
of complex analytic varieties over the unit disk. One could see this by noticing that the power

series de�ning the Tate uniformization has coe�cients in Z and can be verbatim used to de�ne

a complex-analytic family over the punctured unit disk. Another way to realize this is that the

aforementioned family induces a map p : SpecC[[q]] → X(1), where X(1) is the moduli of

elliptic curves. As X(1) is an algebraic space, one could take the open unit disk around the point

p ∈ X(1)an
, where X(1)an

is a Moishezon manifold.

Using the above observation, we see that ρUC,ιC is the `-completion of the topological mon-

odromy ρf ′ : π1(D
×, t0)→ AutH1(At0 ,Z), where t0 ∈ D×. As the family T → D is semistable,

this local topological monodromy is unipotent. However, any unipotent matrix in GL2(Z) is ei-

ther trivial or has in�nite order, so this concludes that the topological monodromy over D× is

trivial. By the archimedean Néron–Ogg–Shafarevich criterion, Proposition 2.1, T |D× → D× can

be extended to a family of abelian varieties T ′ → D. As T |D× → D× can be extended to the

semistable family T → D, this contradicts the fact that there is at most one way of extending a

family of elliptic curves over D× to D. �

4. A proof of Néron–Ogg–Shafarevich criterion

The crucial part of the proof of the previous section is that you can put a semistable elliptic

curve into a family of semi-abelian varieties over SpecOKnr [[q]] whose base-change to C[[q]] is

the formal germ of a complex-analytic family of semi-abelian varieties. With this in mind, we

can now prove Theorem 2.2 in the general case.

Proof of Theorem 2.2. As in the proof of Proposition 2.3, there is a point P ∈ Ag,`3(Knr) such that

GP
∼= AKnr , and there is an extension i : SpecOKnr → Ag,`3 . Let P ∈ Ag,`3(Fp) be the point in

the special �ber of i. As Ag,`3 is smooth over Z[1/`], the local ring of Ag,`3 at P is

OAg,`3 ,P
∼= W (Fp)[[X1, · · · , Xd]],
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where d = g(g+1)
2

. The morphism i : SpecOKnr → Ag,`3 then induces SpfOKnr → SpfOAg,`3 ,P ,

or a map f : W (Fp)[[X1, · · · , Xd]] → OKnr . As its mod p reduction is P , if we choose a uni-

formizer π ∈ OKnr , then f(Xi) is divisible by π. Thus, f factors through

W (Fp)[[X1, · · · , Xd]]
Xi 7→

f(Xi)

π
X

−−−−−−−→ OKnr [[X]]
X 7→π−−−→ OKnr .

Let p : SpecOKnr [[X]]→ Ag,`3 be the corresponding morphism, and consider p∗G→ SpecOKnr [[X]].
This is, as before, a one-dimensional family of semi-abelian schemes, which has the following

properties.

• It specializes to AKnr at a certain point.

• It is smooth away from the X = 0 locus.

• Its base-change to C[[X]] is the formal germ of a complex-analytic semistable family of

abelian varieties over a unit disc.

The proof then proceeds exactly as in the proof in §3, where the only di�erence is that we have

to use the fact that a non-identity unipotent matrix in GLn(Z) has in�nite order for any n. �
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