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Unfortunately I do not care very much about counting curves...

1. �antum cohomology primer

LetX be a complex projective variety. LetMg,n(X, β) be Kontsevich’s moduli of stable curves

X , for β ∈ H2(X,Z)free. It has a leg map

ei :Mg,n(X, β)→ X.

NoteMg,n(X, β) is a compact complex orbifold with dimension dimX+〈c1(TX), β〉+3g+n−3.

For γ ∈ H∗(X,C),

Φ(γ) =
∑
n≥3

∑
β∈H2(X,Z)free

1

n!

(∫
M0,n(X,β)

e∗1(γ) · · · e∗n(γ)

)
eβ.

This is a sum of Gromov–Witten invariants for genus zero. Namely, the GW invariant

GWX,β
0,n (γ1, · · · , γn) :=

∫
M0,n(X,β)

e∗1(γ1) · · · e∗n(γn),

counts the number of stable rational curves passing through general cycles Poincare-dual to γi at

i-th marked point. This potential Φ is a C-valued formal series on H∗(X), considered as a linear

space.

It satis�es a WDVV equation. What is this? We have a forgetful map φ :M0,n(X, β)→M0,4,

whereM0,4 = P1
. Note thatM0,4 = P1 − {0, 1,∞}, and there are three reducible curves,

{{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, {{1, 4}, {2, 3}}.
Note that these are all linearly equivalent (in H2(M0,4)). This equation pulled back via φ is the

WDVV equation.

Let QH∗(X) = H∗(X,Z)free ⊗Z Λ, where

Λ = {λ =
∑

A∈H2(X)free

λAe
A}.
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Then, for A ∈ H2(X)free and a, b ∈ H∗(X)free, (a ∗ b)A ∈ H∗(X)free is de�ned as∫
X

(a ∗ b)A ∪ c = GWX,A
0,3 (a, b, c).

Then the quantum product is de�ned as

a ∗ b =
∑

A∈H2(X)free

(a ∗ b)A ⊗ eA.

As A = 0 implies (a ∗ b)0 = a ∪ b, this means quantum product, specialized at the ordinary co-

homology, is the cup product. In terms of quantum product, WDVV is precisely the associativity

of quantum product.

2. WDVV

Goal: Dubrovin, Geometry of 2D topological �eld theories.
Very generally, WDVV is something like the following. Let F (x1, · · · , xn) be a function in

n coordinates. Let h be the Hessian of F , and let cj = ∂h
∂xj

. Suppose c1 is invertible. Then the

WDVV equation is

cjc
−1
1 cl = clc

−1
1 cj.

If you write Cj = c−11 cj , then this is

CjCl = ClCj,

so it’s related to associativity. Sometimes one requires
∂c1
∂xj

= 0, sometimes not. In Dubrovin, this

is asserted. Their notation is

cijk = (ci)jk,

ηij = c1ij,

ηij = (c−11 )ij,

ckij =
n∑
ε=1

ηkεcεij.

These are used to de�ne an associative algebraAt on ann-dimensional space with basis e1, · · · , en,

ei · ej =
n∑
k=1

ckij(t)ek.

The extra c1ij being constant means that e1 is the unity, namely cj1i(t) = δij . Associativity menas∑
a,b

Fijaη
abFklb =

∑
a,b

Fkjaη
abFilb,

which is WDVV.

We further require that F is a quasihomogeneous function,

F (cd1t1, · · · , cdntn) = cdFF (t1, · · · , tn).

In other words, in terms of the Euler vector �eld

E =
∑
i

diti∂i,
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LEF (t) :=
∑
i

diti∂iF (t) = dFF (t).

Or more generally one considers Euler vector �eld where diti is replaced by a linear function in

ti’s, of form

E(t) =
∑
i

(
∑
j

qijti + ri)∂i.

If Q = (qij) is diagonalizable, this can be reduced into, via linear change of variables,

E(t) =
∑
i

diti∂i +
∑
i,di=0

ri∂i.

These di’s are eigenvalues of Q. And one has an ambiguity of adding a quadratic function in ti’s
as we are concerned about triple derivatives, which makes

LEF (t) = dFF (t) +
∑
ij

Aijtitj +
∑
i

Biti + C.

We normalize so that d1 = 1. Let qi = 1 − di, d = 3 − dF . If you di�erentiate thrice the

quasihomoegenity relation, we get

LEηij = (dF − d1)ηij.
This shows that if Q has simple eigenvalues we can make linear change of variables to make t1
part pretty explicit:

F (t) =

{
1
2
t21tn + 1

2
t1
∑n−1

i=2 titn+1−i + f(t2, · · · , tn) if η11 = 0
c
6
t31 + 1

2
t1
∑n−1

i=1 titn+1−i + f(t2, · · · , tn) if η11 6= 0,{
ηij = δi+j,n+1, q1 = 0, qn = d, qi + qn+1−i = d if η11 = 0

di + dn−i+1 = 2d1 if η11 6= 0.

The �rst case, η11 = 0, is physically more natural somehow. For example, if m = 3, then F (t) =
1
2
t21t3 + 1

2
t1t

2
2 + f(t2, t3). In these terms, in At, e1 = 1, e2, e3, the multiplication law is that

e22 = fxxye1 + fxxxe2 + e3,

e2e3 = fxyye1 + fxxye2,

e23 = fyyye1 + fxyye2.

So, (e22)e3 = e2(e2e3) implies

f 2
xxy = fyyy + fxxxfyyy.

This looks quite similar to Kontsevich’s WDVV for counting rational curves inP2
. Quasi-homogeneity

further implies that

d 6= 1, 2, 3 d = 1 d = 2 d = 3

Q.hom.
(1−d/2)xfx+(1−d)yfy

=(3−d)f xfx/2 + rfy = 2f rfx − yfy = f xfx/2 + 2yfy = c

f(x, y) x4+qφ(yxq) x4φ(y − 2r log x) y−1φ(x+ r log y) 2c log x+ φ(yx−4)

ODE for φ(z)

((12+14q+4q2)φ′

+(7q+5q2)zφ′′+q2φ′′′)2

=φ′′′+((2+q)(3+q)(4+q)φ
+q(26+27q+7q2)zφ′

+q2(9+6q)z2φ′′+q3z3φ′′′)
((4+3q)φ′′+qzφ′′′)

φ′′′(r3+2φ′−rφ′′)−(φ′′)2
−6r2φ′′+11rφ′−6φ=0

−144(φ′)2+96φφ′′

+128rφ′φ′′−52r2(φ′′)2
+φ′′′−48rφφ′′′

+8r2φ′φ′′′

+8r3φ′′φ′′′=0

φ′′′=400(φ′)2

+32cφ′′+1120zφ′φ′′

+784z2(φ′′)2+16czφ′′′

+160z2φ′φ′′′+192z3φ′′φ′′′
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This is a particular case of Painleve VI.

What is a coordinate-free way? AC-algebraA is Frobenius algebra if it is commutative and it

has a symmetric bilinear nondegenerate inner product 〈, 〉 : A×A→ C such that 〈ab, c〉 = 〈a, bc〉
(invariance). Every Frobenius algebra without nilpotents is ⊕C. Our At is a Frobenius algebra,

and we have a family of Frobenius algebras, A→M .

Idea. This can be identi�ed with TM →M .

De�nition 2.1. M is a Frobenius manifold if TM → M is a family of Frobenius algebras.

Namely,

(1) there is an invariant inner-product 〈, 〉 on TtM which is �at,

(2) ∇e = 0, where ∇ is the Levi-Civita connection wrt 〈, 〉,
(3) For a symmetric 3-tensor c(u, v, w) = 〈uv, w〉, the 4-tensor∇zc(u, v, w) is symmetric.

(4) The Euler vector �eld E is determined such that∇(∇E) = 0 and that the corresponding

one-parameter group of di�eomorphisms acts by conformal transformations of the metric

〈, 〉 and by rescalings on the Frobenius algebras TtM . The covariantly constant operator

Q = ∇E(t) is called the grading operator.

Lemma 2.2. A solution of WDVV gives a Frobenius manifold structure, and locally any Frobenius
manifold structure comes from a solution of WDVV equations.

The formulae are

∂i =
∂

∂ti
, e = ∂1,

∂i∂j =
∑
k

cijk(t)∂k,

〈∂i, ∂j〉 = ηij.

Example 2.3. For M = {λ(p) = pn + anp
n−1 + · · · + a1 | a1, · · · , an ∈ C}, the algebra Aλ is

given by C[p]/(λ′(p)), and the invariant inner product is given by

〈f, g〉λ = resp=∞
f(p)g(p)

λ′(p)
.

And we have

e =
∂

∂a1
, E =

1

n+ 1

∑
i

(n− i+ 1)ai
∂

∂ai
.

Also there is an algebraic characterization of Frobenius manifolds. For R a commutative alge-

bra over a �eld of char 6= 2, we want a Frobenius algebra structure on Der(R), the R-module of

k-derivations.

• There is a symmetric inner product 〈, 〉 : Der(R)×Der(R)→ R (namely HomR(Der(R), R)
∼−→

Der(R)).

• For u, v ∈ Der(R), the covariant derivative∇uv ∈ Der(R) is de�ned by

〈∇uv, w〉 =
1

2
(u〈v, w〉+ v〈w, u〉 − w〈u, v〉+ 〈[u, v], w〉+ 〈[w, u], v〉+ 〈[w, v], u〉) .
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• We want∇ue = 0. Moreover, for ∇̃u(λ)v := ∇uv + λu · v, we have

∇̃u(λ)∇̃v(λ)− ∇̃v(λ)∇̃u(λ) = ∇̃[u,v](λ).

In other words, ∇̃u(λ) de�nes a �at connection. The �atness of this deformed connection

detects the associativity condition (thus WDVV).

Natural gradings are

deg ti = 1− qi, deg ∂i = qi.

A Frobenius manifold is special in that there is actually a pencil of �at metrics. What I mean by

it is this. For a Frobenius manifold M , one can de�ne a new metric (, ) on T ∗M de�ned by

(ω1, ω2) = (ω1 · ω2)(E),

where · on T ∗t M is de�ned by transporting the product on TtM via TtM ∼= T ∗t M via 〈, 〉.
You can transport this back to TtM as another inner product. So we have an old product 〈, 〉

and a new product (, ). These are related via

(E · u, v) = 〈u, v〉.
This metric itself is well-de�ned for t such that E(t) is invertible. The two metrics form a flat
pencil:

Theorem 2.4. Two metrics (, )1 and (, )2 form a flat pencil if, for all λ ∈ R,
(, )λ = (, )1 + λ(, )2,

is �at, and the Levi-Civita connection∇λ for (, )λ satis�es

∇λ = ∇1 + λ∇2,

where∇i is the Levi-Civita connection for (, )i.

The new metric (, ) is called the intersection form.

De�nition 2.5. A point t ∈M of a Frobenius manifold is semisimple if TtM is semisimple (has

no nilpotents).

Semisimplicity is an open property. A Frobenius manifold is semisimple if its generic point is

semisimple. I don’t know why but one calls such Frobenius manifold massive...

Lemma 2.6. Around a semisimple point, there are local coordinates u1, · · · , un such that

∂i · ∂j = δij∂i.

This is because one has a parallel transported idempotents to get ∂i · ∂j = δij∂i as vector

�elds, and these form local coordinates by showing that [∂i, ∂j] = 0. This can be reformulated as

follows.

Lemma 2.7. For an n-dimensional massive Frobenius manifoldM , the group of algebraic symme-
triesG(M), a �nite-dimensional Lie group, has connected component of the identity ann-dimensional
commutative Lie group acting locally transitively onM .

Here, f : M → M is an algebraic symmetry if f is a di�eomorphism such that it preserves

multiplication laws.

• The canonical coordinates are given by roots of the characteristic polynomial

det(gij(t)− uηij) = 0.
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• That this polynomial has only simple roots is equivalent to t being semisimple.

• Around a semisimple point, canonical coordinate can be chosen in the way that

E =
∑

ui∂i.

• 〈, 〉 is diagonal wrt canonical coordinate (“curvilinear”).

From these, we can totally classify how massive Frobenius manifolds can look like locally.

(1) Consider the rotation coe�icients

γij(u) =
∂j
√
ηii(u)√
ηjj(u)

i 6= j.

These are symmetric, namely γij = γji, and

∑
k ∂kηii(u) = 0. The functions ηii(u) and

γij(u) are homogeneous functions of the canonical coordinates of the degrees−d and−1,

respectively.

(2) The rotation coe�cients satisfy

∂kγij = γikγkj,

for i, j, k distinct,

n∑
k=1

∂kγij = 0,

n∑
k=1

uk∂kγij = −γij (Scaling homogeneity).

(3) These set of equations conversely characterize massive local Frobenius manifold, under

the extra assumption that V (u) = [(γij(u)), diag(u1, · · · , un)] is diagonalizable (gener-

icity assumption). This has a property that the eigenvalues of V (u) do not depend on

u.

Example 2.8. For n = 2, the equations are γ12 = γ21 and

∂1γ + ∂2γ = 0,

u1∂1γ + u2∂2γ = −γ.
So this is linear. If you solve it you get

γ =
C

u1 − u2
.

In this case V (u) =
(

0 −C
C 0

)
.

For n = 3, WDVV reduces to Painleve VI. Well I can only say that it comes from a time-

dependent Hamiltonian system

dy

dz
=
∂H

∂p
,
dp

dz
= −∂H

∂y
,

H =
y(y − 1)(y − z)p2 + (y − 1)(y − (R + 1

2
)(y − z))p− 1

2
R(y − z)

z(z − 1)
.
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Don’t know QFT.. We are more interested in the relationship with isomonodromic deforma-

tions. Consider Λ = d
dz
−U− 1

z
V , where U, V are constant n×nmatrices, and U is diagonal with

pairwise distinct diagonal entries diag(u1, · · · , un), and V (u) is as given. Then the equations for

the rotation coe�cients are those coming from the equations

∂kψi = γikψk, i 6= k
n∑
k=1

∂kψi = zψi,

Λψ = 0.

Namely these equations will yield the rotation coe�cient equations, e.g. ∂j∂kψi = ∂k∂jψi.
The �rst two equations are about how things change wrt u, and the last equation is the real

ODE happening over a geometric space we are interested in. So we are deforming “di�erential

equations in z” in u. We would like to show that this u-deformation is isomonodromic. This

operator Λ has singularities at 0 and∞.

• The singularity at z = 0 is regular, so ψ(z) = zV ψ0 for a vector ψ0. So monodromy is

quite simple.. It is given by diag(e2πiµ1 , · · · , e2πiµn), where µ1, · · · , µn are eigenvalues of

V (u). Thus this is isomonodromic!

• The singularity at z = ∞ is irregular, so the monodromy is really given by Stokes data.

We would like to show that the Stokes data also do not depend on u.

Theorem 2.9. On the space of all such operators with �xed monodromy around z = 0, there
is a natural Frobenius structure. Conversely, any Frobenius manifold satisfying a semisimplicity
assumption can be obtained by such a construction.

p. 82

3. �antum cohomology of P2

Goal: Manin, Sixth Painlevé equation, universal elliptic curve, and mirror of P2
.

The actual equation that will be used is

X ′′ = 1
2

(
1
X

+ 1
X−1 + 1

X−t

)
(X ′)2 −

(
1
t

+ 1
t−1 + 1

X−t

)
X ′ + X(X−1)(X−t)

t2(t−1)2

(
α + β t

X2 + γ t−1
(X−1)2 + δ t(t−1)

(X−t)2

)
.

Consider the Legendre family E → B = P1 − {0, 1,∞}, Y 2 = X(X − 1)(X − t). It is pretty

well-known that the “periods of the Legendre family” are solutions to the Gauss hypergeometric

di�erential equation

Ltφ = 0, Lt = t(1− t) d
2

dt2
+ (1− 2t)

d

dt
− 1

4
.

Here, a period is an integral of the invariant holomorphic 1-form
dx
y

over a “parallel” family of

1-cycles. The reason why this holds is because of the following calculation. We consider x and t
being “independent”. Then, y depends on t, in that

2y
dy

dt
= −x(x− 1).

So,

d

dt

(
dx

y

)
= −

dy
dt

y2
dx =

dx

2y(x− t)
,
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d2

dt2

(
dx

y

)
=

3dx

4y(x− t)2
.

So,

Lt
dx

y
=
−x2 + x(2− 2t) + t

4y(x− t)2
dx.

The RHS is in fact
1
2
d
(

y
(x−t)2

)
if you expand. Anyways, so it is exact, so Lt

∫
γ
dx
y

= 0 for a 1-cycle

γ.

So what about Lt
∫ (X(t),Y (t))

∞
dx
y

? This involves chain rule.

Lt

∫ (X,Y )

∞

dx

y
=

∫ (X,Y )

∞
Lt
dx

y
+(1−2t)

X ′

Y
+t(1−t)

(
d

dt

(
X ′

Y

)
+
d

dt

∫ (X,Y )

∞

d

dt

dx

y
−
∫ (X,Y )

∞

d2

dt2
dx

y

)

=
1

2

y

(x− t)2
|(X,Y )
∞ + (1− 2t)

X ′

Y
+ t(1− t)

(
X ′′

Y
− X ′Y ′

Y 2
+

X ′

2Y (X − t)

)
= Y

(
1

2(X − t)2
+ (1− 2t)

X ′

Y 2
+ t(1− t)

(
X ′′

Y 2
− X ′Y ′

Y 3
+

X ′

2Y 2(X − t)

))
.

Now di�erentiating Y 2 = X(X − 1)(X − t) wrt t, we get

2Y Y ′ = X ′(X − 1)(X − t) +XX ′(X − t) +X(X − 1)(X ′ − 1)

= X ′((X − 1)(X − t) +X(X − t) +X(X − 1))−X(X − 1).

So

Y ′

Y
=

1

2
X ′
(

1

X
+

1

X − 1
+

1

X − t

)
− 1

2(X − t)
.

So after applying Painleve VI,

X ′′−X
′Y ′

Y
+

X ′

2(X − t)
= −

(
1

t
+

1

t− 1

)
X ′+

Y 2

t2(t− 1)2

(
α + β

t

X2
+ γ

t− 1

(X − 1)2
+ δ

t(t− 1)

(X − t)2

)
.

So

t(1−t)
(
X ′′

Y 2
− X ′Y ′

Y 3
+

X ′

2Y 2(X − t)

)
=

(2t− 1)X ′

Y 2
+

1

t(1− t)

(
α + β

t

X2
+ γ

t− 1

(X − 1)2
+ δ

t(t− 1)

(X − t)2

)
.

So you get

Lt

∫ (X,Y )

∞

dx

y
=

Y

t(1− t)

(
α + β

t

X2
+ γ

t− 1

(X − 1)2
+

(
δ − 1

2

)
t(t− 1)

(X − t)2

)
.

Phew! F

We saw in the calculations that somehow Lt
∫ (X,Y )

∞
dx
y

introduces a lot of cancellations, but not

enough. What does the RHS mean? Manin says this �ts in the context of µ-equations.

De�nition 3.1. A µ-equation is

n∑
i=1

L
(j)
i

∫ s

0

ωi = s∗(Φ(j)), j = 1, · · · , N,

where the symbols mean:

• π : A → B is a family of abelian varieties and a section s, over a small enough B such

that π∗(Ω
1
A/B) and DB are OB-free,
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• ω1, · · · , ωn ∈ Γ(B, π∗(Ω
1
A/B)) is an OB-basis of vertical 1-forms,

•
∑n

i=1 L
(j)
i

∫
γ
ωi = 0, for j = 1, · · · , N , is a system of generators of the DB-module of the

Picard–Fuchs equations, where γ runs over families of closed paths in the �bers spanning

H1(Bt),

• Φ(j)
, j = 1, · · · , N , are families of meromorphic functions on A.

Now let’s consider π : E → B case. For any symbol of order two σ ∈ S2(TB) andω a generator

of π∗(Ω
1
E/B), there is the Picard–Fuchs operator Lσ,ω where 1. its principal symbol is σ and 2. it

annihilates all periods of ω.

Note that, for f a function on B, Lfσ,ω = fLσ,ω, and Lσ,gω = gLσ,ω ◦ g−1. So Lσ,ω
∫ s
0
ω is

OB-bilinear in σ and ω. So,

µ :=

(
Lσ,ω

∫ s

0

ω

)
⊗ σ−1 ⊗ ω−1 ∈ S2(Ω1

B)⊗ (π∗Ω
1
E/B)−1,

depends only on s and not on σ or ω. So Φ(j)
’s should really be regarded as meromorphic sections

of π∗(S2(Ω1
B)⊗ (π∗Ω

1
E/B)−1).

Now one goes to the uniformization. The Legendre family and the uniformized family Eτ :=
C/(Z + Zτ) 7→ τ ∈ H is related via

(z, τ) 7→ (X, Y, t),

X =
℘(z, τ)− e1
e2 − e1

,

Y =
℘z(z, τ)

2(e2 − e1)3/2
,

t =
e3 − e1
e2 − e1

.

ei(τ) = ℘(Pi, τ) (P0 = 0, P1 =
1

2
, P2 =

τ

2
, P3 =

1 + τ

2
),

where ℘ is the Weierstrass ℘-function.

4. �antum cohomology of G/B

Goal: Kim, Quantum cohomology of �ag manifolds G/B and quantum Toda lattices.

5. Whittaker functions

Moral: Whittaker functions are solutions of quantum D-modules of �ag varieties.
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