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Unfortunately I do not care very much about counting curves...

1. QUANTUM COHOMOLOGY PRIMER

Let X be a complex projective variety. Let M, ,,(X, 3) be Kontsevich’s moduli of stable curves
X, for € Hy(X,Z) frec. It has a leg map

€; - Mgm(X, B) — X.

Note M, (X, 3) is a compact complex orbifold with dimension dim X + (¢ (Tx), 8)+3g+n—3.
Fory € H*(X,C),

OEYSDS %(/ ei(v)---ei(7)>eﬁ~

n>3 IBEHZ(sz)f'ree MO’H(X7B)

This is a sum of Gromov-Witten invariants for genus zero. Namely, the GW invariant

WP (1, ) = / e (1) (),

Mon(X,5)
counts the number of stable rational curves passing through general cycles Poincare-dual to +; at
i-th marked point. This potential ® is a C-valued formal series on H*(.X), considered as a linear
space.
It satisfies a WDVV equation. What is this? We have a forgetful map ¢ : My ,,(X, 8) — Mo,
where HOA = P'. Note that M4 = P' — {0, 1, 00}, and there are three reducible curves,

{125 {3,4}) {1.3h {24}, ({1,4),{2,3}}.
Note that these are all linearly equivalent (in H2(M,4)). This equation pulled back via ¢ is the

WDVYV equation.
Let QH*(X) = H(X,Z) frec ®z A, where

A={A= > et
AGHQ(X)free
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Then, for A € Hy(X) frec and a,b € H*(X) free, (a ¥ b) a4 € H*(X) frec is defined as

/ (axb)sUc= GWO);’A(CL, b,c).
b's
Then the quantum product is defined as
axb= Z (a*b)a @ e
AGHQ(X)free

As A = 0 implies (a % b)y = a U b, this means quantum product, specialized at the ordinary co-
homology, is the cup product. In terms of quantum product, WDVYV is precisely the associativity
of quantum product.

2. WDVV

Goal: Dubrovin, Geometry of 2D topological field theories.
Very generally, WDVV is something like the following. Let F'(z1,--- ,x,) be a function in
n coordinates. Let & be the Hessian of F, and let ¢; = a%' Suppose c; is invertible. Then the
WDVYV equation is
cjcflcl = clcl’lcj.
If you write C; = cl_lcj, then this is
C;C = G0y,

so it’s related to associativity. Sometimes one requires % = 0, sometimes not. In Dubrovin, this
J

is asserted. Their notation is
Cijk = (Cz‘)jka
Nij = Ciij,

n? = (c1")is,

n
kE E ke
e=1

These are used to define an associative algebra A; on an n-dimensional space with basis ey, - - - , e,

n
e e = Z cfj(t)ek.
k=1
The extra cy;; being constant means that e, is the unity, namely C{Z(t) = 0;;. Associativity menas

Z Fijan™ Fyp = Z Fjan®™ Fap,
a,b a,b
which is WDVV.
We further require that F' is a quasihomogeneous function,
F(cMty, - c™t,) = P F(t, - ).

In other words, in terms of the Euler vector field
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LpF(t)

Zdt@F

Or more generally one considers Euler vector field where d;t; is replaced by a linear function in

t;’s, of form
D) SRR
(¢ij) is diagonalizable, this can be reduced into, via linear change of variables,

Zdt@—i—an

i,d;=0

= dpF(1).

IfQ =

These d;’s are eigenvalues of (). And one has an ambiguity of adding a quadratic function in ¢;’s
as we are concerned about triple derivatives, which makes

LpF(t) = dpF(t) ZAUH +ZBt+C

We normalize so that d; = 1. Let ¢; = 1 — d;, d = 3 — dp. If you differentiate thrice the

quasihomoegenity relation, we get
Lgny = (dp — di)n;.

This shows that if () has simple eigenvalues we can make linear change of variables to make t;
part pretty explicit:

proy — [0 30 T b S ) i =0
SO+ Sty 1ttn+1—i+f(t27"' tn) if 11 # 0,

Nij = 5i+j,n+1, ¢ =0,g,=d,¢+ qn1-i=d ifn; =0

di +dp—i1 = 2dy if n1 # 0.

The first case, 1711 = 0, is physically more natural somehow. For example, if m = 3, then F'(t) =
%t%tg + %tltg + f(ta,t3). In these terms, in Ay, e; = 1, €9, €3, the multiplication law is that

2
62 = fxxyel + fxa;ac€2 + €3,

= fmyyel + f:p:ry627

2
€3 = fyywer + foyy€o-

€9€3

So, (€3)e3 = ea(ege3) implies
zzy = fyyy + f:vmfyyy

This looks quite similar to Kontsevich’s WDVYV for counting rational curves in P2. Quasi-homogeneity
further implies that

d£1,2.3 d=1 d=2 d=3
T—d/2)z o+ (1=d
Q.hom. ( )_(J;)_ZSf ) fy efy/2+rf,=2f| rfo—vyfy=1F rfe/24+2yf, =c
f(z,y) 2T (ya?) 2'p(y —2rlogx) |y 'o(x +rlogy) | 2clogx + ¢(yz~?)
((12+14q+44%)¢’ , ’
+(7q+5q2)z¢/l+q2¢1//)2 _144$¢//)2+962¢¢ o ¢///:400(¢/)2
ODE for ¢(2) =0 +((2+0) (3+0) (4+0) | ¢ (15 +2¢' —rg)—(¢")2 | T12V99 4_5% e +32¢¢"+11202¢ ¢
or ¢\z +q(26+27q+7¢%) ¢’ —6r2¢" +11r¢ —66=0 +¢ - 8ro¢ +78422(¢")2+16¢2¢""
+4%(9+69)z%¢" +¢°23¢"") +;3T¢/?¢75/,_0 +1602%¢/¢"" +19223¢" ¢
((44+3q)9" +qz¢"") _




This is a particular case of Painleve VI.

What is a coordinate-free way? A C-algebra A is Frobenius algebra if it is commutative and it
has a symmetric bilinear nondegenerate inner product (, ) : Ax A — C such that (ab, ¢) = (a, bc)
(invariance). Every Frobenius algebra without nilpotents is @C. Our A, is a Frobenius algebra,
and we have a family of Frobenius algebras, A — M.

Idea. This can be identified with 7'M — M.

Definition 2.1. M is a Frobenius manifold if 7A/ — M is a family of Frobenius algebras.
Namely,

(1) there is an invariant inner-product (, ) on T, M which is flat,

(2) Ve = 0, where V is the Levi-Civita connection wrt (, ),

(3) For a symmetric 3-tensor ¢(u, v, w) = (uv, w), the 4-tensor V,c(u, v, w) is symmetric.

(4) The Euler vector field E is determined such that V(V E) = 0 and that the corresponding
one-parameter group of diffeomorphisms acts by conformal transformations of the metric
(,) and by rescalings on the Frobenius algebras 7; M. The covariantly constant operator
Q) = VE(t) is called the grading operator.

Lemma 2.2. A solution of WDVV gives a Frobenius manifold structure, and locally any Frobenius
manifold structure comes from a solution of WDVV equations.

The formulae are

0
az - 3_751-’ €= 817
&8] = Zcijk(t)ﬁk,
k
(0:,05) = mij.

Example 2.3. For M = {\(p) = p" + a,p" ' +---+a1 | ai, -+ ,a, € C}, the algebra A, is
given by C[p]/(N'(p)), and the invariant inner product is given by

fp)g(p)

<f7 g>)\ = I'éSp=co )\,(p)

And we have

0 1 0
=—,FE= —i+1a;—.
¢ Oay’ n—i—lg(n o >a0ai
Also there is an algebraic characterization of Frobenius manifolds. For R a commutative alge-
bra over a field of char # 2, we want a Frobenius algebra structure on Der(R), the R-module of
k-derivations.

~

e There is a symmetric inner product (, ) : Der(R)xDer(R) — R (namely Hompg(Der(R), R) —
Der(R)).
e For u,v € Der(R), the covariant derivative V,v € Der(R) is defined by

(V, 0, w) = %(u(v,w> + v(w, u) — wlu,v) + {[u,v],w) + ((w, u,v) + ((w,v],u)).



e We want Ve = 0. Moreover, for ﬁu()\)v = Vv + \u - v, we have
Vi) Vi(A) = V(A VL (A) = V[W’]O‘)-

In other words, %u()\) defines a flat connection. The flatness of this deformed connection

detects the associativity condition (thus WDVV).
Natural gradings are

degt; =1—¢q;, degd;=g;.

A Frobenius manifold is special in that there is actually a pencil of flat metrics. What I mean by
it is this. For a Frobenius manifold M, one can define a new metric (, ) on 7*M defined by

(w1, w2) = (w1 - w2)(E),
where - on T} M is defined by transporting the product on 7; M via T, M = T} M via (, ).

You can transport this back to 73 M as another inner product. So we have an old product ;)
and a new product (, ). These are related via

(E - u,v) = (u,v).
This metric itself is well-defined for ¢ such that F(t) is invertible. The two metrics form a flat
pencil:
Theorem 2.4. Two metrics (, )1 and (, )2 form a flat pencil if, for all A € R,

(v )>\ = (v )1 + >\(7 )27
is flat, and the Levi-Civita connection V for (, ), satisfies

V)\ = vl + AVQ,

where V; is the Levi-Civita connection for (, );.

The new metric (, ) is called the intersection form.

Definition 2.5. A point¢ € M of a Frobenius manifold is semisimple if 73 M is semisimple (has
no nilpotents).

Semisimplicity is an open property. A Frobenius manifold is semisimple if its generic point is
semisimple. I don’t know why but one calls such Frobenius manifold massive...

Lemma 2.6. Around a semisimple point, there are local coordinates uy, - - - ,u,, such that

This is because one has a parallel transported idempotents to get 0; - 9; = 0,;0; as vector
fields, and these form local coordinates by showing that [0;, 9;] = 0. This can be reformulated as
follows.

Lemma 2.7. For an n-dimensional massive Frobenius manifold M, the group of algebraic symme-
tries G(M), a finite-dimensional Lie group, has connected component of the identity an n-dimensional
commutative Lie group acting locally transitively on M.

Here, f : M — M is an algebraic symmetry if f is a diffeomorphism such that it preserves
multiplication laws.
e The canonical coordinates are given by roots of the characteristic polynomial

det(g" (t) — un”) = 0.
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e That this polynomial has only simple roots is equivalent to ¢ being semisimple.
e Around a semisimple point, canonical coordinate can be chosen in the way that

e (,) is diagonal wrt canonical coordinate (“curvilinear”).

From these, we can totally classify how massive Frobenius manifolds can look like locally.

(1) Consider the rotation coefficients

Oj\/ M (u) . .
nij(u) = == i #].
55 (w)
These are symmetric, namely 7;; = 7;;, and Y, Oxn;i(u) = 0. The functions 7;;(u) and
74 (1) are homogeneous functions of the canonical coordinates of the degrees —d and —1,

respectively.
(2) The rotation coeflicients satisfy

Vi = Vik Vs
for 7, j, k distinct,

Z Ovij = 0,
k=1

Z wOkYij = —ij (Scaling homogeneity).
k=1

(3) These set of equations conversely characterize massive local Frobenius manifold, under

the extra assumption that V' (u) = [(vi;(u)), diag(us, - - - ,u,)] is diagonalizable (gener-
icity assumption). This has a property that the eigenvalues of V' (u) do not depend on
u.

Example 2.8. For n = 2, the equations are 7,2 = 721 and

017y 4 Oy = 0,

U101y + u202y = —7.

So this is linear. If you solve it you get
C

U1—U2.

’7/:

In this case V(u) = (& ).
For n = 3, WDVV reduces to Painleve VI. Well I can only say that it comes from a time-

dependent Hamiltonian system
dy OH dp  OH

dz Op'dz Oy’
Y- D=2+ =Dy — (R+ 5y —2))p— 3Ry —2)

2(62 —1)

H =



Don’t know QFT.. We are more interested in the relationship with isomonodromic deforma-
tions. Consider A = % —-U~— éV, where U, V are constant n X n matrices, and U is diagonal with
pairwise distinct diagonal entries diag(uy, - - - , u,,), and V' (u) is as given. Then the equations for
the rotation coefficients are those coming from the equations

i = VikVr, 1 # k

> Ot = 2,
h=1

Ay = 0.
Namely these equations will yield the rotation coefficient equations, e.g. 9;0,%; = 0,0;1;.

The first two equations are about how things change wrt u, and the last equation is the real
ODE happening over a geometric space we are interested in. So we are deforming “differential
equations in 2” in u. We would like to show that this u-deformation is isomonodromic. This
operator A has singularities at 0 and oo.

e The singularity at z = 0 is regular, so ¥)(2) = 2" for a vector 1)y. So monodromy is
quite simple.. It is given by diag(e*™#1 ... e*n) where pi, - - - , ji,, are eigenvalues of
V' (u). Thus this is isomonodromic!

e The singularity at z = oo is irregular, so the monodromy is really given by Stokes data.
We would like to show that the Stokes data also do not depend on w.

Theorem 2.9. On the space of all such operators with fixed monodromy around z = 0, there
is a natural Frobenius structure. Conversely, any Frobenius manifold satisfying a semisimplicity
assumption can be obtained by such a construction.

p- 82

3. QUANTUM COHOMOLOGY OF [P2

Goal: Manin, Sixth Painlevé equation, universal elliptic curve, and mirror of P2
The actual equation that will be used is

_1/1 1 1 1 1 1 X(X-1)(X—-1t) -1 t(t—1)
X=3(x+xa+xm) XV -(G+d+x2) X + 5y <a+5%+7()§_1)2 +5(X—t)2>'

Consider the Legendre family £ — B = P! — {0,1,00}, Y? = X (X — 1)(X — t). It is pretty
well-known that the “periods of the Legendre family” are solutions to the Gauss hypergeometric
differential equation
2
Liop=0, Ly=t(1- t)% + (1 - 2t)% — 111
Here, a period is an integral of the invariant holomorphic 1-form %x over a “parallel” family of
1-cycles. The reason why this holds is because of the following calculation. We consider = and ¢
being “independent”. Then, y depends on t, in that
dy

an = —z(z—1).

d
dfde) _ @, dr
dt \ y y? 2y(z —1)
7
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d_2 dz\  3dx
a2\ y ) 4y(z—1)¥

So, ,
d — 2-2t)+t
P Cl VRN
y dy(x —1)?
The RHS is in fact 1 2d < ) if you expand. Anyways, so it is exact, so L, f 4 — ()fora 1-cycle
fy

So what about L, f (XY ()

X5Y) gy O O X/ d (X' d &Y d dx Y) g2 da
L g L= 1 (1-2¢ tH1—t -
t/oo y /oo tyﬂ )y =) dt( )+dt/ dt y /oo a? y

Xl X// XIY/ Xl
XY) L1 —2)—+t(1—1t) [ — —
A= 2) e HA =05~ St oy o

) ‘i—z? This involves chain rule.

1
T 2(x —t)?

1 X’ X" XY X’
:Y<m+(l 2) 55 + (1 1) (Y2 -t 2Y2(X—t)))‘
Now differentiating Y2 = X (X — 1)(X —t) wrt ¢, we get
VY = X'(X — 1)(X — ) + XX'(X — 1) + X(X — (X' —1)
=X (X-1DX-t)+XX-t)+X(X-1)—-X(X-1).

So v o1
1 1 1 1
—=_X'(= — .
Y 2 <X+X—1+X—t) 2(X — 1)
So after applying Painleve VI,
X'y’ X' 1 1 Yy? t t—1 t(t—1)
X//_ — _ X/ - _— 6 .
Y o x — 1 (t+t—1> e 1)y (O‘JFBX2+7(X—1)2Jr (X—t)2>
So
X" XY X’ (2t — 1) X’ 1 t t—1 t(t —1)
t(1=t) | = — — L 5 _
(1=t) <Y2 ys 2Y2(X—t)> Y2 i1 —1) <O‘+”BX2 T T — e
So you get
XY dg Y t t—1 1\ t(t—1)
L == by (-2 ) ).
/oo y -1 (“+5X2+”<X—1>2+< 2) <X—t>2)
Phew! F

X,Y) dx

We saw in the calculations that somehow L, f introduces a lot of cancellations, but not

enough. What does the RHS mean? Manin says this ﬁts in the context of p-equations.

Definition 3.1. A p-equation is

ZLZ(J')/ wi= ' (@), j=1,---,N,
i=1 0

where the symbols mean:

e 7 : A — B is a family of abelian varieties and a section s, over a small enough B such
that W*(Qi/B) and Dp are Op-free,
8



o wy, - ,w, € I'(B, ﬂ*(Qi‘/B)) is an Op-basis of vertical 1-forms,

° >, LZ(.j ) f7 w; =0,for j =1,--- | N, is a system of generators of the D-module of the
Picard-Fuchs equations, where v runs over families of closed paths in the fibers spanning
Hi(By),

e ®U) j =1,--- N, are families of meromorphic functions on A.

Now let’s consider 7 : F — B case. For any symbol of order two o € S?(Ts) and w a generator
of m.(Q, /p)> there is the Picard-Fuchs operator L, where 1. its principal symbol is o and 2. it
annihilates all periods of w.

Note that, for f a function on B, L¢,, = fLow, and Ly g, = gLsy © gt So Ly fosw is
Op-bilinear in o and w. So,

W= (L@w/ w) Ro ' Rw e ® (W*Q%E/Brl’
0

depends only on s and not on ¢ or w. So ®\)’s should really be regarded as meromorphic sections
of 1 (S2(2}) & (m2,) ).

Now one goes to the uniformization. The Legendre family and the uniformized family F, :=
C/(Z + Z1) — T € H is related via

(z,7) = (X, Y1),

X — o(z,7) — e
€o — €1
y= #:57) 7
2(62—61)3/2
p=B"0
€y — €1
1 T 1+7
ei(T):p(‘F)i?T) (PO:OJP1:§7P2:§7P3: 92 )7

where g is the Weierstrass p-function.
4. QUANTUM COHOMOLOGY OF GG /B
Goal: Kim, Quantum cohomology of flag manifolds G /B and quantum Toda lattices.

5. WHITTAKER FUNCTIONS

Moral: Whittaker functions are solutions of quantum D-modules of flag varieties.
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