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1. Introduction

1.1. Weil Heights. The first idea of heights is Weil height, appeared in the proof of Mordell-Weil
theorem. To start with, there is a natural way of defining heights on Pn(Q), via the map

(1) h : Pn(Q)→ R, x = [x0, . . . , xn] 7→ log max
i

(|xi|),

where xi ∈ Z with gcd(x0, . . . , xn) = 1.
Given a projective variety X and an embedding φ : X ↪→ Pn, we can define a height hφ : X(Q)→

R by x 7→ h(φ(x)). To extend this to X(Q), one can try to embed X(K) for a general number field
K/Q into Q-points of some bigger projective variety, for example X(K) = ResK/QX(Q), and use
the height on the bigger projective variety ResK/QX.

‡We thank Congling Qiu and Yunqing Tang for helpful discussions.
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1.1.1. Height Machine. Let K be a number field and X a projective variety over K. Given a line
bundle L over X, one can define a height hL : X(K̄) → R up to bounded functions (denoted O(1)
below) such that

(1) hL1+L2 = hL1 + hL2 mod O(1), and
(2) if we take L = φ∗OPn(1), then hL = Weil height mod O(1).

1.1.2. Local Weil Heights. Let D ↪→ Pn be a divisor. For simplicity we first take D to be the
divisor defined by x0 = 0. Then the Weil height h as defined in Equation (1), when restricted to
Pn −D = An, has the following local decomposition:

(2) h(1, x1, · · · , xn) =
∑
p≤∞

hp(1, x1, · · · , xn),

where

(3) hp(1, x1, · · · , xn) = log max(1, |x1|p, · · · , |xn|p).

Now assume D is given by F = 0, where F is a homogeneous polynomial of degree d. Then we can
similarly define local heights Pn −D → R by

(4) hp,D(x0, · · · , xn) = log
max(|x0|p, · · · , |xn|p)
|F (x0, · · · , xn)|1/dp

,

and still have

(5)
∑
p

hp,D = h.

Note that the right-hand-side does not depend on the divisor D.

1.2. Néron-Tate heights. We want to eliminate the ambiguity of a bounded function in height
machine.

We first introduce Tate’s idea. Let A be an abelian variety and φ : A ↪→ Pn a symmetric
embedding. That is, we assume that there is an involution σ on Pn such that σ act as [−1] on
A. This is always possible by enlarging n if necessary: given A ↪→ Pn, we get an embedding of A
into Pn × Pn, the first component being the original embedding and the second precomposed with
[−1], then the composition A ↪→ Pn × Pn ↪→ PN gives a symmetric embedding. Then this gives a
symmetric ample line bundle L = φ∗O(1) such that [−1]∗L = L. Then we [m]∗L = L⊗m

2
= m2L,

which gives hL(mx) = m2hL(x) + O(1) for any m. In particular hL(2nx) = 4nhL(x) + O(1) so
limn→∞

hL(2nx)
4n exists. The canonical height ĥ is defined by this limit. That is,

(6) ĥ(x) := lim
n→∞

hL(2nx)

4n
.

The canonical height ĥ is a semipositive quadratic form on A(K), and ĥ(x) = 0 if and only if x is
torsion. This idea can be applied to any variety with an endomorphism satisfying certain properties
(Northcott).

Néron’s idea is to find a canonical local height for ĥ, using Néron models and Poincaré line
bundles. But we will not go to details for now.
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1.3. Arakelov intersection theory. Note that if we apply Néron-Tate idea to function field, then
height is naturally the degree of the line bundle extended to the “family” (a variety over a function
field is naturally a family of varieties). Arakelov theory is the extension of this idea, applied to
curves over a number field K. Suppose we have a curve C over K equipped with a line bundle L.
Take a model X→ SpecOK with an extended line bundle L . But SpecOK is not compact, so we
compactify it by adding all infinite places.

X

��

+3 X
∐

(
∐
v Xv(C))

��
SpecOK +3 SpecOK

∐
{v | ∞}

where each Xv(C) is a Riemann surface. Also we get a line bundle Lv on each Xv(C), and we can
define a metric || ||v on Lv by requiring ||a`||v = |a|v||`||v for any a ∈ C and local generator ` (not
unique, see below).

Why do we want a norm at each Archimedean place? Note that the model already gives us a
Zp-structure on each Qp-vector space, that is, a p-adic norm for each finite prime p. (The set Zp is
just the unit ball in Qp.)

But there are many ways of defining a metric. However we have an invariant, curvature. Given a
line bundle L with a metric on a compact complex manifold X, on a trivializable neighborhood U ,
with trivialization given by a choice of a local section `, you can define a curvature of ‖`‖ : U → R>0

by ∂∂
πi log ‖`‖. Note that if the metric differs by a harmonic function, the curvature is unchanged. So

we get a well-defined (1, 1)-form c1(L, ‖ · ‖) on X. This form also recovers the metric up to scaling,
because a harmonic function on a compact complex manifold is ought to be a constant.

Example 1.1. The Weil height on PnQ is defined by O(1) on PnZ with a metric

‖`i‖(z0, · · · , zn) =
|zi|

max(|z0|, · · · , |zn|)
,

where Γ(Pn,O(1)) =
∑n

i=0 Z`i. This `∞-norm is however not smooth, so what we get is a (1, 1)-
current. If one instead uses an `p-norm, that is to define

‖`i‖(z0, · · · , zn) =
|zi|

p
√∑

|zi|p
,

we would get an honest form.When p = 2, this is known as the Fubini-Study metric.

Remark 1.1. The form is denoted as c1 as this form in the second de Rham cohomology is equal
to the first Chern class of the line bundle. Conversely, any (1, 1)-form representing the Chern class
will give you a metric on the line bundle.

If X is a complex curve, then a (1, 1)-form is a measure on X(C), and we have

degL =

∫
X(C)

c1(L).

Conversely if we have a form that integrates into an integer, we can form a line bundle as well as a
metric (note that H2(X(C)) = Z).

Arakelov’s compactification is a model over OK plus a (smooth positive) probability measure dµv
on Xv(C) for each archimedean prime v, such that all metrized line bundles (L, ‖ · ‖v) on Xv(C)
have curvature proportional to dµv, that is,

c1(L, ‖ · ‖v) = degL · dµv.
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This property is called admissibility. We call the compatified

X = (X, {dµv}v|∞)

an arithmetic surface. For a section ` of an admissible line bundle L = (L , (‖ · ‖v)), we define
d̂iv(`) = div(`)f + div(`)∞ where

div(`)∞ =
∑
v|∞

cv[Xv],

and
cv =

∫
Xv(C)

− log ‖`‖v.

This can be seen as an element of

Div(X) := Div(X) +
∑
v|∞

R[Xv].

1.3.1. Intersection Numbers. We now want to define an intersection number on Div(X). We want
to define local intersection numbers so that for properly intersecting divisors,

D1 ·D2 =
∑
v

(D1 ·D2)v =
∑
v

(D1,v ·D2,v).

At finite primes, classical intersection theory works. At archimedean places, when one divisor is
vertical, say if D1 = Xv, then we define (D1 ·D2) = εv degD2 where εv = 1 if v is real and εv = 2
if v is complex. The harder question is, for two horizontal divisors D1, D2, how do we define an
intersection number at an archimedean place v? Note that D1,v and D2,v are divisors (finite sum
of points) on Xv(C), and we would like to define their intersection number.

Definition 1.1. Given two points on Xv(C), with a probability measure dµv, the intersection number
is given by the Green’s function gv : Xv(C)×Xv(C)\∆→ R (∆ is the diagonal) such that

∂x∂x
πi

gv(x, y) = δy(x)− dµ(x)

as distributions. That is, if x 6= y, we have

∂x∂x
πi

gv(x, y) = −dµ(x)

and near y we have
gv(x, y) = − log z(x) +O(1),

where z is a local coordinate at y.

What is the relation between Neron-Tate theory and Arakelov theory? Given a curve C/K, the
Jacobian of C, Jac(C), is isomorphic to the group of degree zero divisors Div0(C) modulo rational
equivalence (denoted as ∼ below). We consider the Neron-Tate height on Jac(C) and Arakelov
height on Div0(C)/ ∼.

Note that if D is a divisor of degree zero on C, when extending the line bundle L = O(D),
admissibility says that the metric has curvature zero (as degree is zero). So this comes from a
local system by the Riemann-Hilbert correspondence: in more down-to-earth terms in this setting,
systems of germs of parallel vector fields (with respect to the chosen metric) form a local system.

For a nonarchimedean prime, we take the Zariski closure D of D to extend to a special fiber, but
the Zariski closure is not necessarily degree zero. On the other hand we can adjust D by a vertical
divisor

∑
ciFi, where the Fi’s are components of the special fiber, so that (D+

∑
ciFi) ·Fj = 0 for

each j. The extension D′ := D+
∑
ciFi is called the flat extension. Then the relation between the
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Neron-Tate height and the Arakelov height is that hNT ([D]) = −D′ · D′. (Hodge index theorem,
by Hrijac-Faltings.)

Zhang’s treatment is to give probability measures also on the dual graph of the reduction graph at
nonarchimedean places. One can also define admissibility in this setting. This gives a uniform treat-
ment of both archimedean and non-archimedean places and had applications in proving Bogomolov
conjecture and Gross-Zagier formula.

1.4. Goal. The purpose of the course is to develop admissible pairing for higher dimensional
varieties, in a fashion of Grothendieck’s standard conjectures, with the hope of applications to
Gan-Gross-Prasad conjectures (higher-dimensional analogues of Gross-Zagier). Let X be an n-
dimensional variety. We would like to define intersection number Y · Z for Y, Z subvarieties of
dimension p, q with p+ q = n− 1. Note that in this way we get the correct dimension counting in
the corresponding arithmetic variety ((p+ 1) + (q + 1) = (n+ 1)). We will start with archimedean
local pairing, then non-archimedean local pairing and finally develop a global pairing.
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2. Summary of Notations

We will develop a theory that will parallel the classical Archimedean theory. Thus, we will try to
keep the notations similar for everything. This will be helpful for bookkeeping purposes. We tried
to follow Zhang’s preliminary notes on the material.

Role1 Notation1 Cases2 Definition

N i(X)
N i(X) R Pairs (Trivial cycle, numerically trivial4 Green current)

N i(X) Qp Vertical numerically trivial5 cycles

Zi(X)
Z̃i(X) R Pairs (Cycle, Green current)

Zi(X) Qp Cycles of X

Ẑi(X)

Ẑi(X) Local Zi(X)/N i(X)

ĈH
i
(X) Q Arithmetic Chow group of X

TCi(X) Fp(t) Tate cycles, H2i(Xk,Q`(i))
Gal(k/k)

Zi0(X)
Z̃i0(X) R Pairs (Cohomologically trivial cycle, Green current)

Zi0(X) Qp Cycles of X restricting to cohomologically trivial cycles of X

Ẑi0(X)
Ẑi0(X) Local Zi0(X)/N i(X)

ĈH
i

0(X) Q ker(ĈH
i
(X)→ Ci(X))

Zi1(X)
Z̃i1(X) R Pairs (Trivial cycle, Green current)

Zi1(X) Qp Cycles supported in the special fiber (“vertical”)

Ẑi1(X)

Ẑi1(X) Local Zi1(X)/N i(X)

ĈH
i

1(X) Q ker(ĈH
i
(X)→ CHi(X)) (“vertical”)

TCi
1(X) Fp(t) ker(TCi(X)→ TCi(X))

Zi2(X)
Z̃i2(X) R Harmonic (i− 1, i− 1) forms, ker ∂∂ ∩Ai−1,i−1

Zi2(X) Qp “Movable vertical cycles”, 〈Z ∩ [Xk]〉Z∈Zi(X)

Ẑi2(X)

Ẑi2(X) Local (Zi2(X) +N i(X))/N i(X)

ĈH
i

2(X) Q “Movable vertical cycles”, ĈH
i−1

(X) · ĈH
1
(SpecOK)

TCi
2(X) Fp(t) kerω1, where ω1 = ω|TCi

1(X)

Bi(X)

R Ẑi1(X)/Ẑi2(X) ∼= ∂∂(Ai−1,i−1)

Qp Ẑi1(X)/Ẑi2(X)

Q ĈH
i

1(X)/ĈH
i

2(X)

Fp(t) TCi
1(X)/TCi

2(X)
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Ci(X)

R Cohomology classes of algebraic cycles

Qp Numerically equivalent classes of X, ∼= Ẑn+1−i
2 (X)∨

Q Numerically equivalent classes of X, ∼= ĈH
n+1−i
2 (X)∨

Fp(t) im(Ci(X)→ H2i(Xη,Q`(i))
Gal(K/K)) 6

Ĉi(X)
Ĉi(X)

R ∂∂-closed forms, image of the curvature map ω : Ẑi(X)→ Ai,i

Qp Ẑn+1−i
1 (X)∨

Q ĈH
n+1−i
1 (X)∨

Ci(X) Fp(t) im(TCi(X)→ H0(Bk, R
2iπ∗Q`(i))) ∼= TCn+1−i

1 (X)∨ 3

Ĉi1(X)
Ĉi1(X)

R ∂∂-exact forms

Qp Bn+1−i(X)∨ ∼= ker(Ĉi(X)→ Ci(X))

Q Bn+1−i(X)∨

Ci1(X) Fp(t) ker(Ci(X)→ Ci(X))

ω

(Curvature)

R ω : Ẑi(X) � Ĉi(X) ⊂ Ai,i, ω(Z, g) := δZ − ∂∂
πi g

Qp ω : Ẑi(X)→ Ĉi(X) = Ẑn+1−i
1 (X)∨, intersection pairing on X

Q ω : ĈH
i
(X)→ Ĉi(X) = ĈH

n+1−i
1 (X)∨, intersection pairing on ĈH

∗
(X)

Fp(t) ω : TCi(X)→ Ci(X), obvious map by definition

1The notations in the “Role” column mainly follows that of the nonarchimedean case. Except the archimedean
case, X is a good model of X, the object over which we want to define a height pairing, and theories are developed
over X. On the other hand in the Archimedean case X = X (but something involving X should contain additional
information about Green currents).

2Each symbol represents the following: R, archimedean local field; Qp, non-archimedean local field; Q, number
field; Fp(t), global function field.

3B is the base curve where K = k(B) is the base function field, and π : X → B is a good model of X.
4W.r.t. pairing defined as integration of wedge product.
5W.r.t. intersection pairing on X.
6η ∈ B(K) is a geometric generic point.
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Part 1. Archimedean Local Pairing

Let X be a projective complex variety (or more generally Kähler manifold). Given a Kähler
form ω on X, we would like to define an archimedean local pairing, in a sense that for Y,Z ⊂ X
subvarieties that do not intersect with each other and dimY + dimZ = dimX− 1, we would like to
define 〈Y, Z〉 ∈ R. This was foreseen in the last lecture where we defined the intersection number of
two distinct points x, y of a curve X by using Green’s function g(x, y). Note that, as y approaches
to x, g(x, y) = − log |z|(y) + O(1), where z denotes a local coordinate around x. One can also
define Archimedean local height in a more general case where one of the subvarieties is a point, say
dimZ = 0. For a fixed divisor Y ⊂ X, the Archimedean height pairing g(·, Y ) : X\|Y | → R has
at most log singularities. This has a similar estimate as before; if Y is locally defined by f = 0,
then g(z, Y ) = − log |f |(z) +O(1), as z → Y . Equivalently, this defines a hermitian metric ‖ · ‖ on
O(Y ) such that exp g(z, Y ) = ‖1‖z, the norm of the constant section 1 evaluated at z. As in the
case of curves, Green’s function g(z, Y ) can be also thought as a function g(z) on X\|Y | such that
as distributions

(7)
∂∂

πi
g = δ|Y | − ω

for a smooth (1,1)-form ω on X. More precisely, Equation 7 means that

(8)
∫
X
g
∂∂̄

πi
f =

∫
|Y |
f −

∫
X
ωf

In generalizing this, we need some Hodge theory.

3. Complex Hodge Theory

3.1. Hodge decomposition. Let (X,ω) be a Kähler manifold, where ω =
∑
gijdzi ∧ dz̄j is a

closed, positive definite (i.e. [gij ] is positive definite) (1, 1)-form. Let A p,q(X) be the sheaf of
(p, q)-forms on X. Locally on an open set U ↪→ X with local coordinates z1, . . . , zn, α ∈ A p,q(U)
can be written as α =

∑
gIJdzIdz̄J , where the sum is over (I, J) ⊂ {1, . . . , n}, |I| = p, |J | = q, and

dzI = dzn1 · · · dznp if I = {n1, . . . , np} and n1 < · · · < np. We have a double complex of sheaves on
X,

A p,q ∂ //

∂
��

A p+1,q

∂
��

A p,q+1

∂
// A p+1,q+1

We can also define the total complex, A r = ⊕p+q=rA p,q, with differential d : A r → A r+1 given
by d = ∂ + ∂. The classical de Rham theory says that over a contractible open subset U ⊂ X (for
example, when U ∼= Bn, an open unit ball in Cn), C → A •(U) is exact. Thus, one can compute
the singular cohomology H i(X,C) as the cohomology of the complex Γ(X,A •) =: A•, that is

H i(X,C) =
ker(d|Ai)

d(Ai−1)
.

Do not forget that we were given with a Kähler form; in particular, this gives a volume form ωn

on X, and a pre-Hilbert space structure on Ap,q by

〈α, β〉 =

∫
X
〈α(x), β(x)〉ωn,
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for α, β ∈ Ap,q. As this may or may not be complete, we define Ap,q
L2 to be the Hilbert space

completion of Ap,q with respect to this structure. Then ∂ : Ap,q
L2 → Ap+1,q

L2 has a dual ∂∗ : Ap+1,q
L2 →

Ap,q
L2 .
But as we are really working with a manifold, we can in fact define ∂∗ on the level of Ap,q’s, by

using the Hodge star operator ? : Ap,q → An−q,n−p. The inner product then can be rewritten as
(up to a scalar factor)

〈α, β〉 =

∫
X
α ∧ ?β.

As ?2 = 1 if p+ q is even and ?2 = −1 if p+ q is odd, using the expected adjoint property, we can
define ∂∗ using the following computation,

〈∂α, β〉 =

∫
X
∂α ∧ ?β = −

∫
X
α ∧ (∂?β).

Namely, we would like
?∂∗β = ∂?β

so one can define ∂∗β = ± ? ∂?β where the sign is determined by the degree of β. Using this, we
define the Laplacian as

∆∂ := ∂∂∗ + ∂∗∂.

The first main point of Hodge theory can be then summarized as

Ap,q = (ker ∆∂)⊕ im ∂ ⊕ im ∂∗.

Thus formally one has a corollary
ker(∂|Ap,q)

∂Ap−1,q
∼= ker(∆∂ |Ap,q).

We can similarly define ∆d = dd∗ + d∗d,∆∂ = ∂∂
∗

+ ∂
∗
∂. As ω is a closed form, it is easy to see

that ∆∂ = ∆∂ , and ∆d = ∆∂ + ∆∂ . In other words ∆∂ = ∆∂ = 1
2∆d. Thus, as far as the kernel of

some Laplacian is concerned, one could take any kind of Laplacian; thus we will drop the subscript
when we are talking about the kernel of a Laplacian. Some formal consequences are the following.

• H i(X,C) = ker(∆|Ai).
• If one defines Hp,q := ker(∆|Ap,q), we have the Hodge decomposition

H i(X,C) =
⊕
p+q=i

Hp,q.

• Hp,q = Hq(X,Ωp), where Ωp is the sheaf of holomorphic p-forms on X. This is because
Ωp → (Ap,•, ∂) gives a resolution of Ωp.

3.2. Lefschetz operators. Another big content of the classical Hodge theory is the theory of
Lefschetz operators. The Lefschetz operator L : Ap,q → Ap+1,q+1 is just the wedge of ω. The
amazing properties of this operator on the other hand are somehow very formal consequences of the
setting we have set so far. To illustrate the point we assume a toy model like the following:

• V is an n-dimensional C-vector space, and V be the same space but C acts via a complex
conjugation.
• For each p, q ∈ {1, . . . , n}, let V p,q := ∧pV ⊗ ∧qV .
• Let L : V ∗,• → V ∗+1,•+1 be a collection of C-linear operators.

Then, one can always find the “lowering operator” Λ : V ∗,• → V ∗−1,•−1 (as opposed to L being
“raising”) such that L and Λ together form an sl2-action, i.e. [L,Λ] on V p,q acts by the scalar
p+ q − n. This has the following formal consequences.
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Corollary 3.1 (Hodge index theorems). Let p+ q ≤ n. Then,
(1) (Lefschetz type) Ln−(p+q) : V p,q → V n−q,n−p is an isomorphism,
(2) (Hodge type) For α ∈ V p,q, Ln+1−(p+q)α = 0, and i(p+q)α ∧ Ln−(p+q)α > 0.

This corollary, as well as the existence of Λ operator, holds forH∗(X,C), which is Hodge-Lefschetz
Theorem.

3.3. Archimedean Hodge-Lefschetz Theorem. In order to generalize to non-archimedean cases,
we would like to do Hodge theory algebraically, and the operators that are algebraic in nature are
d and L, so we would like to ask: can we recover the notion of harmonic forms from only these
operators? We have im(∆) = im(∂) ⊕ im(∂∗) = im(∂) ⊕ im(∂

∗
). But one also has {∂, ∂∗} and

{∂, ∂∗} anti-commuting with each other, so

im(∆) = im(∂∂)⊕ im(∂∂
∗
)⊕ im(∂∗∂)⊕ im(∂∗∂

∗
).

Thus we have two formulas for Hp,q,

Hp,q =
ker ∂ ∩ ker ∂

im(∂∂)
=

ker(∂∂)

im(∂) + im(∂)
.

As we have a Hodge index theorem for the sl2-action formed by L and Λ, the Hodge index theorem
will follow for any sl2-submodule. This is true for H∗,∗, im(∂∂

∗
) and im(∂∗∂). This is basically

because ω is closed, so 0 = [L, ∂] = [L, ∂] = [Λ, ∂∗] = [Λ, ∂
∗
]. On the other hand [L, ∂∗] = i∂ and

so on. Thus, im(∂∂) is a L-module (but not a Λ-module), and im(∂∗∂
∗
) is a Λ-module (but not a

L-module). The Hodge-Lefschetz Theorem goes as follows

Theorem 3.1 Hodge-Lefschetz Theorem. For p+ q ≤ n+ 1, Ln+1−p−q gives an isomorphism

im(∂∂)p,q
∼−→ im(∂∂)n+1−q,n+1−p

and Λn+1−p−q gives an isomorphism

im(∂∗∂
∗
)n−q,n−p

∼−→ im(∂∗∂
∗
)p−1,q−1.

Moreover, if α ∈ im(∂∂)p,q (resp. α ∈ im(∂∗∂
∗
)n−q,n−p), α 6= 0 and Ln+2−p−qα = 0 (resp.

Λn+2−p−qα = 0), then

ip−q(−1)(p+q−2)(p+q−3)/2

∫
βLn+1−p−q ∂∂

πi
β > 0,

(resp. ip−q(−1)(p+q−2)(p+q−3)/2

∫
βΛn+1−p−q ∂

∗∂
∗

πi
β > 0, )

for any β ∈ Ap−1,q−1 (resp. β ∈ An+1−q,n+1−p) with α = ∂∂
πi β (resp. α = ∂∗∂

∗

πi β).

Because of the discrepancy of Hodge index theorems, this gives a canonical splitting ker(d) =
im(∂∂)⊕H∗,∗ for the short exact sequence of L-modules. This illustrates that harmonic forms can
be defined if one has standard conjectures.

Corollary 3.2. The decomposition

(9) ker(d) = im(∂∂)⊕H∗,∗

gives a canonical spliting to the following exact sequence of L modules:

(10) 0→ im(∂∂)→ ker d→ H∗,∗ → 0.
10



4. Cycles and the Curvature Map

4.1. Green currents. The space of currents Dp(X) is defined as Homcont(A
p(X),C). Some ele-

mentary observations:

• A form α ∈ Ap can be thought as an element of Dn−p(X) via (α, β) =
∫
α ∧ β. Thus,

Dp(X) := Dn−p(X) is also another useful indexing (superscript usually means dimension
while subscript usually means codimension).
• A codimension p subvariety Y ↪→ X defines a current in Dp(X) via β 7→

∫
Y β.

• Combining these, given a codimension p variety Y ↪→ X and a smooth (or more generally
L1) (p− q)-form η on Y , q ≤ p, one define a current in Dp(X) by β 7→

∫
Y η(β|Y ).

The following is a general existence theorem of Green currents.

Theorem 4.1 [GS90]. Let Y ↪→ X be a codimension p subvariety. Let α ∈ Ap,p(X) be a closed
form representing the homological cycle [Y ] (i.e. the cohomology class of α is the Poincaré dual of
[Y ]). Then, there is a current g ∈ Dp−1,p−1(X) such that

(11)
∂∂

πi
g = δY − α.

Moreover, such g is unique up to addition of an element of im ∂ ⊕ im ∂.

Remark 4.1. (1) Suppose that g′ is a Green current for another α′ representing [Y ]. Then,

∂∂

πi
(g − g′) = α− α′,

which is an exact real form. This can then be solved by harmonic analysis.
(2) We can choose g to be smooth on X\|Y | and to have at worst logarithmtic singularity on

X. This roughly means that, around every point y0 ∈ Y with local coordinate x and Y cut
by {f1 = · · · = fm = 0},

g(x) = α log ρ(x) +O(1),

where ρ(x) =
∑
|fi|2. More precisely, there is a dominant morphism π : X̃ → X such that

E = π−1(Y ) is a normal crossings divisor, X̃ − E ∼−→ X − Y and there is a current g̃ on X̃
such that g is the direct image of g̃, and locally around a point of E where E is locally cut
by z1 · · · zk = 0, g̃ = α log

∑k
i=1 |zi|2 +O(1) for a smooth (p−1, p−1)-form α. For example,

around Y = (0, · · · , 0) ∈ Cn = X,

log

(
n∑
i=1

|zi|2
)(

∂∂

πi
log
∑
|zi|2

)n−1

,

would be something of log singularity. For more details, consult to [GS90].
(3) The existence part of the above Theorem 4.1 can be equivalently phrased as follows. Let

Y ↪→ X be a codimension p subvariety. Then, there is a current g ∈ Dp−1,p−1(X), smooth
on X\|Y | with at worst logarithmtic singularity on X, such that

(12) ω(Y, g) := δY −
∂∂

πi
g

is smooth on X. (Then ω(Y, g) ∈ Ap,p(X) is a closed form representing the homological
cycle [Y ].)

11



4.2. Cycles. Now one can consider the following set of pairs,

(13) Z̃i(X) =

{
(Y, g) | Y ↪→ X codim i cycle, g current for Y s.t.

∂∂

πi
g − δY is smooth

}
.

Note that if g1, g2 are Green’s currents of cycles Z1, Z2 respectively, then by Theorem 4.1 Equa-
tion 11, g1 +g2 is a Green’s current of the cycle Z1 +Z2. So Z̃i(X) is in fact a group under addition.
Now let Zi(X) be the group of codimension i cycles on X and Ci(X) ⊂ H i,i(X,C) the group of
cohomological classes of cycles in Zi(X). We have the following surjections

(14) Z̃i(X) � Zi(X) � Ci(X), (Y, g) 7→ Y 7→ Poincaré dual of [Y ].

We define Z̃i0(X) to be the kernel of the composite of the above two projections, and Z̃i1(X) to be
the kernel of the first projection. That is,

(15) Z̃i0(X) = ker
(
Z̃i(X)→ Ci(X)

)
=
{

(Y, g) ∈ Z̃i(X) | Y is cohomologically trivial.
}

and

Z̃i1(X) = ker
(
Z̃i(X)→ Zi(X)

)
=
{

(Y, g) ∈ Z̃i(X) | Y is the empty cycle.
}

=

{
(empty cycle, g) | ∂∂

π
√
−1

g is smooth and exact
}
,

(16)

where the last equality is by applying Theorem 4.1 to Y = the empty cycle. But since im(d)∩Ai,i =
im(∂∂) ∩Ai,i, we have that mapping (empty cycle, g) to g gives the isomporphism

(17) Z̃i1(X) ∼= Ai−1,i−1.

Now we identify Z̃i1(X) with Ai−1,i−1 and consider the pairing:

(18) Z̃i1(X)× Z̃n+1−i(X)→ R, (φ, (Y, g)) 7→
∫
X
φ ∧ ω(Y, g),

and let N i(X) ⊂ Z̃i1(X) be its left kernel. Observe that

(19) im(∂ + ∂) ∩Ai−1,i−1 ⊂ N i(X) ⊂ ker(∂∂) ∩Ai−1,i−1

so we have the surjection

(20)
ker(∂∂) ∩Ai−1,i−1

im(∂ + ∂) ∩Ai−1,i−1
�

ker(∂∂) ∩Ai−1,i−1

N i(X)
,

which corresponds to

(21) H i−1,i−1(X) = Hn+1−i,n+1−i(X)∨ � Cn+1−i(X)∨.

Remark 4.2. (1) We have the isomorphism

ker(∂∂) ∩Ai−1,i−1

N i(X)
∼= Cn+1−i(X)∨

because the Pairing 18 induces a perfect pairing

ker(∂∂) ∩Ai−1,i−1

N i(X)
× Cn+1−i(X)→ R.

(2) By Grothendieck’s standard conjecture Cn+1−i(X)∨ would be isomorphic to Ci−1(X) but
we do not assume it here.

12



We now define the following groups of numerical equivalence classes.

(22) Ẑi(X) = Z̃i(X)/N i(X),

(23) Ẑi0(X) = Z̃i0(X)/N i(X),

(24) Ẑi1(X) = Z̃i1(X)/N i(X),

(25) Ẑi2(X) =
ker(∂∂) ∩Ai−1,i−1

N i(X)
∼= Cn+1−i(X)∨.

Finally we define

(26) Bi(X) = Ẑi1(X)/Ẑi2(X) ∼= ∂∂(Ai−1,i−1).

Then we have short exact sequences

(27) 0→ Ẑi1(X)→ Ẑi(X)→ Zi(X)→ 0,

and

(28) 0→ Ẑi2(X)→ Ẑi1(X)→ Bi(X)→ 0.

4.3. the curvature map. Consider the map

(29) ω : Ẑi(X)→ Ai,i, [Y, g] 7→ ω(Y, g),

where ω(Y, g) is as defined in Equation 12. The map is well-defined because of the second contain-
ment in (19). We call this map the curvature map. Let Ĉi(X) be the image of the curvature map,
that is,

(30) Ĉi(X) := ω(Ẑi(X)).

Then taking cohomological class gives us a surjection

(31) Ĉi(X) � Ci(X).

(It can be seen from Theorem 4.1 that this map is indeed surjective.) Let

(32) Ĉi1(X) := ker(Ĉi(X) � Ci(X)).

Then we have a short exact sequence

(33) 0→ Ĉi1(X)→ Ĉi(X)→ Ci(X)→ 0,

which can be considered as the “smooth” dual of the exact sequence

(34) 0→ Ẑn+1−i
2 (X)→ Ẑn+1−i

1 (X)→ Bn+1−i(X)→ 0.

We also have the following diagram

(35) 0 // Ẑi1(X) //

ω1

��

Ẑi(X) //

ω
��

Zi(X) //

c

��

0

0 // Ĉi1(X) // Ĉi(X) // Ci(X) // 0

,

where ω1 is the restriction of ω and c is mapping to cohomological class. Consider the induced long
exact sequence

(36) 0→ ker(ω1)→ ker(ω)→ ker(c)→ coker(ω1)→ 0(= coker(ω)).
13



But note also that by definition Ĉ1(X)(⊂ Ai,i) is in fact contained in im(d)∩Ai,i, which is the same
as im(∂∂) ∩ Ai,i, so ω1 is in fact surjective and we have coker(ω1) = 0, and the above Sequence 36
is in fact a short exact sequnce. From the above discussions we also have

(37) kerω1 = Ẑi2(X) ∼= Cn+1−i(X)∨,

and the isomorphism is canonical. Finally if we define

(38) Ẑi(X)0 := ker(ω),

and

(39) Zi(X)0 := ker(c),

Sequence 36 becomes the following short exact sequence

(40) 0→ Cn+1−i(X)∨ → Ẑi(X)0 → Zi(X)0 → 0.

5. Admissible Cycles and Archimedean Local Pairing

Roughly speaking, for Y,Z ↪→ X subvarieties with dimZ+dimY = n−1, we would like to define

(41) 〈Y, Z〉 :=

∫
Z
gY ,

but gY is not well-defined and the above integral depends on, for example, ω(Y, gY ). We will make
the above rigorous by choosing gY to be admissible. By the Hodge-Lefchetz Theorem, the exact
sequence 28 and 33 each has a canonical splitting:

(42) Ẑi1(X) = Ẑi2(X)⊕Bi
L(X),

where

(43) Bi
L(X) = im(∂∗∂

∗
: Ai,i → Ẑi1(X)),

and

(44) Ĉi(X) = Ĉi1(X)⊕ CiL(X),

where

(45) CiL(X) = H i,i(X) ∩ Ĉi(X)

is the space of (i, i)-harmonic forms in the image of the curvature map.
Let Z∗L(X) denote the cycles with hamonic curvatures, which is also the orthogonal complement

of B∗L(X), then we have the following exact sequence:

(46) 0→ Cn+1−i(X)∨ → Z∗L(X)→ Z∗(X)→ 0,

which is split by the lifting Y 7→ (Y, gY ), where gY is chosen so that

(47)
∫
X
gY h = 0, ∀h ∈ Cn+1−i

L (X).

Such a Green’s current is called admissible, and we can now define the pairing using Equation 41
by choosing an admissible gY .

14



Part 2. Non-archimedean Local Pairing

6. Cycles and Curvature Maps

Useful references are [Fa92], [BS58], [SGA6] and [Fu98].
Let R be a dvr, K = Frac(R), and k be the residue field of R. Let X be a regular flat projective

scheme over R, an integral model of X = XK . Then we have maps

Z∗−1(X)→ Z∗(X)→ Z∗(X)→ C∗(X),

(all with Q-coefficients) where Z∗ is the usual Q-vector space formally generated by codimension
i cycles and C∗ is the space of numerical equivalence classes, and the map Z∗−1(X) → Z∗(X) is
defined by Z 7→ Z ∩ [Xk].

Definition 6.1 (Z∗0 (X), Z∗1 (X), Z∗2 (X)). Define a filtration on Z∗(X) as

Z∗0 (X) = ker(Z∗(X)→ C∗(X)),

Z∗1 (X) = ker(Z∗(X)→ Z∗(X)) (“vertical cycles”),

Z∗2 (X) = im(Z∗−1(X)→ Z∗(X)) (“movable cycles”).

Here “vertical” means cycles are supported in the special fiber, and “movable” means you can
“move out to the generic fiber.” For example, if X = P1 and X is a semistable model, then Z2 is
spanned by connected components (as opposed to Z1 being spanned by irreducible components).

Let n = dimX− 1. Then we can define Zp(X)× Zn+1−p
1 (X)→ Q by just intersecting.

Definition 6.2 (N∗(X), Ẑ∗(X)). Denote the null space of the intersection pairing as N∗(X) ⊂ Z∗1 (X)

(vertical, numerically trivial cycles). Define Ẑ∗i (X) = (Z∗i (X) +N∗(X))/N∗(X).

Remark 6.1. Note that Z∗−1(X) → Ẑ∗2 (X) induces an isomorphism C∗−1(X)
∼−→ Ẑ∗2 (X). This is

because the specialization map preserves intersection numbers, e.g. [Fu98, Corollary 20.3].

The intersection pairing descends to

Ẑp(X)× Ẑn+1−p
1 (X)→ Q.

Definition 6.3 (Curvature map). The map

Ẑp(X)
ω−→ Ẑn+1−p

1 (X)∨ =: Ĉp(X),

coming from the intersection pairing, is called the curvature map.

Remark 6.2. (1) The curvature map ω is surjective because we modded out by N∗.
(2) As movable cycles can be moved out of the special fiber, ω(Ẑ∗2 (X)) = 0. This strengthens

our analogy with Kählerian setting, where Ẑ2(X) was the space of harmonic forms (i.e.
curvature-zero forms).

Definition 6.4 (B∗(X), Ĉ∗1 (X)). We define B∗(X) := Ẑ∗1 (X)/Ẑ∗2 (X) and Ĉ∗1 (X) = Bn+1−∗(X)∨.

From the above definitions, many direct but entangled consequences can be observed.

Remark 6.3. (1) Obviously we have an exact sequence

0→ Ẑ∗2 (X)→ Ẑ∗1 (X)→ B∗(X)→ 0.

Taking the linear dual, we have

0→ Ĉn+1−∗
1 (X)→ Ĉn+1−∗(X)→ Ẑ∗2 (X)∨ → 0.
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Note however that we have Ẑ∗2 (X) ∼= C∗−1(X), and the intersection pairing restricts to a
perfect pairing C∗−1(X) × Cn+1−∗(X) → Q. Thus Ẑ∗2 (X)∨ ∼= Cn+1−∗(X) and we have a
short exact sequence

0→ Ĉ∗1 (X)→ Ĉ∗(X)→ C∗(X)→ 0.

(2) The curvature map ω : Ẑ∗(X) � Ĉ∗(X) restricts to ω1 : Ẑ∗1 (X)→ Ĉ1
∗(X), because harmonic

forms get killed by ω. In fact we have a commutative diagram

0 // Ẑ∗1 (X) //

ω1

��

Ẑ∗(X) //

ω
��

Z∗(X) //

c

��

0

0 // Ĉ∗1 (X) // Ĉ∗(X) // C∗(X) // 0

(we will call this “the usual commutative diagram”), where vertical arrows are induced from
intersection pairings.

7. Standard Conjectures and Pairing

We can now form the relevant Standard Conjectures. Let us assume that we have an ample line
bundle L on X which induces a Lefschetz operator L induced by cupping with c1(L ).

Conjecture 7.1 (Standard Conjectures for B∗(X), Zhang). For i ≤ (n+ 1)/2,
• (Lefschetz type Standard Conjecture) Ln+1−2i : Bi(X)→ Bn+1−i(X) is an isomorphism,
• (Hodge Standard Conjecture) (−1)iαLn+1−2iα > 0, if α ∈ Bi(X), α 6= 0, Ln+2−2iα = 0.

Note that the usual Grothendieck Standard Conjecture (Lefschetz type) for X insists that Ln−2i :
Ci(X) → Cn−i(X) is an isomorphism, so there is a difference of index by 1. We will usually refer
to this Standard Conjecture as the Grothendieck Standard Conjecture for C∗(X).

We record some consequences of the above Standard Conjecture.

Corollary 7.1 (Enhanced Beilinson-Bloch-type conjecture). If the (Lefschetz type) Standard Con-
jecture for B∗(X) (Conjecture 7.1) holds, then Ĉ∗1 (X) = ω(Ẑ∗0 (X)).

Proof. The Standard Conjecture implies that Bi(X)×Bn+1−i(X)→ Q is a perfect pairing, so that
kerω1 = Ẑ∗2 (X) and cokerω1 = 0. From the snake lemma applied to the usual commutative diagram,
the statement follows. �

Corollary 7.2. Assume that the (Lefschetz type) Standard Conjecture for B∗(X) (Conjecture 7.1)
and the (Lefschetz type) Grothendieck Standard Conjecture for C∗(X) hold with respect to the same
Lefschetz operator L.

(1) The sequence 0→ Ĉ∗1 (X)→ Ĉ∗(X)→ C∗(X)→ 0 splits uniquely as L-modules. We call the
above lifting of C∗(X), denoted as C∗L(X), as the space of harmonic forms (with respect to
L).

(2) (Beilinson-Bloch-type) Every cycle α ∈ Z∗(X) has an extension α̂ ∈ Ẑ∗(X) with harmonic
curvature, which is unique up to Ẑ∗2 (X). We call such α̂ an admissible cycle (with respect
to L). We denote the space of admissible cycles as Z∗L(X).

(3) The sequence 0 → Ẑ∗2 (X) → Ẑ∗1 (X) → B∗(X) → 0 splits uniquely as L-modules. We denote
the lifting of B∗(X) in Ẑ∗1 (X) as B∗L(X).

(4) Ẑ∗(X) = B∗L(X)⊕ Z∗L(X), and 0→ Ẑ∗2 (X)(∼= C∗−1(X))→ Z∗L(X)→ Z∗(X)→ 0 is exact.

Proof. All follow easily from the index discrepancy between the Standard Conjectures for B∗(X)
and C∗(X). �
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Remark 7.1. If X has a regular special fiber, then α already satisfies the necessary conditions for α̂,
so the Beilinson-Bloch type conjectures are obviously true.

For a cycle α ∈ Z∗(X), we can even find a unique extension α̂ ∈ Ẑ∗(X) with harmonic curvature
by asserting an additional condition: that α̂ − α ∈ Ẑ∗1 (X) is annihilated by all harmonic forms in
Cn−∗L (X), where α is the Zariski closure of α. We call such α̂ a normalized (or rigidified) admissible
cycle. Here one can think of α̂− α as a Green function, and the normalizing condition is requiring∫
g = 0.
From this we can finally define a non-archimedean local height pairing.

Definition 7.1 (Non-archimedean local height pairing). Assuming the Standard Conjectures for
B∗(X) and C∗(X), given Y ∈ Zp(X), Z ∈ Zn+1−p(X) with |Y | ∩ |Z| = ∅, we define (Y, Z) :=

Ŷ · Ẑ = deg(Ŷ |
Ẑ

) = deg(Ẑ|
Ŷ

).

Remark 7.2. One can also think of the local intersection pairing as (Y, Z) = deg(∆̂|Y×Z), where ∆̂
is the normalized admissible cycle extension of the diagonal ∆ ⊂ X × X with respect to (L ,L )
(let’s assume X×RX is regular; otherwise we apply alterations beforehand) and Y × Z is the Zariski
closure of Y ×K Z in X ×R X. Or, we can take g = ∆̂ − ∆ to be “the” Green form, and then we
have (Y, Z) = Y · Z + deg(g|Y×Z).

What can be shown?

Theorem 7.1. The Standard Conjectures hold for divisors (codimension 1).

Proof. The Lefschetz type Standard Conjecture holds for C∗(X); over a characteristic 0 field this is
Lefschetz (1,1) theorem. Over a characteristic p > 0 field, the Standard Conjectures for surfaces are
shown by Hartshorne. The general case for divisors then follows by a simple induction, by pulling
back to div(s) for a global section s of high power of L (this does not lose information because
Picard group of X is the same as the formal Picard group of the formal completion of X along
div(s) if dimX ≥ 3; see Grothendieck).

Now we prove the Hodge standard conjecture for B∗(X). Let F1, · · · , Fr be irreducible com-
ponents of Xk. Then B1(X) =

∑
QFi/Q[Xk]. Now let α =

∑
miFi. We need to show that

Ln+2−2α = 0 and α 6= 0 implies αLn+1−2α < 0. But note that

αLn−1α =
∑
i,j

mimjFiLn−1Fj =
1

2

∑
i,j

(m2
i +m2

j )FiLn−1Fj −
∑
i,j

(mi −mj)
2FiLn−1Fj

 .

The first summand can be rewritten as
∑

im
2
iFiLn−1[Xk], which is zero. Thus, αLn−1α ≤ 0, and

it is zero if and only if m1 = m2 = · · · = mr (Xk is connected, so one can go from one irreducible
component to another by passing through intersecting irreducible components). The condition
Lnα = 0 implies that mi’s should all be zero if αLn−1α = 0.

Now we prove that the Lefschetz type Standard Conjecture for B∗(X) follows from the Hodge
Standard Conjecture for B∗(X). Note that the Hodge Standard Conjecture implies that Ln−1 :
B1(X)→ Bn(X) is injective. To show that this is surjective, it is sufficient to show that dimB1(X) ≥
dimBn(X). Thus it is sufficient to show that ω1 : B1(X) → Bn(X)∨ = C1(X) is surjective (i.e.
Beilinson-Bloch). Now the snake lemma applied to the usual commutative diagram gives an exact
sequence

0→ kerω1 → kerω → ker c→ cokerω1 → 0,

so it is sufficient to show that kerω → ker c is surjective. This (numerically trivial line bundles have
flat metric) is proved in [YZ17, Appendix A.4]. A general strategy is as follows.

• By push-pull, if there is a regular flat Y/R such that there is a generically finite f : X→ Y
then Beilinson-Bloch for Y is equivalent to Beilinson-Bloch for X.
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• A multiple of numerically trivial line bundle is algebraically trivial, so by the above point
we can assume that we started with an algebraically trivial line bundle.
• An algebraically trivial line bundle comes as a pullback of an algebraically trivial line bundle
on the Albanese variety Alb(X) via the Abel-Jacobi map X → Alb(X).
• Beilinson-Bloch for line bundles is known to be true for abelian schemes (e.g. [Zh95]).

�

A sample consequence is the following. Choose an ample line bundle L on X. Consider

NS(X)0 = {M ∈ NS(X)Q | c1(M)c1(L )n−1 = 0}.

Then, for anyM ∈ NS(X)0, there is an extension M̂ ∈ Pic(X)Q such that the functional Ẑ1
1 (X)→ Q,

sending Z 7→ Z · c1(M̂)c1(L )n−1, is zero, and this M̂ is unique up to an addition of a multiple of
[Xk].
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Part 3. Global Pairing

8. Arithmetic Intersection Theory

Consider an arithmetic scheme π : X→ SpecOK for a number field K, which means that X is a
regular projective SpecOK-model of X = XK a projective smooth variety, equipped with an ample
line bundle L and a metric ‖ · ‖ on X∞ =

∐
v|∞Xv, such that c1(L , ‖ · ‖v) gives a Kähler form

on Xv. Here, “ample” means it is “relatively ample” (i.e. c1(L , ‖ · ‖v) > 0), as well as horizontally
ample, which means for any [L : K] < ∞ and x ∈ X(OL), x∗L , a metrized line bundle on OL,
satisfies

deg x∗L = c1(L )x(SpecOL) = [L : K]hL (x) > 0.

Under this setting, we review the aritmetic intersection theory by Gillet-Soulé [GS90]. Let

Z̃i(X) =

{
(Z, g) | Z ∈ Zi(X), g ∈ D̃i−1,i−1(X∞),

∂∂

πi
g = δZ∞(C) − ω for a smooth form ω

}
,

(“cohomologously approximating δ with a smooth form”), the space of arithmetic cycles, where
D̃ = D/(im ∂ + im ∂).

Remark 8.1. Unless otherwise noted, every space is defined with real coefficients (not with Q or
Z-coefficients).

Among this, we can define principal cycles, those in the image of the map⊕
Y ↪→X codim i integral subvar

K(Y )× → Z̃i(X),

defined by ∑
(Yi, fi) 7→

∑
(div(fi),− log |fi|δYi).

The quotient is denoted as ĈH
∗
(X) and is called the arithmetic Chow group. These enjoy nice

functoriality property as expected. In the arithmetic intersection theory the role of Ẑ∗ used before
will be played by the arithmetic Chow groups.

Example 8.1. Consider the case of X = SpecOK . Then, we have an exact sequence

0→ ⊕pair of conjugate R placesR→ Z̃1(X)→ Z1(X)→ 0.

This makes sense in particular for cycles with Z-coefficients. Modding out by principal divisors, we
get

0→ Rr1+r2

log(O×K)
→ ĈH

1
(X)Z → Cl(K)→ 0.

Thus, the arithmetic Chow group with Z-coefficients is a combination of regulator and algebraic
parts. Of course, ĈH

1
(SpecOK)R ∼= R.

One can define the degree map deg : ĈH
1
(SpecOK) → R so that, for example for OK = Z,

(log p) deg[∞] = deg[p] for a rational finite prime p, so that ĈH
1
(SpecZ) ∼= R. More gen-

erally deg(Z, g) = log #Z + 1
2

∫
(SpecOK)∞

g for (Z, g) ∈ ĈH
1
(SpecOK), where #(

∑
ni[pi]) =∑

ni#(OK/pi). From this, we can define the degree map for a more general arithmetic scheme
X by taking the pushforward, deg : ĈH

n+1
(X) → ĈH

1
(SpecOK)

∼−→ R. In fact, this is an isomor-
phism (cf. [GS94, Section 2]).

One could define a natural intersection pairing ĈH
p
(X)⊗ ĈH

q
(X)→ ĈH

p+q
(X). There is really

one definition one could imagine for the intersection pairing (product on each entry), but a nontrivial
task is to show that it is a well-defined thing (cf. [So92, III.2]).
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One has an identification ĈH
1
(X) ∼= P̂ic(X), the space of hermitian line bundles. Let L be an

arithmetically ample hermitian line bundle, in a sense of [Zh92]. This defines a Lefschetz operator
L on ĈH

∗
’s.

Conjecture 8.1 (Gillet-Soulé Standard Conjectures; cf. [GS94]). For i ≤ (n+ 1)/2, the following
hold.

• (Lefschetz type Standard Conjecture) Ln+1−2i : ĈH
i
(X)

∼−→ ĈH
n+1−2i

(X).
• (Hodge Standard Conjecture) On ĈH

i
(X)∩kerLn+2−2i, the pairing (α, β) 7→ (−1)iαLn+1−2iβ

is positive definite.

We study a similar refinement of the Standard Conjectures by introducing a filtration in a similar
manner as before.

Definition 8.1 (ĈH
∗
1(X), ĈH

∗
2(X)). We define ĈH

∗
1(X) = ker(ĈH

∗
(X) → CH∗(X)) (“vertical cy-

cles”) and ĈH
∗
2(X) = ĈH

∗−1
(X)π∗ĈH

1
(SpecOK) (“vertical movable cycles”).

Remark 8.2. As before, we have an isomorphism ĈH
∗
2(X) ∼= C∗−1(X).

Definition 8.2 (B∗(X), Ĉ∗(X), Ĉ∗1 (X)). We define as follows.

B∗(X) = ĈH
∗
1(X)/ĈH

∗
2(X),

Ĉ∗(X) = ĈH
n+1−∗
1 (X)∨,

Ĉ∗1 (X) = Bn+1−∗(X)∨.

Thus, the dual of the exact sequence

0→ ĈH
∗
2(X)→ ĈH

∗
1(X)→ B∗(X)→ 0,

is
0→ Ĉn+1−∗

1 (X)→ Ĉn+1−∗(X)→ C∗−1(X)∨ ∼= Cn+1−∗(X)→ 0.

Also, the intersection pairing ĈH
∗
(X)× ĈH

n+1−∗
(X)→ R gives the curvature map

ω : ĈH
∗
(X)→ Ĉ∗(X),

which induces a natural transformation between exact sequences,

0 // ĈH
∗
1(X) //

ω1

��

ĈH
∗
(X) //

ω
��

CH∗(X) //

c

��

0

0 // Ĉ∗1 (X) // Ĉ∗(X) // C∗(X) // 0,

where all vertical arrows are induced from intersection pairings.

9. Global and Local Standard Conjectures

We would like to define the notion of harmonic forms, admissible cycles, and eventually global
height pairing, assuming some variants of Standard Conjectures. One could imagine that one would
obviously need the Standard Conjecture for B∗(X). But in fact the global version of Standard
Conjectures for B∗(X) is a consequence of the local Standard Conjectures for B∗(X).

Proposition 9.1. Assume the Local Standard Conjectures for B∗(X) (Conjecture 7.1). Then, for
i < (n+ 1)/2, the following (“Global Standard Conjectures for B∗(X)”) hold.

• (Lefschetz type Standard Conjecture) Ln+1−2i : Bi(X)→ Bn+1−i(X) is an isomorphism.
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• (Hodge Standard Conjecture) On Bi(X)∩kerLn+2−2i, the bilinear pairing (x, y) 7→ (−1)ixLn+1−2iy
is positive definite.

Proof. One only needs to realize that the natural map
⊕

v B
∗(Xv)→ B∗(X) is a surjective map (be-

cause B∗(X) only deals with homologically trivial cycles, so only finitely many places are involved).
Moreover, by using the pullback of the same ample line bundle for every place, the intersection pair-
ings as well as the Lefschetz operators are compatible through this map. Thus, the Hodge Standard
Conjecture as well as the surjectivity part of the Lefschetz type Standard Conjecture follow. The
injectivity is then a consequence of the Hodge Standard Conjecture. �

We can deduce similar conclusion, given the Global Standard Conjectures for B∗(X), by following
the exact same argument through the snake lemma applied to the “usual commutative diagram”.

Proposition 9.2 (Beilinson-Bloch type). Assume the Local Standard Conjectures for B∗(X) (Con-
jecture 7.1). Then, the intersection pairing B∗(X) ⊗ Bn+1−∗(X) → R is perfect. Equivalently,
0→ C∗−1(X)→ ĈH

∗
1(X)→ Ĉ∗1 (X)→ 0 is exact. Equivalently, 0→ C∗−1(X)→ kerω → ker c→ 0

is exact.

We denote kerω, ker c as ĈH
∗
(X)0,CH∗(X)0, respectively.

Proposition 9.3 (Harmonic Forms Are Well-Defined). Assume the Local Standard Conjectures
for B∗(X) (Conjecture 7.1) and the usual Grothendieck Standard Conjecture for C∗(X). Then, as
L-modules, the following exact sequences are uniquely and canonically split.

0→ ĈH
∗
2(X) ∼= C∗−1(X)→ ĈH

∗
1(X)→ B∗(X)→ 0,

0→ Ĉ∗1 (X)→ Ĉ∗(X)→ C∗(X)→ 0.

Denote the canonical liftings of B∗(X) and C∗(X) as B∗L(X) and C∗L(X), respectively. We call
C∗L(X) the space of harmonic forms. Also, we call ω−1(C∗L(X)) =: CH∗L(X) the space of admissible
cycles. We then have an orthogonal decomposition ĈH

∗
(X) = B∗L(X) ⊕ CH∗L(X) and an exact

sequence 0→ ĈH
∗
2(X) ∼= C∗−1(X)→ CH∗L(X)→ CH∗(X)→ 0.

Now the remaining task is to define the normalized admissible cycles as before. More pre-
cisely, we want the middle row of the following commutative diagram with exact rows and columns
(consequence of Proposition 9.2) to be split,

0

��

0

��

0

��
0 // ĈH

∗
2(X) //

��

ĈH
∗
(X)0 //

��

CH∗(X)0 //

��

0

0 // ĈH
∗
1(X) //

ω1

��

ĈH
∗
(X) //

ω
��

CH∗(X) //

c

��

0 (“The usual commutative diagram”)

0 // Ĉ∗1 (X) //

��

Ĉ∗(X) //

��

C∗(X) //

��

0

0 0 0
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What Proposition 9.3 does is that we can reduce the above diagram to the following easier diagram
with again exact rows and columns (easy to see by diagram chase).

0

��

0

��
0 // ĈH

∗
2(X) // ĈH

∗
(X)0 //

��

CH∗(X)0 //

��

0

0 // ĈH
∗
2(X) // CH∗L(X) //

ω

��

CH∗(X) //

c

��

0 (“The reduced usual commutative diagram”)

C∗L(X)

��

C∗(X)

��
0 0

To proceed further, we need some more assumptions coming from global versions of Standard
Conjectures.

Proposition 9.4 (Standard Conjectures for CH∗L(X)). Assume the Local Standard Conjectures for
B∗(X) (Conjecture 7.1) and the usual Grothendieck Standard Conjecture for C∗(X). Then, the
Gillet-Soulé Standard Conjecture (Conjecture 8.1) is equivalent to the following Standard Conjec-
tures for CH∗L(X): for i ≤ (n+ 1)/2,

• (Lefschetz-type Standard Conjecture) Ln+1−2i : CHi
L(X)→ CHn+1−i

L (X) is an isomorphism,
• (Hodge Standard Conjecture) if x ∈ CHi

L(X) ∩ kerLn+2−2i, (−1)ixLn+1−2ix > 0 unless
x = 0.

This is just an immediate consequence of the canonical decomposition ĈH
∗
(X) = B∗L(X) ⊕

CH∗L(X), Proposition 9.1.

Conjecture 9.1 (Standard Conjectures for CH∗(X)0, Beilinson; cf. [Be87, §5]). For i ≤ (n+ 1)/2,
• (Lefschetz-type Standard Conjecture) Ln+1−2i : CHi(X)0 → CHn+1−i(X)0 is an isomor-
phism,
• (Hodge Standard Conjecture) for α ∈ CHi(X)0 ∩ kerLn+2−2i, (−1)iαLn+1−2iα > 0 unless
α 6= 0.

The Lefschetz-type Standard Conjecture for CH∗(X)0 implies that 0 → ĈH
∗
2(X) ∼= C∗−1(X) →

ĈH
∗
(X)0 → CH∗(X)0 → 0 is uniquely and canonically split as L-modules. Let CH∗L(X)0 denote the

canonical lifting of CH∗(X)0 inside ĈH
∗
(X)0.

The Lefschetz-type Standard Conjecture for CH∗L(X) gives the sl2-action on CH∗L(X); namely, we
can define Λ, the adjoint of L, which is the unique operator of degree −1 making [L,Λ] = n+1−2i.
Define E∗L(X) = sl2 · ĈH

∗
2(X) ⊂ CH∗L(X).

Remark 9.1. It may seem that E∗L(X) is something only related to special fibers. However, it is not,
as Λ “spreads things out”, i.e. sends something supported in a special fiber to something larger.
This is analogous to the fact in the Kähler geometry case that Λ sends ∂∂-closed forms to nonclosed
forms.

Now we can state the full decomposition which enables us to define normalized admissible cycles
(or harmonic cycles).
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Theorem 9.1 (Harmonic Cycles Are Well-Defined). Assume the following conjectures.
• Grothendieck Standard Conjectures for C∗(X),
• Local Standard Conjectures for B∗(X) (Conjecture 7.1),
• Gillet-Soulé Standard Conjectures (Conjecture 8.1),
• Standard Conjectures for CH∗(X)0 (Conjecture 9.1).

Then, we have the following consequences.
(1) We have a direct sum of R[Λ,L]-modules

ĈH
∗
(X) = B∗L(X)⊕ CH∗L(X)0 ⊕ E∗L(X).

(2) E∗L(X) is the unique R[Λ,L]-submodule of ĈH
∗
(X) which fits into the exact sequence of L-

modules
0→ ĈH

∗
2(X)→ E∗L(X)

ω−→ CiL(X)→ 0.

(3) The above exact sequence is split as L-modules.

Proof. From the reduced usual commutative diagram, (2) is equivalent to (1). Also, (2) will imply
(3) because ĈH

∗
2(X) ∼= C∗−1(X) while C∗L(X) ∼= C∗(X), thereby having an index discrepancy for

Leschetz operators. As the three components of (1) are orthogonal to each other, we only need to
show that there is nothing missing.

This is achieved by dimension count, which can be done as follows. Let C∗(X)0 := ker Λ (Λ of
C∗(X), note that the exact sequence of (2) is not an exact sequence of sl2-modules!). Then by the
formalism of Hodge theory, C∗(X) is L-spanned from C∗(X)0. We define α : Ci−1(X) → EiL(X)
to be the natural embedding. As this is an L-module homomorphism, E∗L(X) must be L-spanned
from Λjα(Ci−1(X)0), j ≥ 0. Then, everything will follow if we prove that Λα(Ci(X)0) ⊂ EiL(X)
are all primitive (i.e. in ker Λ), because if so we know that the primitive elements of EiL(X) are
precisely (α(Ci−1(X)0)∩ker Λ)⊕Λα(Ci(X)0). We know Ln+1−2iCi(X)0 = 0 (primitivity), and L’s
are all the same for all modules involved, so in particular Ln+1−2iα(Ci(X)0) = 0. As the Lefschetz
isomorphism for α(Ci(X)0) is Ln−1−2i (index difference is 2), this means that although α(Ci(X)0)
is not necessarily primitive, at least Λα(Ci(X)0) is always primitive. This is precisely what we
wanted. �

The above proof showed more, that the canonical L-module lift of CiL(X) inside CH∗L(X)0 is in
fact R[L]ΛαĈH

∗
2(X)0, which we denote by F ∗L(X). This is the space of harmonic cycles.

Definition 9.1 (Global height pairing). Assuming all the Standard Conjectures assumed in Theorem
9.1, for Y ∈ Zp(X), Z ∈ Zn+1−p(X) with |Y | ∩ |Z| = ∅, we define (Y,Z) := Ŷ · Ẑ, where Ŷ , Ẑ are
Y, Z seen as elements of C∗(X) ∼= C∗L(X) ∼= F ∗L(X), and the dot product is the intersection pairing
of arithmetic Chow cycles.

As before, we would like to know if these things can be turned into reality for divisors. This is
not quite the case, but the two global Standard Conjectures reduce to the same problem.

Proposition 9.5. For divisors, the Hodge Standard Conjecture à la Gillet-Soulé holds, and the two
global Lefschetz type Standard Conjectures (Gillet-Soulé and Beilinson) are equivalent to that the
canonical map CHn(X)0 → Alb(X)(K) is injective, where Alb(X) is the Albanese variety of X.

We denote the kernel of the map CHn(X)0 → Alb(X)(K) as CHn(X)00.

Proof. For the Hodge Standard Conjecture, we note that the orthogonal complement of the span of
L , the once-and-all chosen arithmetically ample hermitian line bundle, inside CH1

L(X) is identified
with Pic0(X), and the bilinear pairing restricts to the Néron-Tate height pairing with respect
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to the polarization c1(L ), which is nondegenerate. Thus we only need to show that 〈L ,L 〉 =
−deg(LLn−1L ) 6= 0, and it is a standard calculation that it is equal to c1(L )n+1 6= 0.

That the Lefschetz type Standard Conjecture of Beilinson is equivalent to CHn(X)00 = 0 is easy.
The Hodge Standard Conjecture of Gillet-Soulé implies that CHn

L(X)→ CH1
L(X)∨ is surjective. As

the intersection pairings on C∗(X) and ĈH
∗
2(X) ∼= C∗−1(X) are nondegenerate, the reduced usual

commutative diagram shows that the kernel of the pairing on CHn
L(X) comes precisely from that of

CHn(X)0, which is CHn(X)00. �

Example 9.1. Let X = C1 × C2, a product of two curves. For p1, p2 ∈ C1(K), q1, q2 ∈ C2(K), the
two global Standard Conjectures for divisors say that (p1, q1)−(p1, q2)−(p2, q1)+(p2, q2) is a divisor
of some rational function. Is it believable to you? Exercise: persuade yourself that this is true.
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Part 4. Homological Pairing

10. Tate Cycles and Homological Pairing

In a function field setting, we have no archimedean factor involved, and we can try some tools
that are only available in this setting, e.g. Deligne’s theory of weights. Let K be a global function
field k(B) of a smooth proper curve B/k with k a finite field of characteristic p. Let X be a smooth
proper variety over K with a regular flat projective model π : X → B (use alteration if not). We
once and for all choose an ample line bundle L on X.

Remark 10.1. In this theory we will use Q`-coefficients (and `-adic étale cohomology), not Z,Q or
R-coefficients, for ` 6= p an auxiliary prime, unless otherwise noted.

A moral reason why we can use Tate cycles is because of the Tate conjecture, which asserts that

c` : CHi(X)⊗Q` → H2i(Xk,Q`(i))
Gal(k/k),

is an isomorphism. The space on the RHS of the Tate conjecture is called the space of (generalized)
Tate cycles, denoted as TCi(X). This will play the role of Ẑ∗(X) and ĈH

∗
(X) in the function field

setting. We define all other players appearing in the “usual commutative diagram” from TCi(X).

Definition 10.1 (TC∗1(X),TC∗(X), C∗(X), C∗1 (X), C∗(X)). We define the space of generalized
Tate cycles for X, TC∗(X), as

TCi(X) := im(TCi(X)→ lim
U

TCi(XU )),

where the limit runs over all Zariski open subsets of B. Define TC∗1(X) := ker(TC∗(X)→ TC∗(X)).
The spaces of cohomologically equivalent classes are defined as follows; below, η is the generic

point of B, and η is a geometric generic point.

Ci(X) := im(TCi(X)→ H0(Bk, R
2iπ∗Q`(i))),

Ci(X) = im(Ci(X)→ H0(η,R2iπ∗Q`(i)) = H2i(Xη,Q`(i))
Gal(K/K)),

C∗1 (X) = ker(C∗(X)→ C∗(X)).

The curvature map ω : TCi(X) → Ci(X) is immediately from the definitions surjective. We
present some identifications which will suggest why we have defined things in this way.

Proposition 10.1. (1) The cup product of cohomology classes induces a nondegenerate pairing
TCi(X)⊗ TCn+1−i(X)→ Q`.

(2) For an affine open subscheme U ⊂ B, if we denote Z = B − U the corresponding closed
subscheme, there is an exact sequence

0→ H2i
XZ

k

(Xk,Q`(i))
Gal(k/k) → TCi(X)→ TCi(XU )→ 0,

where the subscript for H means local cohomology.
(3) TCi

1(X) is the span of im(H2i
XZ

k

(Xk,Q`(i))
Gal(k/k) → TCi(X)) inside TCi(X), running over

affine open subschemes U ⊂ B (Z = B − U).
(4) For an affine open subscheme U ⊂ B, there is a surjective natural map TCi(XU )→ Ci(X).
(5) Ci(X) ∼= TCn+1−i

1 (X)∨, and under this identification, ω is the natural map induced from the
pairing on TC∗(X).
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(6) We have the “usual commutative diagram”

0 // TC∗1(X) //

ω1

��

TC∗(X) //

ω

��

TC∗(X) //

c

��

0

0 // C∗1 (X) // C∗(X) // C∗(X) // 0

Remark 10.2. Note that the local cohomologies appearing in the above Proposition should be con-
centrated at points of bad reduction. Indeed we can take a section to a local system away from
those points.

Proof. That the cup product induces a perfect pairing is the well-known Poincaré duality for étale
cohomology (over an algebraically closed field). For (2), we note there is a local cohomology exact
sequence

· · · → H2i
XZ

k

(Xk,Q`(i))→ H2i(Xk,Q`(i))→ H2i(XUk
,Q`(i))→ H2i+1

XZ
k

(Xk,Q`(i))→ · · · .

Now H2i(Xk,Q`(i)) and H2i(XUk
,Q`(i)) is pure of weight 0 whereas H2i+1

XZ
k

(Xk,Q`(i))→ is of weight

> 0. Thus (2) follows after taking Gal(k/k) invariants. (3) is then an immediate corollary of (2).
For (4), we note that the Leray spectral sequence yields an exact sequence

0→ H1(Uk, R
2i−1π∗Q`(i))→ H2i(XUk

,Q`(i))→ H0(Uk, R
2iπ∗Q`(i))→ 0.

The third term is identified with H2i(XK ,Q`(i))
π1,ét(Uk,η). Taking Gal(k/k)-invariants, the surjec-

tive map in the exact sequence precisely becomes TCi(XU )→ Ci(X) (the basepoint of étale π1 was
the geometric generic point!).

For (5), a general fact about local cohomology is that, for any s ∈ B(k), H2i
Xs

(Xk,Q`(i)) ×
H2(n+1−i)(Xs,Q`(n + 1 − i)) → Q` is perfect. Thus, by (3), the kernel of the map TCi(X) →
TCn+1−i

1 (X)∨ is the same as the kernel of the map TCi(X) →
⊕

s∈B(k)H
2i(Xs,Q`(i)). The maps

TCi(X) → H2i(Xs,Q`(i)) all factor through TCi(X) → H0(Bk, R
2iπ∗Q`(i)) → H2i(Xs,Q`(i)), so

the kernel of the map TCi(X) → TCn+1−i
1 (X)∨ is then identified with the kernel of TCi(X) →

H0(Bk, R
2iπ∗Q`(i)). As TCi(X)→ TCn+1−i

1 (X)∨ is surjective, the result follows. That there is the
usual commutative diagram is immediate. �

A surprising result in a function field setting is that the analogue for the Beilinson-Bloch conjec-
ture always holds.

Theorem 10.1 (Beilinson-Bloch type). The usual comutative diagram has surjective veritcal ar-
rows. Thus, we have an exact sequence

0→ kerω1 → kerω → ker c→ 0.

We denote these kernels as TC∗2(X),TC∗(X)0,TC∗(X)0, respectively.

Proof. What we have to prove is that ω1 is surjective. The same argument as the proof of Proposition
10.1(3), we see that Ci1(X) is spanned by the image of Tate cycles inside H0

s (Bk, R
2iπ∗Q`(i)), for

s ∈ B(k). Note that the formal completion of Bk along s, which we denote as ŝ, is strictly henselian,
so there is no higher cohomology of the space. Thus the surjectivity of ω1 will follow from the middle
exactness of

H2i
Xs

(Xk,Q`(i))
Gal(k/k) → H2i(Xs,Q`(i))

Gal(k/k) → H2i(XK ,Q`(i))
Gal(k/k),

for all s ∈ B(k). The local cohomology long exact sequence coming from Xs ⊂ Xŝ gives an exact
sequence

· · · → H2i
Xs

(Xŝ,Q`(i))
Gal(k/k) → H2i(Xs,Q`(i))

Gal(k/k) → H2i(Xηŝ ,Q`(i))
Gal(k/k) → · · · ,
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where ηŝ is the generic point of ŝ. As we have observed that ŝ has no higher cohomology, the
Theorem will follow from the injectivity of H2i(Xηŝ ,Q`(i))

Gal(k/k) → H2i(XK ,Q`(i))
Gal(k/k). The

kernel of this map is H1(ηŝ, H
2i−1(XK ,Q`(i)))

Gal(k/k), which picks out only weight zero part of
H1(ηŝ, H

2i−1(XK ,Q`(i))), but this is of weight ≥ 1. �

Another consequence is the following.

Proposition 10.2. As before, define B∗(X) = TC∗1(X)/TC∗2(X). Then, B∗(X) = C∗1 (X) ∼=
Cn+1−∗

1 (X)∨. Thus, B∗(X)⊗Bn+1−∗(X)→ Q` is perfect.

Proof. From the usual commutative diagram

0

��

0

��

0

��
0 // TC∗2(X) //

��

TC∗(X)0 //

��

TC∗(X)0 //

��

0

0 // TC∗1(X) //

ω1

��

TC∗(X) //

ω

��

TC∗(X) //

c

��

0

0 // C∗1 (X) //

��

C∗(X) //

��

C∗(X) //

��

0

0 0 0

we know that C∗1 (X) ∼= B∗(X). Now we also know TC∗1(X) = Cn+1−∗(X)∨, and the natural map
TC∗1(X)→ C∗(X) is self-dual under this duality. The self-duality of B∗(X) then follows. �

Remark 10.3. Another consequence is that, by taking the dual of the exact sequence

0→ TC∗2(X)→ TC∗1(X)→ C∗(X)→ C∗(X)→ 0,

one has TC∗2(X) ∼= Cn+1−∗(X)∨.

What can we say from Deligne’s Weil I, II about Lefschetz conjectures in this setting? We have
the Hard Lefschetz for smooth proper varieties. To be more precise, we know the following.

• The Hard Lefschetz holds for R2iπU,∗Q`(i) with center of symmetry n
2 , for any U over which

π is smooth.
• This implies that Ci(X) satisfies the Hard Lefschetz with center of symmetry n

2 .
• Note that TCi(X)0 = H1(Bk, jU,∗j

∗
UR

2i−1π∗Q`(i))
Gal(k/k), for again U ⊂ B any open subset

over which π is smooth. From this we can see that the Hard Lefschetz holds for TCi(X)0

with center of symmetry n+1
2 .

• As TC∗2(X) ∼= Cn+1−∗(X)∨, TC∗2(X) satisfies the Hard Lefschetz with center of symmetry
n
2 + 1.

Thus, the top exact row and the rightmost vertical column of the usual commutative diagram
uniquely split as Q`[L]-modules. This shows that the intersection pairing on TC∗(X)0 gives a
perfect pairing on TC∗(X). Let TC∗L(X)0 be the canonical lifting of TC∗(X)0 inside TC∗(X)0.

11. Hard Lefschetz Conjectures and Harmonic Cycles

To produce a fully analogous situation, we need a canonical splitting of the leftmost column
and/or the bottom row of the usual commutative diagram. We have the Hard Lefschetz for three
of the four corners of the diagram, so what we need is the Hard Lefschetz for B∗(X) = C∗1 (X).
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Conjecture 11.1 (Hard Lefschetz for B∗(X)). For i ≤ (n + 1)/2, Ln+1−2i : Bi(X) → Bn+1−i(X)
is an isomorphism.

Remark 11.1. Because of our choice of coefficient, Q`, it is not clear what would “positivity” mean
in this setting. Therefore there is no analogue for the Hodge Standard Conjectures.

As usual, we get a full decomposition when we assume the above conjecture.

Theorem 11.1. Assume the Hard Lefschetz for B∗(X), Conjecture 11.1. Then, the exact sequences

0→ TC∗2(X)→ TC∗1(X)→ B∗(X)→ 0,

0→ B∗(X)→ C∗(X)→ C∗(X)→ 0,

of Q`[L]-modules are uniquely split.

Denote the canonical liftings of TC∗1(X) → B∗(X) and C∗(X) → C∗(X) as B∗L(X) and C∗L(X),
respectively. By analogy we can call C∗L(X) as the space of harmonic (curvature) forms.

Similarly as before, note that the Hard Lefschetz for B∗(X) implies that TC∗(X) = B∗L(X) ⊕
TC∗L(X)0 ⊕ TC∗2(X) ⊕ C∗L(X) satisfies the Hard Lefschetz with center of symmetry n+1

2 . Indeed,
both B∗L(X) ∼= B∗(X) and TC∗L(X)0 ∼= TC∗(X)0 already enjoy the Hard Lefschetz with center of
symmetry n+1

2 , and the remaining piece is TC∗2(X)⊕ C∗L(X) ∼= C∗−1(X)⊕ C∗(X), so that

Ln+1−2i : Ci−1(X)⊕ Ci(X)→ Cn−i(X)⊕ Cn+1−i(X) ∼= Ci(X)⊕ Ci−1(X),

is an isomorphism by the Hard Lefschetz for C∗(X). Thus, one can construct Λ as an appropriate
adjoint of L on TC∗(X).

Then, define E∗L(X) = sl2 · TC∗2(X). Due to the exactly same reasoning as in the case of global
pairing, E∗L(X) is the Q`[L]-orthogonal complement of B∗L(X) ⊕ TC∗L(X)0. Equivalently, it is the
minimal Q`[L,Λ]-submodule of TC∗(X) that fits into an exact sequence of Q`[L]-modules

0→ TC∗2(X)→ E∗L(X)→ C∗L(X)→ 0.

Thus, one has a canonical decomposition of TC∗(X) into Q`[L,Λ]-modules as

TC∗(X) = B∗L(X)⊕ TC∗L(X)0 ⊕ E∗L(X).

As before, we can then define the canonical lifting of E∗L(X)→ C∗L(X), the space of harmonic cycles,
as

F ∗L(X) := Q`[L](Λ(TC∗2(X)0)),

where Λ in the above expression is the Λ of TC∗(X), and TC∗2(X)0 is the space of primitive classes in
TC∗2(X), i.e. ker Λ for the Λ of Cn+1−∗(X)∨ (which is again incompatible with the Λ of TC∗(X)!).

12. Interlude: Perverse Sheaves and Pairing (Lecture by Weizhe Zheng)

We hope to see that seeing our cohomology groups as (perverse) sheaves on the base curve helps
us understand what is going on. We keep the notations as in the previous section.

Many things simplify as we are working over a curve. For example, a constructible sheaf F ∈
Shvcons(B,Q`) is a collection of the following data.

• U ⊂ B a dense open subset,
• Fη, a Q`-vector space, equipped with an action by π1,ét(U) (a quotient of Gal(η/η)), which
corresponds to the stalk at the geometric generic point η,
• Fs for each s ∈ B−U , equipped with an action by Gal(s/s), which corresponds to the stalk
at j,
• and specialization maps sps : Fs → F

I(s)
η , equivariant with respect to group actions on both

sides (here I(s) is the inertia group).
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We want to consider the derived category of constructible sheaves, and specifically consider Rπ∗Q`.
As we started with a regular proper model, the Verdier duality shows that Rπ∗Q` is Verdier-dual
to itself, up to twist and shift.

On the other hand, constructible sheaves, namely complexes of constructible sheaves concentrated
in degree 0, are not preserved by the Verdier duality, even after shifts. To deal with this problem
one considers the category of perverse sheaves Perv(B,Q`) (we only consider middle perversity
throughout the lecture). A general definition of perverse sheaves involves conditions on the dimen-
sion of supports, but this greatly simplifies on a curve and we have a simpler description in the
flavor of the above description of constructible sheaves; namely, a complex of constructible sheaves
L ∈ Db

cons(B,Q`) is a perverse sheaf if the following holds.
• L is supported in degrees [−1, 0].
• dim SuppH0(L) ≤ 0.
• For F = H−1(L), the specialization maps sps : Fs → F

I(s)
η are injective.

Example 12.1. (1) A constructible `-adic sheaf F on B with dim Supp(F ) = 0 is perverse.
(2) For a lisse `-adic sheaf L on j : U ↪→ B, j!L [1], j∗L [1], Rj∗L [1] are all perverse.

The category of perverse sheaves is abelian, being the heart of a t-structure.

Remark 12.1. You have to have different intuition for the category of perverse sheaves: let j : U ↪→ B
and i : B\U → B. Then in the usual category of sheaves

0→ j!L → j∗L → i∗i
∗j∗L → 0,

is exact. On the other hand, i∗i∗j∗L , being a skyscraper sheaf, is perverse, and so are j!L [1] and
j∗L [1]. Thus

0→ i∗i
∗j∗L [1]→ j!L [1]→ j∗L [1]→ 0,

is exact in the category of perverse sheaves (the cokernel becomes the kernel!).

Perverse sheaves are simpler than constructible sheaves in the following sense.

Theorem 12.1 ([BBD]). Every perverse sheaf is of finite length. Simple objects in the perverse
category are just pushforwards of lisse sheaves at a point or lisse sheaves, shifted by 1, over an open
subset.

Our case is even better, because we can use Deligne’s theory of weights.

Theorem 12.2 (Weil II). Let X be a finite type separated k = Fq-scheme. The action of Frobenius
on H i

c(Xk,Q`) are Weil numbers of weight w ∈ Z≤i.

We can extend the notion of weight to a bounded complex of constructible sheaves.

Definition 12.1. A bounded complex of constructible sheaves L is of weight ≤ w if, for all s ∈ |C|,
the Frobenius eigenvalues on H iLs are Weil numbers of weight ≤ w + i. Similarly, L is of weight
≥ w if its Verdier dual Dc(L) is of weight ≤ −w (not a similar statement; this is about shriek-
restrictions).

For example, by Weil II, our Rπ!Q` = Rπ∗Q` is pure of weight 0.
In general, one can express the weight conditions using perverse cohomology sheaves. Namely,

L is of weight ≤ w (≥ w, = w, resp.) if and only if HipervL is of weight ≤ w (≥ w, = w, resp.).

Taking the sheaf cohomology on the distinguished triangle τ≤ipervL → L → τ≥i+1
perv L

+1−−→, one gets
0→ H0HipervL→ HiL→ H−1Hi+1

pervL→ 0, exact in Shvcons(B,Q`). As we are over a curve, these
determine H∗pervL.
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Theorem 12.3 (Decomposition Theorem, [BBD]). For L a complex of constructible sheaves pure
of weight w, Lk ∼= ⊕iH

i
pervLk[−i]. In particular, if L is furthermore perverse, by Galois descent

L = j∗L [1]⊕⊕s∈C−U is∗Vs for some lisse Q`-sheaf L over U ⊂ C and finite dimensional Q`-vector
spaces Vs for each s ∈ C − U .

Theorem 12.4 (Relative Hard Lefschetz). For π : X → C a projective morphism and L a relatively
ample line bundle, cupping with c1(L )i gives an isomorphism

∪c1(L )i : Rn+1−i
perv π∗Q`

∼−→ Rn+1+i
perv π∗Q`,

where Ripervπ∗ = H i
pervRπ∗.

Remark 12.2. Using Chow’s lemma, we have a noncanonical decompositionRπ∗Q`
∼= ⊕iRipervπ∗Q`[−i]

for π proper.

12.1. Global pairing. We have a perverse Leray spectral sequence:

Ep,q2 = Hp(Bk, R
q
pervπ∗Q`)⇒ Hp+q(Xk,Q`).

By weight reasons, this must be degenerate at E2. Thus we get a filtration

H i = F−1H i ⊃ F 0H i ⊃ F 1H i ⊃ F 2H i = 0.

Let F jH i/F j+1H i =: GjH i. Note

Rqpervπ∗Q` = jη∗R
q−1πη∗Q`[1]⊕M q,

where M q is the skyscraper part. Thus,

G−1H i = H0(Bk, jη∗R
iπη∗Q`) = H i(Xη,Q`)

Gal(η/η),

G1H i = H2(Bk, jη∗R
i−2πη∗Q`),

G0H i = G0
η ⊕G0

sing,

where G0
sing = ⊕sM i

s, summed over singular points, and G0
η = H1(Bk, jη∗R

i−1πη∗Q`). The Verdier
duality on this swaps G−1H i and G1H i, and acts on both G0

η, G
0
sing, giving perfect pairings on them.

The perfect pairing G0
ηH

n+1−i ⊗ G0
ηH

n+1+i → Q`(−n − 1) is Beilinson’s height pairing, whereas
G0

singH
n+1−i ⊗ G0

singH
n+1+i → Q`(−n − 1) is what’s done in our class (“B∗”-part), the only part

depending on the model X.

Remark 12.3. Taking the cohomology at s to the exact sequence

0→M q → Rqπ∗Q` → jη∗R
qπη∗Q` → 0,

we get
0→M q

s → Hq(Xs,Q`)
sp−→ Hq(Xη,Q`)

I(s) → 0.

12.2. Local pairing. We will just briefly illustrate how the weight-monodromy conjecture will
define a local pairing Let R be a strictly henselian dvr, S = SpecR, and X a regular proper
S-scheme. Then, the weight filtration gives

0→W≥iH i−1(Xη)→ H i
Xs

(X)
φi−→ H i(X) = H i(Xs)→W≤iH

i(Xη)→ 0,

giving a pairing on im(φi).

Conjecture 12.1 (Weight-monodromy conjecture). If H i(Xη)
I is of weight ≤ i,

0→ H i−2(Xη)I(−1)→ H i
Xs

(X)
φi−→ H i(Xs)

sp−→ H i(Xη)
I → 0.

In particular, the pairing exists on the kernel of the specialization map.
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This holds for R equicharacteristic, or R mixed characteristic with X complete intersection in a
smooth toric variety.

Remark 12.4. The Hard Lefschetz in this setting would be the existence of canonical splitting
H i(Xη)

I → H i(Xs) of the specialization map.
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Part 5. Universal Non-archimedean Local Pairing

13. Universal Intersection Theory

We conjecturally defined local heights using a specific regular flat proper model. We would like
to illustrate that this can be possibly done by “considering all models at once” and using p-adic
geometry.

Let R be a complete discretely valued ring, K = FracR, k = R/mR and X be a smooth projective
K-scheme. Assume for simplicity the resolution of singularities (although alterations are sufficient).

Consider lim−→X
Ẑ∗(X), running over all regular flat proper models of X over R, where we use

rational equivalence classes as opposed to numerical equivalence classes we’ve used before, and the
transition maps are shriek pullback maps. Namely,

Ẑ∗(X) = {(Z,α) | Z ∈ Z∗(X), α ∈ CHn+1−∗(Xk)},

or “Z∗(X)/rational equivalence in Xk”. Indeed, pullback maps are well-defined because models we
consider are regular, so a regular map between them is locally complete intersection, which factors
as a smooth map followed by a regular embedding. Smooth shriek is OK; regular embedding means
that normal sheaf is a vector bundle, so we can deform to the case of normal bundle. For more
details, see [Fu98, §17].

We denote lim−→X
Ẑ∗(X) as Ẑ∗(X) (cohomological cycles). Then, we have an exact sequence

0→ Ẑ∗1 (X)→ Ẑ∗(X)→ Z∗(X)→ 0,

where Ẑ∗1 (X) = lim−→CHn+1−∗(Xk). To be consistent with the analogy we denote CHn+1−∗(Xk) also
as Ẑ∗1 (X).

Recall that for a given model, we had a section to Ẑ∗(X) → Z∗(X), namely taking the Zariski
closure. Is there an analogue for the “all models” definition? Not really in the current setting, as
taking Zariski closure is compatible with respect to pushforwards but not with pullbacks. Thus, we
are led to consider lim←− Ẑ

∗(X), with transition maps being pushforwards, and this contains lim−→ Ẑ∗(X)
because if you pullback and pushforward you get the thing you started with. On this level you have a
splitting, lim←− Ẑ

∗(X) = Z∗(X)⊕ lim←− Ẑ
∗
1 (X). The component in lim←− Ẑ

∗
1 (X) is called the Green current

in this setting. We denote lim←− Ẑ
∗(X) as Ẑn+1−∗(X) (homological cycles). Sometimes we denote

lim←− Ẑ
∗
1 (X) as Ẑ1,n+1−∗(X).

Example 13.1. Let X = P1. Every proper regular model of P1 is a blowup of P1
OK

. Then for any
blow-up π : X→ P1

OK
, π!∞ =∞+ AX, which comes from exceptional divisor. These {AX} form a

family compatible with pushforwards and this is a Green current.
A hint towards a definition of curvature map can be seen as follows. Given α ∈ Ẑ∗1 (X) and

P ∈ P1(K), we define fα(P ) := 1
[P :SpecOK ]

α ·P ∈ Q, where P is the Zariski closure of P in X. This

does not depend on the model, so this gives a map Ẑ∗1 (X)→ Map(P1(K),Q).

How should we define an intersection pairing Ẑp(X) × Ẑq(X) → Ẑp+q(X) in general? We can
try to embed our situation into Ẑn+1−∗(X) and contemplate on how to intersect Green currents.
Many constructions of the Kähler setting actually have anaolgues in this framework:

Definition 13.1 (Dirac delta). Given Y ∈ Z∗(X), we define δY ∈ lim←−X
CH∗(Xk) by the sequence

(Y ∩ [Xk]) running over all regular proper flat models X.

Definition 13.2 (∂∂-operator). The ∂∂-operator ∂∂ : Ẑ1,n+1−∗(X) = lim←−X
CHn+1−∗(Xk) →

lim←−X
CH∗(Xk) is defined as the inverse limit of CHn+1−∗(Xk)→ CHn+1−∗(X) ∼= CH∗(X)→ CH∗(Xk).

32



Definition 13.3 (Curvature map). Given Ẑ = (Z, g) ∈ Ẑn+1−∗(X) = Z∗(X) ⊕ Ẑ1,n+1−∗(X), we
define ω(Ẑ) := δZ + ∂∂g ∈ lim←−X

CH∗(Xk).

Lemma 13.1. If Ẑ ∈ Ẑn+1−∗(X) is an element of Ẑ∗(X) ⊂ Ẑn+1−∗(X), then ω(Ẑ) is smooth,
namely ω(Ẑ) ∈ lim−→X

CH∗(Xk) ⊂ lim←−X
CH∗(Xk).

Proof. If Ẑ is an element of Ẑ∗(X), you can pullback to Xk to start with. �

Given the lemma, we can (surprisingly, without assuming anything!) define the intersection
pairing as follows.

Definition 13.4 (Intersection pairing on Ẑ∗(X)). For p + q = n + 1 and (Z1, g1) ∈ Ẑp(X) ⊂
Ẑq(X), (Z2, g2) ∈ Ẑq(X) ⊂ Ẑp(X), we define (Z1, g1) · (Z2, g2) := g1ω(Z2, g2) + g2δZ1. To be more
precise, it is the sum of two intersection numbers, paired on CH∗(X), namely

g1 ∈ lim←−
X,push

CHq(Xk)
push−−−→ lim←−

X,push
CHq(X) ∼= lim←−

X,push
CHp(X),

paired with
ω(Z2, g2) ∈ lim−→

X,pull
CHq(Xk)

pull−−→ lim−→
X,pull

CHq(X) ⊂ lim←−
X,push

CHq(X),

plus
g2 ∈ lim←−

X,push
CHp(Xk)

push−−−→ lim←−
X,push

CHp(X) ∼= lim←−
X,push

CHq(X),

paired with
δZ1 = (Z1 ∩ [Xk]) ∈ lim←−

X,push
CHp(X).

This is very general but at the same time very abstract and vague. What we have only used are
some formal properties. We can thus define a universal intersection theory given similar spaces
with desired formal properties.

Definition 13.5 (Universal intersection theory). A general setting for the universal intersection
theory is as follows. For every proper regular model X, we are given with

• a graded ring A∗(Xk),
• an A∗(Xk)-module A∗(Xk),
• the ∂∂-operator ∂∂ : A∗(Xk)→ An+1−∗(Xk),
• the Dirac delta operator δ : CH∗(X)→ A∗(Xk),

equipped with pushforward/pullback maps, such that pushforward ◦ pullback through the same map
is the identity in any cases. Given the above, we define

• the space of homological cycles Ẑn+1−∗(X) := Z∗(X)× lim←−X,push
An+1−∗(Xk),

• the curvature map ω : Ẑn+1−∗(X)→ lim←−X,push
A∗(Xk) as ω(Z, g) := ∂∂g + δZ ,

• and the space of cohomological cycles Ẑ∗(X) ⊂ Ẑn+1−∗(X) as the set of (Z, g) such that
ω(Z, g) lies in lim−→X,pull

A∗(Xk) ⊂ lim←−X,push
A∗(Xk).

Ways of defining intersection pairing on Ẑ∗(X) might slightly differ from setting to setting
(depending on where the pairings are already defined), but in any cases the general formula of
“(g1, Z1) · (g2, Z2) := g1ω(Z2, g2) + g2δZ1” should be easy to be applied.

Example 13.2. The example we did in our section is A∗(Xk) = CH∗(Xk) and A∗(Xk) = CH∗(Xk).
Another example that would work for equicharacteristic dvrs is A∗(Xk) = H2∗(X0,Q`(∗)) and
A∗(Xk) = H

2(n+1−∗)
Xk

(X,Q`(n+ 1− ∗)).
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We suspect that, by climbing up the tower of models, we are always guaranteed to find a “good”
representative to be intersected, in the following sense.

Conjecture 13.1. Assume the appropriate resolution of singularities. Then, Ẑ∗1 (X) is generated
by vertical divisors, and Ẑ1,n+1−∗(X) is generated by intersection of divisors. Or, “every cycle in
the projective limit is complete intersection.”

This is motivated by its analogue in the Archimedean case.

Theorem 13.1. Let X/C be a projective variety, consider the collection of birational maps {X →
X}, and let C̃H

∗
(X) = lim−→X

CH∗(X). Then, C̃H
∗
(X) is generated by C̃H

1
(X).

Proof. We know that CH∗(X) = K∗(X) and that it is generated by Chern class. Thus, it suffices
to show that, for any vector bundle E on X, there is a birational map π : X → X such that π∗E
has a complete flag (which will imply that c(E) =

∑
c(Li)). Let F → X be the moduli of complete

flags of E (over a large variety it has a complete flag; consider succesive Pn-bundles). Take any flag
of Eη, where η is the generic point of X, which gives ξ ∈ F (η). Take the Zariski closure ξ → X.
Take the resolution of singularities X̃ → ξ → X. This is birational, and over that we indeed have
a complete flag. �

Questions.
(1) Can you prove this for general cohomological cycles on the topological level?
(2) For a compact manifold X, is H∗(X) generated by characteristic classes of vector bundles

over X?

14. p-adic Arakelov Theory for Curves

Recall that what was truly used in the Archimedean case for A∗(Xk) and A∗(Xk) are differential
forms, distributions, currents, · · · . Thus, we might want to follow this strategy, hoping that we
have a decent enough theory of calculus over nonarchimedean dvrs/fields. At least for a curve this
is very true; we will illustrate how such theory can give a quite explicit setup.

Let X be a projective smooth curve over Cp, defined over a discretely valued field K with OK
a strictly henselian ring. Hopefully we would like to develop a notion like “smooth differential
forms/distributions with at worst log singularities over X(Cp).

Let Xan be the rigid analytic space associated to X. We have a natural notion of differential
forms Ω∗Xan which is just the analytification of sheaves of algebraic Kahler differentials over X. We
also can think of the sheaf of “functions with log singularities” as

Olog,Xan := OXan [log(O(Xan)×)].

To develop a calculable notion of smoothness of forms/functions, it is desirable to have a “good cover”
of Xan. An ideal kind of cover would be {Ui} where each Ui is an affinoid with good reduction, each
nonempty Ui ∩ Uj is an annuli, and there is no triple overlap. One way to construct such cover is
to use a semistable regular model of X, which is always guaranteed to exist after a base change by
the semistable reduction theorem. Let X be a semistable regular model over OK . A desired cover
can be obtained by taking the preimages of the irreducible components of Xk via the specialization
map Xan → Xk. The combinatorial data of irreducible components of Xk, which is encoded in the
dual graph Γ(X), can work as a “skeleton” of X(Cp).

Recall that the dual graph Γ(X) is defined as a graph with irreducible components of Xk as
vertices and points in the intersection of two components as edges. The dual graph can be given
with a metric such that it is independent of the base field. Namely, for any finite base change L/K,
as it is totally ramified (OK is strictly henselian!), any intersection of two components, which is of
form {xy = π} in (étale) local coordinates, becomes {xy = π[L:K]} after the base change. After
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blowing up each point ([L : K]− 1) times, the singularity will just add ([L : K]− 1) points in each
edge (i.e. dividing each edge into [L : K] smaller edges). Thus giving a normalized length on Γ(X)
enables us to gather all specialization maps X(L) → Γ(X) into a single map sp : X(Cp) → Γ(X),
also called the specialization map. In particular, we can talk about Q-points of Γ(X); we denote it
as Γ(X)(Q).

Example 14.1. Let’s say X = P1, and let X be the blow-up of P1
OK

at 0 ∈ P1
k (local equation

“xy = p”). Then the dual graph is just an edge with two endpoints, 0, 1. Then sp : P1(Cp)→ Γ(X)
will be the map

x 7→


0 if val(x) ≤ 0

val(x) if 0 < val(x) < 1

1 if val(x) ≥ 1

.

Thus the preimage of γ of the specialization map is a disc if γ = 0, 1, and is a torus (annulus if you
prefer) if 0 < γ < 1.

Using this, we can now define the notion of smooth functions on P1(Cp). Let’s cover Γ(X)
with three open subsets, U = [0, 2ε), W = (ε, 1 − ε), V = (1 − 2ε, 1]. Then, we would like to see
C∞(P1(Cp)) as some subset of C∞(sp−1(U))⊕ C∞(sp−1(V ))⊕ C∞(sp−1(W )). Over sp−1(U) and
sp−1(V ), we can just declare C∞ to be convergent power series. The open sets sp−1(U), sp−1(V )
are wide open subsets in Coleman’s terms, i.e. the complement of a finite union of disjoint closed
discs of radius < 1, with no two discs in the same residue disc.

For C∞(sp−1(W )), one needs to be careful. If you think about an analogue over C instead of
Cp, this domain is something like a cylinder, so we have a Fourier expansion along the coordinate
of S1-direction. Thus, we can use this analogy here to define the notion of smoothness using some
kind of Fourier expansion. Namely, we can define C∞(sp−1(W )) to be consisted of functions of the
form

∞∑
n=−∞

an(val(z))
zn

|z|n
,

where an : (ε, 1 − ε) → Cp is a piecewise polynomial functions where the breakpoints are rational
numbers and two polynomials have the same value on the breakpoints. These functions will be
referred later as continuous piecewise smooth functions, although this is not true in a literal sense
as nonarchimedean fields have totally disconnected topology (only for the analogy with real analytic
case).

Using this, we can define smooth differential forms as well. Extending the analogy with C
(“annulus is a cylinder”), we need two coordinates. In addition to z, we can use for example
t = log |z|2, which can be regarded as a variable on the dual graph Γ(X), or z = |z|2/z = t, which
satisfies t = log z + log z. If we use t, then 1-forms are of form fdz + gdt, and 2-forms are of form
fdzdt. For example we can integrate a 2-form in the following way,∫

fdzdt =

∫
Γ(X)

dt

∫
X/Γ(X)

fdz =

∫
Γ(X)

dta0(val(z)).

The above example illustrates that X(Cp)→ Γ(X) is like “collapsing S1-direction” (prototypical
example being S1× [0, 1]→ [0, 1]), strengthening the metaphor that “Γ(X) is a skeleton of X(Cp).”

As Γ(X) offers a systematic way of covering X(Cp), it is reasonable to expect that we can recover
topological information about X(Cp) from Γ(X).

Definition 14.1 (Smooth forms on the dual graph). Let A0(Γ(X)) be the space of continuous
piecewise smooth function on Γ(X) with breaking points in Γ(X)(Q). Let A1(Γ(X)) be the space of
1-forms with coefficients in A0(Γ(X)), namely locally of form f(t)dt for f ∈ A0(Γ(X)).
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Definition 14.2 (Smooth form on X(Cp)). Define

A0
(log,)Γ(X) = sp∗O(log,)Xan ⊗Cp A

0(Γ(X)),

A1
(log,)Γ(X) = sp∗Ω1

(log,)Xan ⊗Cp A
0(Γ(X))⊕ sp∗O(log,)Xan ⊗Cp A

1(Γ(X)),

A2
(log,)Γ(X) = sp∗Ω1

(log,)Xan ⊗Cp A
1(Γ(X)).

That we can find a good cover of X(Cp) from the specialization map easily implies the following

Proposition 14.1. The complex of sheaves A0
Γ(X) → A1

Γ(X) → A2
Γ(X) computes the algebraic de

Rham cohomology of X.

Proof. Take a good cover {Ui} of X(Cp) by the preimage of a “good cover of Γ(X)”, namely a cover
of Γ(X) consisting of

• the 2ε-neighborhoods of all vertices (which are wide open),
• and the middle open intervals of length 1− ε (i.e. (ε, 1− 2ε)’s in Example 14.1) of all edges.

Then, OX(X0) → OX(X1) ⊕ Ω1
X(X0) → Ω1

X(X1) computes the de Rham cohomology, where
X0 =

∐
Ui, X1 =

∐
Ui ∩ Uj . It is obvious that the hypercohomology of A0

Γ(X) → A1
Γ(X) → A2

Γ(X)

computes exactly the same thing. �

Remark 14.1. The hypercohomology of log-complex A0
log,Γ(X) → A1

log,Γ(X) → A2
log,Γ(X) has H1 = 0.

The difference of this from the complex A0
Γ(X) → A1

Γ(X) → A2
Γ(X) is that we basically use log z instead

of z, which has an effect of “passing to the universal cover,” analogous to C exp−−→ C×.

We can develop a theory of p-adic integration from AiΓ(X)’s.

Definition 14.3 (∂∂-operator). Define ∂∂ : A0
Γ(X) → A2

Γ(X) by

∂∂(
∑

an(t)zn) = ∂
∑

a′n(t)znd log z =
(∑

a′′n(t)zn +
∑

a′n(t)nzn
)
d log z ∧ d log z,

where the differentiation of an’s is just the differentiation of polynomials.

Remark 14.2. One can use dz∧dt
z = d log z ∧ d log z in the above equation.

We have already seen how to integrate a 2-form, namely
∫
X(Cp) : A2

Γ(X) → Cp is just
∫

Γ(X)

∫
X(Cp)/Γ(X),

which locally is
∫ ∑∞

n=−∞ an(val(z)) zn

|z|ndzdt =
∫

Γ(X) dt
∫
X/Γ(X) fdz =

∫
Γ(X) dta0(val(z)). On the

other hand, integrating 1-forms is a little more mysterious. There are two main theories of p-adic
integration (of 1-forms) on p-adic curves.

(1) Coleman integration. This works for affinoids or wide open subsets with good reduction.
For such a set U , Coleman integration defines a map

Γ(U,Ω1
U )× U × U → Cp, (ω, p, q) 7→

∫ q

p
ω,

which is, as a function of p, q, analytic in residue discs. It has many nice properties, for
example it is additive and has change of variable.

(2) Colmez integration. It works for meromorphic forms without reduction hypothesis but only
for (analytification of) algebraic varieties. It has similar properties as above.
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