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SYLLABUS

Outline of the course. This is a course on the spectral theory of automorphic forms. The main
goal is to explain the meromorphic continuation of Eisenstein series, due to Selberg and Lang-
lands. We will follow the 1979 notes of Cohen-Sarnak (available on my website). This explains
the proof of Selberg (1966), which was rediscovered by Bernstein in the 80s.

In the first half, we will be working on the upper half plane Hn . A reference is my 2004 paper
[Sar03] in the Bulletin of the AMS. In the second half, we’ll study the higher rank case.

Prerequisites. We will assume background in the following subjects:

(1) Basic real, complex, and functional analysis (Fredholm theory).
(2) Modular forms.
(3) Representation theory of compact groups.
(4) Basic Riemannian geometry.

1. OVERVIEW

I am going to give an overview of the course: I’ll explain the basic objects we’ll be studying
and some applications and motivations.

1.1. Spaces of constant curvature. Let X be a Riemmanian manifold, with metric

d s 2 =
∑

g i j d x i d x j .

This induces a volume form

d x =
p

g d x1 . . . d xn ,
1
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and a Laplacian (using Einstein summation)

∆ := div ◦grad=
1

p

|g |
∂

∂ x i

�

Æ

|g |g i j ∂

∂ x j

�

.

Example 1.1.1. Consider Rn with the usual metric, which has curvature 0. The isometry group
Isom(Rn ) is generated by:

• translations x 7→ x + v , and
• rotations.

We are interested in the decomposition of functions under operators commuting with the
translations.1 In Rn these are convolution operators, which are diagonalized by characters
e (〈x ,ξ〉). In general, we are looking for the analogues of these characters for a general semisim-
ple group G .

Example 1.1.2. Consider S n with the round metric, which has constant curvature 1. Then
Isom(S n ) is the orthogonal group O (n ), and the irreducible representations in the space of func-
tions are the spherical harmonics.

Example 1.1.3. Let Hn+1 be n+1-dimensional hyperbolic space, which has constant curvature
−1. A model for Hn+1 is {(x , y ): x ∈Rn , y > 0}2, with metric

d s 2 =
d x 2+d y 2

y 2
.

The isometry group is Isom(Hn+1), which is generated by the following types of transforma-
tions:

(1) Hyperbolic:3 (y , x ) 7→ (λy ,λρx ), forλ> 0 andρ ∈O (n ). These fix the geodesics {(y , 0): y >
0}.

(2) Parabolic: (y , x ) 7→ (y , x + v ) for v ∈Rn . These fix∞.
(3) Inversion: (y , x ) 7→ ( y

x 2+y 2 , x
x 2+y 2 ).

Remark 1.1.4. For n = 1 the isometry group is SL2(R), and these different types of transforma-
tions can be described in terms of the eigenvalues.

1.2. Lattices. So far this has just been analysis; no number theory is present yet. The number
theory enters when we introduce a discrete group Γ , which should be a “lattice” in the ambient
group, and which will usually be defined through integers in some number field.

Example 1.2.1. Let Γ be a lattice in Rn , i.e. Γ is a discrete subgroup with Rn/Γ compact. Hence
Γ ∼= Zn , and Rn/Γ is an n-torus Tm . The eigenfunctions of∆ are e (〈x ,ξ〉) for ξ ∈ Γ ∨ ∼= Zn .

By convention we declare the “eigenvalues” to be those λ such that ∆φ +λφ = 0; with this
convention the eigenvalues are λ= 4π2|ξ|2 for ξ ∈ Zn .

1What if we ask for operators commuting with the full isometry group Isom(Rn )? The translation-invariant operators
are the differential operators. The differential operators that commute with all the rotations are just polynomials in
the Laplacian.
2This is called the Poincaré model. There are other models of hyperbolic space, and you want to choose the one
best suited for your problem. In the theory of Eisenstein series the boundary is the most important aspect, so we
choose a model that presents it well.
3In the jargon of the trace formula, these are called “elliptic”
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1.3. Poisson summation. Let f ∈S (Rn ) be a Schwartz function. Then bf ∈S (Rn ), where

bf (ξ) =

∫

Rn

e (〈−x ,ξ〉) f (x )d x .

The Poisson summation formula says that
∑

ν∈Zν
f (ν) =

∑

m∈Zn

bf (m ). (1.3.1)

We are going to give a proof of this, which is different from the usual one.

Proof. Let’s define a kernel function on L 2(Rn/Zn ) by

K (x , y ) :=
∑

ν∈Zn

f (x − y +ν).

This certainly converges, as f is Schwartz, and evidently depends only on x − y . So we set
K (x − y ) = K (x , y ). We can then define an operator

K : L 2(Rn/Zn )→ L 2(Rn/Zn )

by

K ·h (x ) =
∫

Rn/Zn

K (x , y )h (y )d y .

Then K is Hilbert-Schmidt, which implies that all the nice facts about finite-dimensional linear
algebra carry over in some form.4 In particular, the trace is a “sum over the diagonal”

Tr K =

∫

Rn/Zn

K (x , x )d x ,

which is manifestly equal to
∑

ν f (ν).
Now the point is that we can compute the trace using a different basis. Let’s choose the basis

that diagonalizes the convolution operator, whose elements are

φm (x ) = e (−〈x , m〉), m ∈ Zn .

Let’s compute the eigenvalue:
∫

Rn/Zn

K (x − y )φm (y )d y =

∫

Rn/Zn

∑

ν∈Zn

f (x − y +ν)e (−〈y , m〉)d y

=

∫

Rn

f (x − y )e (−〈y , m〉)d y

= bf (n )φm (x ).

The fact that trace of a diagonal matrix is just the sum of the eigenvalues then gives (1.3.1).
�

Example 1.3.1. Consider e (x 2z ) for z ∈H. If we sum over the integers, then we get a sum of the
Fourier transform of the dual lattice. Since the Fourier transform of a Gaussian is a Gaussian,
this shows that

θ (z ) :=
∑

n∈Z

e (n 2z )

4"The rule of the game is that if it makes sense, it’s true”.
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is a modular form for Γ0(4) ⊂ SL2(Z). See Serre’s book [Se73] for all this. Riemann used this to
prove the analytic continuation and functional equation for ζ(s ).5

1.4. General setup. We will consider a group G (which will be interpreted as the isometry
group of some space), and a lattice Γ ⊂ G , which means that Vol(Γ\G ) <∞. We are mainly
interested in the case where G is a semi-simple Lie group. Note that G is unimodular, so it
does not matter if we consider the left or right Haar measure.

Example 1.4.1. Let G = SLn (R), K = SOn (R) the maximal compact subgroup. We’ll be inter-
ested in the “symmetric space” S = G /K , which is the upper half plane, and in the “locally
symmetric space”X = Γ\S .

From a representation-theoretic point of view, we are interested in the space

L 2(Γ\G ) =

¨

f : G →C | f (γg ) = f (g ) for all γ ∈ Γ ;

∫

Γ\G
| f (x )|2 d g <∞

«

.

Remark 1.4.2. Why do we study L 2 instead of other function spaces? In fact the Eisenstein
series won’t be in L 2. But we want to work in a Hilbert space.

There is an obvious representation of G on L 2(Γ\G ), by translation:

Rg f (x ) = f (x g ).

This defines an operator

Rg : L 2(Γ\G )→ L 2(Γ\G ).

Moreover, it is an isometry, so we have a unitary representation of G .
We want to decompose the Hilbert space L 2(Γ\G ) into irreducibles. Ideally this decomposi-

tion would have the shape

L 2(Γ\G ) =
⊕

π∈ÒGunit

mΓ (π)Hπ.

If Γ\G is compact then we do have such a decomposition. However, in the non-compact case
there is also a continuous part, which is the Eisenstein series:

L 2(Γ\G ) =
⊕

π∈ÒGunit

mΓ (π)Hπ⊕
∫

(Eisenstein series). (1.4.1)

The main motivation for Selberg’s meromorphic continuation of Eisenstein series was to make
sense of the decomposition (1.4.1), and apply the trace formula.

1.5. Matsushima’s formula. In the compact case, Matsushima’s formula expresses the dimen-
sions of (g, K )-cohomology groups in terms of the multiplicities mΓ (π).

Remark 1.5.1. This spectral decomposition can be used to prove vanishing of certain Betti
numbers when the set of π’s that contribute to Matsushima’s formula is empty. This happens
that when a representation that “wants” to contribute fails to be unitary. For examples, this
happens for all finite index subgroups of SL3(Z).

5This proof actually precedes Riemann; Weil discovered it as an exercise in a textbook (cf. [Wei87]).
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1.6. Homogeneous dynamics. The subject of homogeneous dynamics studies orbits on spaces
like Γ\G . For SL2, an orbit of the form

Γ x

�

e t /2

e −t /2

�

is called the geodesic flow. An orbit of the form

Γ x
�

1
t 1

�

is called a horocycle flow. The point is that SL2(R) is the unit sphere bundle (of the tangent
bundle) over H. Spectral theory can be used to understand things about these orbits, for e ex-
ample whether or not they are equidistributed. However, one of the major theorems is Ratner’s
theorem, which lies deeper than spectral theory can access.

1.7. The Ramanujan conjecture. The only representation I really understand is the trivial rep-
resentation. In some sense spectral theory is about showing that the trivial representation is
the only one that matter - one wants to show that the other representations contribute negligi-
bly. The Ramanujan conjecture predicts that all the other representations are very far from the
trivial representation; more precisely, they are tempered. The thing which is important to me
is to know that the other representations are tempered.

1.8. L-functions. For me the real interest in this subject comes from L-functions.6

Example 1.8.1. Let G = GLn (R) and Γ ≤ SLn (Z) be a finite index subgroup. We will prove later
that vol(Γ\G )<∞. We define a congruence subgroup Γ (N )⊂ Γ by

Γ (N ) =
�

γ ∈ Γ : γ≡ Id (mod N )
	

.

We’re interested in the part of the spectrum which is not Eisenstein, which is called cuspidal.
Langlands was the first to appreciate it. We’ll actually use Eisenstein series to deduce informa-
tion about the cuspidal representations.

If π is a “cusp form” (cuspidal representation) then there is a “standard L-function” L (s ,π),
which has all the properties (functional equation, meromorphic continuation) of ζ(s ). This fol-
lows from Riemann’s method, and was established by Tamagawa and Godement-Jacquet. This
is the way to “grow” L-functions: all L-functions which have nice properties - meromorphic
continuation, functional equation, etc. - are supposed to be obtainable in this way.

Consider the moduli space of lattices L in Rn , with volume 1, is SLn (Z)\SLn (R). For G =
SL2(R), how can we make a lattice Γ < SL2(R)?

Let S be a Riemann surface of genus g ≥ 2. By the Uniformization Theorem, the universal
cover of S is H as a complex manifold. So there is a cocompact Γ ≤ SL2(R) such that S ∼= Γ\H.
The moduli space of genus g Riemann surfaces is a complex manifold of dimension 3g − 3, if
g ≥ 2. Hence the set of such Γ ’s form continuous families. In particular, there are uncountably
many Γ ’s, so they cannot all come from number theory. It is a very special feature of SL2 that
this happens!

6The theory of modular forms is not interesting in the function field world. There, Grothendieck’s algebraic geom-
etry gives all the understanding that you would need.
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2. SYMMETRIC SPACES

2.1. Basic definitions. We will discuss the “soft theory” of symmetric spaces, following Sel-
bert’s 1956 paper [Sel56]. The “softness” comes from the fact that we will not compute any-
thing.

Definition 2.1.1. A symmetric space is a connected complete Riemannian manifold for which
the geodesic inversion in any point p is a global isometry. We fix notation for the Riemannian
metric:

d s 2 =
∑

i , j

g i j d x i d x j .

Example 2.1.2. The symmetric spaces with constant curvature are S n , Rn , Hn .

Example 2.1.3. Let G = SLn (R), and

Y := {Y ∈Matn×n (R): Y positive definite; det Y = 1}

with the metric
d s 2 = Tr(Y −1d Y ·Y −1d Y )

This makes Y into a symmetric space, with the inverse Y 7→ Y −1 at Id being an isometry. G
acts onY isometrically by y 7→ g t y g .

Lemma 2.1.4. For a symmetric space S, let G := Isom(S ). Then G acts transitively on S.

Proof. For any two points x , y ∈ S , we want to find g ∈G taking x to y . Take a geodesic between
x and y and let g be the inversion about the midpoint. �

Let Kx0
= Stab(x0) for x0 ∈ S . Then by Lemma 2.1.4, we have G /K ∼= S .

Remark 2.1.5. There is a classification of “irreducible” symmetric spaces, due to Cartan, in
terms of presentations of the form G /K . See Helgason’s book [H08].

If at x0 we choose coordinates so that g i j (x0) = δi j , then Kx0
acts on tangent vectors in a

length-preserving manner, giving an embedding Kx0
,→O (n ). In particular, Kx0

is compact.

2.2. Invariant differential operators.

Definition 2.2.1. Let S be a symmetric space. For g ∈G define the operator

Rg f (x ) := f (g x )

LetD(S ) be the ring of linear invariant differential operators on S , i.e. a differential operator D
lies inD(S ) if and only if

Rg D =D Rg for all g ∈G .

Example 2.2.2. In Rn the condition forces constant coefficients.

To study the ringD(S )we will introduce the idea of point pair invariants.

Definition 2.2.3. A smooth function k : S ×S →C is point-pair invariant if

k (σx ,σy ) = k (x , y ) for allσ ∈G .

We also demand that k is continuous and compactly supported in the variable y for a given x .7

We denote the algebra of point-pair invariants by A(S ).
Remark 2.2.4. In this formulation, the p -adic story, with symmetric spaces replaced by Bruhat-
Tits buildings, is almost identical.

7However, sometimes it is useful to merely ask that k decays rapidly at infinity.
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Think of these as kernels for the operators

k1 ◦k2(x , y ) =

∫

S

k1(x , w )k2(w , y )d w .

This turns the point pair invariants into a ring.

Lemma 2.2.5. The algebra A(S ) is commutative.

Proof. Let µ be an inversion swapping x ↔ y . Then we have

k (x , y ) = k (µx ,µy ) = k (y , x ).

So

k1 ◦k2(z , t ) =

∫

S

k1(z , w )k2(w , t )d w

=

∫

k1(µw ,µz )k2(µt ,µw )d w

=

∫

S

k2(µt , w )k1(w ,µz )d w

= k2 ◦k1(µt ,µz )

= k2 ◦k1(z , t )

�

Proposition 2.2.6. The ringD(S ) is commutative.

Proof. Let φδ(x , y ) be a point pair which is an approximation to the identity, i.e. φδ(x , y ) has
compact support in y for fixed x , such that for smooth f

∫

φδ(x , y ) f (y )→ f (x ) as δ→ 0.

We can arrange thatφδ(x , y ) is a function of d (x , y ), which is supported in [−δ,δ].
If D ∈ D(S ), we’ll show that it commutes with all point pair invariants, and then with each

other. Let k (x , y ) be a smooth point pair invariant. Then you can check that Dx k (x , y ) is a
point pair invariant invariant; here Dx k means applying D to the first argument. (The point is
that applying an invariant differential operator to a point pair invariant produces a point pair
invariant.)

Hence k ◦ (Dφδ1
(x , y )) = (Dφδ1

(x , y )) ◦ k by Lemma 1. Letting δ1 → 0, we conclude that
k ◦D = D ◦ k for all point pair invariants k . [This observation is not actually needed for the
proof.]

Similarly, for D1, D2 ∈D(S )we have

(D1φδ1
) ◦ (D2φδ2

) = (D2φδ2
) ◦ (D1φδ1

)

hence taking δ1,δ2→ 0 we conclude D1D2 =D2D1.
�

Let ∆ = div ◦ grad, a differential operator on functions on a Riemannian manifold M . Then
you can check that∆ commutes with Isom(M ), and

∆=
1
p

g

∑

i , j

∂

∂ xi

�

p

g g i j ∂

∂ xi

�

.
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If S is a symmetric space, then you always have∆ ∈D(S ).
Exercise 2.2.7. Show that for Rn , with isometry group G = Isom(Rn ), we have D (Rn ) = Poly(∆).

Proposition 2.2.8. The ringD(S ) is finitely generated.

Proof. We will use symmetrization. Let f (x ) be a function on S . For a basepoint x0, define

f (x ; x0) =

∫

Kx0

f (k x )d k . (2.2.1)

Then evidently
f (σx ; x0) = f (x ; x0) forσ ∈ Kx0

.

We will warm up by reviewing a proof of the mean value theorem for harmonic functions.
The same die will at the core of several important proofs.

We aim to show that for any harmonic function f , the value f (x0) agrees with the average of
its values on a spherical shell around x0. Consider the symmetrization (2.2.1) of f0 – it is har-
monic because Laplacian commutes with the symmetries. It is obviously radially symmetric.
Since the Laplacian is a second-order differential equation, there should be 2 linearly indepen-
dent solutions: c and log r . But log r blows up as r → 0, so it cannot be involved.

Since G is transitive, any D ∈ D(S ) is determined by its action on the germ of functions at a
fixed point x0. If L ∈D(S ), then

[L · f (x )]x=x0
= [L · f (x ; x0)]x=x0

.

IfL is any differential operator we can define an invariant L ∈D(S ) associated with it, by

L f (x0) = [L f (x ; x0)]x=x0
.

Why is this useful? We want to understand the relation between L and L . For example, when
do two L ’s give the same L? To discuss this we need to introduce the symbol.

Choose coordinates x 1, . . . , x n near x0 so that g i j =δi j . Then define differential operators

(ξ1, . . . ,ξn ) =
�

∂

∂ x1
, . . . ,

∂

∂ xn

�

.

Any differential operator L of degree m has a symbol, which is a polynomial of degree m in
the variables ξ1, . . . ,ξn , encoding the degree m homogeneous part of L . Moreover, if L = L is
invariant then P (ξ1, . . . ,ξn ) is H -invariant, where H ⊂O (n ) is the image of Kx0

.
Therefore, the symbol map from invariant differential operators to polynomials lies in a

graded component of the invariants of a finitely generated polynomial ring under a compact
group action. Therefore the image is finitely generated. �

Exercise 2.2.9. Complete the proof.

2.3. Spherical functions. Thanks to Proposition 2.2.8, we can choose a finite generating set
D1, . . . , D` forD(S ), which we fix.

Definition 2.3.1. We say that f is an eigenfunction ofD(S )with eigenparameter λ= (λ1, . . . ,λ j )
if

Dj f =λ j f j = 1, . . . ,`.

Since the {Dj } generateD(S ), any such f is an eigenfunction for all operators inD(S ).
Remark 2.3.2. In particular, f is an eigenfunction of the Laplacian, and is automatically smooth
since∆ is elliptic. If S if analytic, then f is moreover analytic.
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Definition 2.3.3. A spherical (or zonal) function is an eigenfunction which is radially symmet-
ric about x0, i.e.

f (x ) = f (x ; x0) = f (σx ; x0) for allσ ∈ Kx0
.

We say that x0 is the pole of f .

Theorem 2.3.4 (Multiplicity 1). The space of spherical functions about x0 with eigenparameterλ
is at most 1-dimensional, and if it is non-vanishing then there is a unique zonal function wλ(x0)
such that wλ(x0; x0) = 1.

Proof. We will show that the Taylor series of any spherical function about x0 is uniquely deter-
mined. Here we use the analyticity of S and of any eigenfunction forD(S ) (by elliptic regularity).

At x0 choose coordinates (x 1, . . . , x n ) such that g i j = δi j . Suppose f is a spherical function.
We will compute









�

∂

∂ x 1

�r1

. . .
�

∂

∂ x n

�rn

︸ ︷︷ ︸

L

f









x=x0

(2.3.1)

Using that f is spherical, (2.3.1) agrees with
�

L f (x ; x0)
�

x=x0
= [L f (x ; x0)]x=x0

(2.3.2)

where L be the symmetrization of L . Now, we know that we can express L = PL (D1, . . . , D`) for
some polynomial PL , which necessarily acts as multiplication by PL (λ1, . . . ,λ`). Hence

[L f (x ; x0)]x=x0
= f (x0).

If f (x0) = 0 then all the coefficients are 0. If f (x0) 6= 0, we can normalize it to be 1, and g is
determined purely by λ. �

We always use wλ(x ; x0) to denote the unique normalized non-zero zonal function (when it
exists). Now we discuss the mean value property which is a generalization of the mean value
property for harmonic functions. (As in the proof of Proposition 2.2.8, the core is the fact that
there’s only one solution smooth at the origin.)

Let f be an eigenfunction on S ofD(S )with eigenparameter λ. Then
∫

Kx0

f (k x )d k = f (x ; x0) = f (x0)wλ(x ; x0). (2.3.3)

Next we have a key lemma, which computes the eigenvalue of f under point-pair invariants.

Lemma 2.3.5. Let f be an eigenfunction ofD(S )with eigenparameter λ. Then
∫

S

k (x , y ) f (y )d y = bk (λ) f (x )

where bk (λ) is the Selberg (– Harish-Chandra) transform8

bk (λ) =

∫

S

k (x0, x )wλ(x ; x0)d x

(which is independent of x0).

8Also called the spherical transform.
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Proof. Since
∫

S
k (x0, y ) f (y )d y is symmetric about x0, we have

∫

S

k (x0, y ) f (y )d y =

∫

S

k (x0, y ) f (y ; x0)d y .

Then using (2.3.3) we find that
∫

S

k (x0, y ) f (y ; x0)d y = f (x0)

∫

S

k (x0, y )wλ(y ; x0)d y .

�

Example 2.3.6. Consider S =H2, soD(S ) = poly(∆)where

∆= y 2

�

∂ 2

∂ x 2
+
∂ 2

∂ y 2

�

.

We consider (∆+λ) f = 0. You can check that

∆y s + s (1− s )y s = 0.

Thus y s is a solution, with λ= s (1− s ). To make a spherical function, we average the function
Fλ(z ) := y s . Choose z0 = i , which has stabilizer Ki = SO2(R). Then

wλ(z ; i ) =

∫

Ki

y (k z )d k .

Let G = SLn (R),Y as before. We have the Cartan decomposition G =N AK , where

N =





1 ∗ ∗
1 ∗

1



 , A =





∗ 0 0
0 ∗ 0
0 0 ∗



 , K = SO(n ).

So any g ∈G can be written as

g = na k , n ∈N , a ∈ A, k ∈ K .

Let a= Lie(A). Write

g = ne H (a )k , a ∈ a. (2.3.4)

For λ ∈ a∗C, define9

Fλ(g ) = e 〈λ−ρ,H (g )〉.

Here ρ is half the sum of the positive roots, and H (g ) =H (a ) in the decomposition (2.3.4).

Proposition 2.3.7. For S = SLn (R)/SOn (R ), Fλ(g ) is an eigenfunction ofD(S ). Take x0 = Id. Then
the unique spherical function with pole x0 and eigenparameter λ ∈ a∗F is

wλ(g , I ) =

∫

K

e 〈λ−ρ,H (k g )〉d k .

9Why do we complexify? In the end we’ll be trying to do some L 2-theory. We’ll need functions which are defined
in some region of a∗C, and they’ll have to be analytically continued to realm of interest. This is the whole point of
Eisenstein series.
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Remark 2.3.8. What does all this have to do with representation theory? We are interested in
L 2(Γ\G ). What does it mean to restrict to K -invariant functions? Look at irreducible unitary
representationsρ : G →U (H ). We say thatρ is spherical or unramified if there exists a non-zero
v ∈H which is K -invariant; this v is necessarily unique up to scalar.

Consider the matrix coefficient

ω(g ) = 〈ρ(g )v, v 〉.

This is right-invariant by K , since v is fixed by K , but also left-invariant by K by unitarity. So
this function is bi-invariant under K . It is the spherical function.

2.4. Kernels. We have a map

A(S )→Op(Cont(S ))

sending k (x , y ) to the operator Kk with kernel function k (x , y ). This is a ring homomorphism:

k1 ∗k2 7→ Kk1
◦Kk2

.

Let G be a Lie group. We are interested in the “decomposition” of L 2(G ) into irreducible
representations of G . These representations are by definition tempered.

If G is compact, then L 2(G ) decomposes into a direct sum of finite-dimensional representa-
tions. In general, the irreducibles are infinite-dimensional, and are not summands.

Example 2.4.1. Let G = R. Then the Laplacian is d 2/d x 2, and its eigenfunctions are e (xζ) =
e 2πiζ. These grow out of control at ±∞ unless ζ ∈R, so the tempered functions are those with
ξ ∈R.

In general the growth of the volume in a hyperbolic space is fast – exponential. So you need
functions that decay quickly enough at the boundary. The tempered functions are those which
are “almost” in L 2.

Let S be a symmetric space, and consider the Hilbert space L 2(S ). For k ∈ A(S ), the adjoint
of Kk is Kk ∗ where k ∗(x , y ) = k (y , x ) ∈ A(S ). Hence by Lemma 2.2.5, Kk is normal: it commutes
with its adjoint. This is what will allow us to simultaneously diagonalize our operators.

Now we consider the situation for locallly symmetric spaces. Let Γ ≤ G = Isom(S ) be a dis-
crete subgroup. Form the locally symmetric space XΓ := Γ\S . We are interested in the space

L 2(XΓ ) =

¨

f : Γ\S →C |
∫

XΓ

| f (x )|2 d x <∞

«

.

We define a homomorphism

A(S )→Op(L 2(XΓ ))

by averaging the kernel function over Γ in one argument:

kΓ (x , y ) =
∑

γ∈Γ
k (γx , y ).

For k ∈ A(S ), f ∈C (Γ\S ), the operator Kk ∈Op(L 2(XΓ )) is defined by

Kk f (x ) =

∫

γ\S
kγ(x , y ) f (y )d y .
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An important trick is that this can be “unfolded”:

Kk f (x ) =

∫

Γ\S

∑

γ∈Γ
k (x ,γy ) f (y )d y

=

∫

S

k (x , y ) f (y )d y .

This formula makes it clear that the map k 7→ Kk is a homomorphism. If we consider Kk as an
operator on L 2(XΓ ) then we can speak of adjoints, and K ∗k = Kk ∗ .

For simplicity we assume that XΓ is compact. Then the algebra generated by Kk for k ∈ A(S )
consists of compact operators.

2.5. Fredholm theory.

Definition 2.5.1. Let H be a Hilbert space. An operator K on H is compact if K is a uniform
limit of finite rank operators.

Suppose X is a locally symmetric space XΓ . Let k (x , y ) be a kernel function on X ×X , and K
the corresponding operator

(K f )(x ) =

∫

X

k (x , y ) f (y )d y .

Definition 2.5.2. We say that an operator K associated to a kernel function k is Hilbert-Schmidt
if

∫

|k (x , y )|2 d x d y <∞.

Theorem 2.5.3. If K is Hilbert-Schmidt, then K is compact.

We don’t want to work with the Laplacian, which is an unbounded operator. The inverse of
the Laplacian is an integral operator, which will tend to be compact.

Theorem 2.5.4 (Fredholm). Let H be a Hilbert space and K : H →H a compact operator. Then
there are λ j ∈C−{0} such that |λ j | → 0, and such that the non-zero eigenspaces

Vλ j
:= {v : K v =λ j v }

are finite-dimensional. For λ /∈ {λ j }^ {0}, the operator Rλ(K ) := (λ Id−K )−1 is bounded.

In fact, Fredholm defines a version of the characteristic polynomial for such a K ,

∆(λ) := det(Id−λK ).

Since there are infinitely many eigenvalues, this is an entire function (rather than a polynomial),
whose reciprocal eigenvalues are the λ j in Theorem 2.5.4).

Theorem 2.5.5 (Spectral theorem). If K is a compact operator on a Hilbert space H such that
K K ∗ = K ∗K (i.e. K is normal), then there is an orthonormal basis φ1,φ2, . . . of H such that
K φ j =λ jφ j .

Corollary 2.5.6. Assuming XΓ is compact, there is an orthonormal basis φ j of joint eigenfunc-
tions of A(S ) and D(S ). Furthermore, each eigenspace of D(S ) for an eigenparameter λ is finite-
dimensional.



SPECTRAL THEORY OF AUTOMORPHIC FORMS 13

Proof. We first show that the eigenspaces of the point-pair algebra A(S ) are finite-dimensional.
As we’ve seen, for every k ∈ A(S ) the operators Kk are compact normal, and commute. Hence
they can be simultaneously diagonalized. The only thing that has to be ruled out is that they
have a large common kernel. This follows from the fact that we can find an approximate iden-
tity kδ→ Id in A(S ), whose eigenvalues tend to 1.

Next, we turn out attention to eigenspaces for the Laplacian. By Lemma 2.3.5 the eigenvalues
of Kk , for any k ∈ A(S ), depend only on the eigenvalues of the Laplacian. Therefore the finite-
dimensionality of the eigenspaces for A(S ) implies the finite-dimensionality of the eigenspaces
forD(S ).

�

In particular for an eigenfunctionφλ ofD(S ), note that

Kkφλ(x ) = bk (λ)φλ(x )

where bk is the spherical transform of Lemma 2.3.5.

Theorem 2.5.7. We have

Kk (x , y ) =
∑

γ∈Γ
k (γx , y ) =

∑

j

bk (λi )φ j (x )φ j (y ) (2.5.1)

whereφi has eigenparameter λ j = (λ
(1)
j , . . . ,λ(`)j ). In particular

Tr(Kk ) =
∑

j

bk (λ j ). (2.5.2)

Remark 2.5.8. The spectral expansion of the kernel is (2.5.1). The equation (2.5.2) is the spectral
side of the trace formula.

Proof. Fix x , and expand K (x , y ) viewed as a function in y in L 2(XΓ ):

K (x , y ) =
∑

j

〈K (x ,−),φ j 〉φ j (y ).

We then compute the coefficients by unfolding:

〈Kk (x , ·),φ j 〉=
∫

Γ\S
kΓ (x , y )φ j (y )d y

=

∫

S

k (x , y )φ j (y )d x

= bk (λ j )φ j (x ).

�

3. EISENSTEIN SERIES

3.1. Hyperbolic space. Consider the symmetric space S =H (2-dimensional hyperbolic space,
which is also denoted H2). Then D(H) is the ring of polynomials in ∆, and A(H) is the ring of
compactly supported functions in the distance function d (z ,ζ). This is a symmetric space for
G = SL2(R), i.e we have H= SL2(R)/SO2(R), with g ∈ SL2(R) acting by linear fractional transfor-
mation, and preserving the hyperbolic metric

d s 2 =
d x 2+d y 2

y 2
.
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In fact H is also a complex space, and G acts by biholomorphic maps. Let Γ ≤ SL2(R) be a
discrete subgroup, and XΓ the attached Riemann surface. We are interested in Γ = SL2(Z). For
this Γ , Γ\H is a modular surface of finite area, which is not compact.

To see why, recall some reduction theory. The group Γ is generated by

S =
�

0 1
−1 0

�

, T =
�

1 1
1

�

These act by z 7→ −1/z and z 7→ z +1, respectively, on H.
The Laplacian on H is

∆= y 2

�

∂ 2

∂ x 2
+
∂ 2

∂ y 2

�

For s ∈C, we have
∆y s + s (1− s )y s = 0.

We want to make this into a function on Γ\H.
Note that

Im (γz ) =
y

|c z +d |2
,

so in particular Im (S z ) = y
|z |2 .

Using T we can bring any z ∈ H to the region −1/2 ≤ Re(z ) ≤ 1/2. We claim we can fur-
ther move z to the domain |z | ≥ 1. Indeed, using S (and T ) we can keep finding orbits with
increasing y -coordinate. Either we land in {x 2 + y 2 ≥ 1} or we have an infinite sequence of
points tending to the boundary. By discreteness of SL2(Z), it acts discontinuously on H, hence
its orbits have no limit points.

The fundamental case is Γ = SL2(Z). For any finite-index subgroup Γ < SL2(Z), it is clear that
XΓ has finite area.

Definition 3.1.1. We say that Γ is a congruence subgroup of SL2(Z) if Γ (N )⊂ Γ ⊂ SL2(Z) for some
N , where

Γ (N ) = {γ ∈ SL2(Z): γ≡ Id mod N }.
Exercise 3.1.2. Show that SL2(Z) has noncongruence subgroups of finite index.

3.2. Some applications. Why study the spectrum of∆? We will give some fun examples.
Let d (n ) :=

∑

d |n 1. Consider the Dirichlet series

∞
∑

n=1

d (n )
n s

.

It can be analyzed using the identity
∞
∑

n=1

d (n )
n s

= ζ(s )2.

This can also be viewed as the L-function of an Eisenstein series.
What about

∑ d (n )2

n s
?

Use the identity
∑ d (n )2

n s
=
ζ(s )4

ζ(s )
.
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Now let
σi t (n ) =

∑

d |n
d i t ,

imagining that t is real. Then
∞
∑

n=1

|di t (n )|2

n s
=
ζ2(s )ζ(s + i t )ζ(s − i t )

ζ(2s )
. (3.2.1)

This leads to a quick proof of the prime number theorem, as follows. By the standard argument,
the key point is to show that ζ(1+ i t ) 6= 0. By the symmetry of ζ(s ) under complex conjugation,
there would also be a zero at ζ(s − i t ). Then the function in (3.2.1) would be entire. But the left
side is a Dirichlet series with positive coefficients, hence should have radius of convergence
equal to the distance to the nearest pole.

How about the Dirichlet series
∞
∑

n=1

d (n )d (n +h )
n s

?

It is a remarkable fact this has a meromorphic continuation to C with poles at 1/2+ i t j , where
λ j = 1/4+ t 2

j are the discrete eigenvalues of∆ on L 2(XSL2(Z)).
10

3.3. Eisenstein series. From now on let XΓ := Γ\H. This has finite area but is not necessarily
compact or arithmetic. For simplicity we assume there is only one cusp, which has stabilizer

Γ∞ =
§�

1 m
0 1

�

: m ∈ Z
ª

.

Note that y s is a already a Γ∞-invariant eigenfunction of∆.

Definition 3.3.1. Define the Eisenstein series

E (z , s ) :=
∑

γ∈Γ∞\Γ
y (γz )s .

Proposition 3.3.2. The function E (z , s ) enjoys the following properties.

(1) It converges for Re s > 1.
(2) E (z , s ) = E (γz , s ) for γ ∈ Γ .
(3) ∆E (z , s ) + s (1− s )E (z , s ) = 0.
(4) E (z , s ) = y s +O (1) for s fixed and y →∞.

Remark 3.3.3. Note that the Haar measure is d x d y
y 2 . Are these functions E (z , s ) square-integrable?

We need
∫ ∞

A

| f (x , y )|2
d x d y

y 2
<∞.

Hence the growth needs to be o (y 1/2). In other words, E (z , s ) for Re s = 1/2 just barely misses
being L 2. But our series is only defined for Re s > 1, so this is why we need to prove meromor-
phic continuation.

Proof. We prove (1). Choose δ > 0 very small so that the images of B (z0,δ) under Γ are essen-
tially disjoint. Then by the mean value property

∫

B (z0,δ)
y σ

d x d y

y 2
=

y σ

c (δ,σ)
.

10The poles are independent of h , but the residues depend on h .
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We can rewrite this as

y σ = c (δ,σ)

∫

B (z0,δ)
y σ

d x d y

y 2
.

Hence

∑

γ∈Γ∞\Γ
y (γz )σ = y σ + c (δ,σ)

∫

⋃

γ∈Γ∞\Γ−Id B (γz0,δ)
y σ

d x d y

y 2
.

Replacing the union with a part of the fundamental domain, it is bounded by

∫ 1

x=0

∫ h (x )

y=0

y σ
d x d y

y 2
,

which is finite.
The other parts follow easily.

�

Since (∆+ s (1− s ))E (z , s ) = 0, the residue at s = 1 is a harmonic function, hence is constant.
What is this constant?

Proposition 3.3.4. We have

Ress=1 E (z , s ) =
1

Area(Γ\H)
.

Remark 3.3.5. If we can compute this residue in another way, we can use Proposition 3.3.4
to compute the volume of Γ\H. This is Langlands’ idea to compute the Tamagawa number of
algebraic groups. In general, for a split group G this relates the volume of Γ\G and the volume
of M ∩ Γ\M where M is a Levi. This allows to inductively compute the Tamagawa numbers of
split groups.

Proof. Since y s is holomorphic at s = 1, we have

Ress=1 E (z , s ) =Ress=1[E (z , s )− y s ].

By the constancy of Ress=1 E (z , s ) in z , mentioned above, we have for a fundamental domain
Y of Γ\H,

Ress=1[E (z , s )− y s ] =
1

Vol(Y )

∫

Y
Ress=1[E (z , s )− y s ]

d x d y

y 2

=
1

Vol(Y )
Ress=1

∫

Y
[E (z , s )− y s ]

d x d y

y 2

=
1

Vol(Y )
Ress=1

∫

Y

∑

γ∈Γ∞\Γ−Id

y (γz )s
d x d y

y 2
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Now unfold to a fundamental domainF for Γ∞\H:

1

Vol(Y )
Ress=1

∫

Y

∑

γ∈Γ∞\Γ−Id

y (γz )s
d x d y

y 2
=

1

Vol(Y )
Ress=1

∫

F
y s d x d y

y 2

=
1

Vol(Y )
Ress=1

∫ 1

0

∫ h (x )

0

y s−2 d y d x

=
1

Vol(Y )
Ress=1

∫ 1

0

h (x )s−1

s −1
d x

=
1

Vol(Y )
.

�

3.4. Fourier expansion. We assume that we are in the domain of convergence Re s ≥ 1. Since

E (z + `, s ) = E (z , s )

we have a Fourier expansion, writing z = x + i y ,

E (z , s ) =
∑

m

am (s , y )e (m x ).

We will study the Fourier coefficients.
Separating variables, using ∆E (z , s ) + s (1− s )E (z , s ) = 0, we find that am (s , y ) satisfies an

ordinary differential equation

y 2a ′′m (y ) + s (1− s )am (y )− y 24π2m 2am (y ) = 0.

If we make the change of variables bm (y ) = y 1/2am (y ), then bm (y ) solves the differential equa-
tion

b ′′m (y ) + y b ′m (y ) +
�−1/4−?(s )

y 2
−4π2m 2

�

bm (y ) = 0.

There is a 2-dimensional space of solutions. We want to think about the behavior as y →∞
(much as we did when reasoning about the mean value property). If m 6= 0, there is a 1-
dimensional solution space which decays (exponentially) at∞ and a 1-dimensional space that
grows exponentially. On the other hand, by Proposition 3.3.2 we know that E (z , s ) = y s +O (1)
as y →∞. Since

∫

|E (z , s )|2 d x =
∑

|am (y )|2

we must have |am (y )| = O (y 2σ). Hence the mth coefficient of E (z , s )must pick the exponen-
tially decaying solution.

You can check that for m 6= 0, this solution is

am (y ) = am y 1/2Ks−1/2(2π|m |y ).

For m = 0, the solutions are y s , y 1−s except at s = 1/2, you get y s and y s log y . Therefore
∫ 1

0

E (z , s )d x =αs y s +βs y 1−s .

From the known behavior of E (z , s ) as y →∞, we know that α = 1. Selberg called φ(s ) := βs .
This is holomorphic for Re s � 1.



18 LECTURES BY PETER SARNAK

We have concluded the expansion

E (z , s ) = y s +φ(s )y 1−s +
∑

m 6=0

am y 1/2Ks−1/2(2π|m |y )e (m x ). (3.4.1)

In particular,
E (z , s ) = y s +φ(s )y 1−s +Os (e

−c y ) for some c > 0.

Since y is bounded away from 0, the concern for square-integrability is at y →∞. Since we
have to balance y s and y 1−s , we want to be on the line Re s = 1/2. It’s also an issue that φ(s )
might have a pole – this has to do with the famous “residues of Eisenstein series”. Hence this
suggests that to get to the L 2(XΓ ) continuous spectrum, we need to meromorphically continue
E (z , s ) to the line Re s = 1/2.11

Exercise 3.4.1. Show that the spectrum of∆ is partly continuous. Hint: start with the function
y 1/2+i t , for t ∈R such that s (1− s ) = 1/4+ t 2. This isn’t L 2, so we use a cutoff functionψA,t (z ) =
η(y )y 1/2+i t where η(y ) is a smooth function supported in (A, 2A) so that

||∆ψA,t − (1/4+ t 2)ψA,t || → 0 as A→∞

while ||ψA,t ||2 = 1.

Corollary 3.4.2. The spectrum of∆|L 2(XΓ ) contains [1/4,∞).

Exercise 3.4.3. If Γ = SL2(Z), show that

E (z , s ) = y s +
Λ(2s −1)
Λ(2s )

y 1−s +
∞
∑

n=1

2σs−1/2(m )
Λ(2s )

y 1/2Ks−1/2(2πm y )cos(2πm x )

where
Λ(s ) =π−s/2Γ (s/2)ζ(s )

is the completed ζ function, henceφ(s ) = Λ(2s−1)
Λ(2s ) , and

σw (n ) =
∑

d |n
d w .

Hint: use a coset decomposition

Γ∞\Γ ∼= {
�

∗ ∗
c d

�

: (c , d ) = 1}.

Here is an interesting application, due to Deuring.

Theorem 3.4.4 (Deuring). Suppose that the Riemann Hypothesis is false. Then h (Q (
p
−D )) = 1

for only finitely many D .

Proof. We use the fact that there are h (D ) inequivalent binary quadratic forms of discriminant
D < 0. Let E ∗(z , s ) =Λ(2s )E (z , s ). Then we have the identity

ζQ(
p
−D )(s ) =

∑

z j∈CM(−D )

E ∗(z j , s ).

On the other hand, we have
ζ(s )L (s ,χ−D ) = ζQ(

p
−D )(s ).

11In Langlands’ normalization, this is Re s = 0.
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Suppose h (−D ) = 1. The principal class is always attached to the CM point z1 = − 1
2 +

i
p

D
2 .

Consider the identity
E (z1, s ) = ζ(s )L (s ,χ−D ).

Let ρ be a zero of ζ(s ) with Re s > 1/2. Then E ∗(z1,ρ) = 0, but using the Fourier expansion
(3.4.1) we also have

E ∗(z1,ρ) =Λ(2ρ)(
p

D )ρ +Λ(2ρ−1)(
p

D )1−ρ +O (e −c
p

D ).

Since the error term goes to 0, this is only possible ifρ = 1/2 since the first term dominates. �

Remark 3.4.5. This idea is used to solve the “class number problem”, which is to find for fixed
m which D have h (D ) =m . An effective solution was provided by Goldfeld, using the Gross-
Zagier formula – it yields

h (D )≥
log |D |
10120

.

Obviously, this isn’t very practical. One would like to have a method to bring the bound down
from 10120 to something like 1010. Such a method was given by S. Arno, which allows to check
intermediate values. The idea is to examine the equation

E (z , s ) = y s +φ(s )y 1−s +o (e −c y )

and to use the zeros of ζ to deduce small relations among the imaginary parts.

4. ANALYTIC CONTINUATION OF EISENSTEIN SERIES

4.1. Analysis of the kernel function. We now consider a general lattice Γ ⊂ SL2(Z). The most
important thing is to understand the behavior of the point-pair kernel as you go into the cusp.

Let k ∈ A(H), and recall that we defined k to have compact support12. Let

kΓ (z , s ) =
∑

γ∈Γ
k (γz , s ).

We study the attached kernel KΓ on Γ\H. On H, all point-pair invariants k (z ,ζ) are functions in
the hyperbolic distance function,

d (z ,ζ) =
|z −ζ|2

yη
z = x + i y ,ζ= ξ+ iη.

Let k (z ,ζ) =Φ(d (z ,ζ)), so Φ has compact support. A key identity is the unfolding property
∫

Γ\H
kΓ (z ,η) f (ζ)dζ=

∫

H

k (z ,ζ) f (ζ)dζ. (4.1.1)

If f (ζ) is an eigenfunction of∆ on Γ\H, say with eigenvalue λ= s (1− s ), then by Lemma 2.3.5,
∫

H

k (z ,ζ) f (ζ)dζ= bk (s (1− s )) f (z )

where

bhk (s (1− s ))i =

∫

H

k (i ,ζ)ηs dξdη

η2
.

12In practice this is occasionally relaxed to allow k to decay rapidly (basically because compact support is not pre-
served by Fourier transform).
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We can write
|z −ζ|2

yη
=
(x −ξ)2

yη
+

y

η
+
η

y
−2.

We want to study kΓ (z ,ζ) as a function on Γ\H×Γ\H when z or ζ→∞ in the cusp. In particular
we want to understand why it is not Hilbert-Schmidt.

If z is fixed and η→∞, then kΓ (z ,ζ)≡ 0, and vice versa. The problem is when z ,ζ are both
going to∞ at “the same pace”. So imagine that y and η both get large; the idea is that the only
Γ -translates of z which are close to ζ are the translates under T , since the metric is d z

y 2 :
∑

γ∈Γ
k (γz ,ζ) =

∑

m∈Z

k (z +m ,ζ).

Now we use Poisson summation. (In general the sum would be over a unipotent radical, and
you can still apply Poisson summation.)

Remark 4.1.1. When do you use Poisson summation? Consider a sum
∑

n

f (n t )

with f decaying rapidly (imagine that everything has compact support). Poisson summation
says

∑

n

f (n t ) =
1

t

∑

m

bf (m/t ).

If t is large, then the spacing is large. In that case you shouldn’t apply Poisson summation, since
it will transform the large sum to a short one.

In summary: if t is large, then leave it alone. If t is small, dualize. This basically amounts to
replacing a sum by an integral.

Write

ψy ,η,x ,ξ(t ) =Φ

�

(x −ξ+ t )2

yη
+

y

η
+
η

y
−2

�

.

Since y ,η are getting large, this is becoming a short sum, so we should dualize. The Fourier
transform is

Òψ(τ) = e 2πi x−ξp
yητ(yη)1/2

∫

R

Φ(u 2+
y

η
+
η

y
−2)e 2πi

p
yητu d u .

The upshot is that we have uniformly in η, y ≥ 1/2, a contribution from τ = 0 in the Poisson
sum plus negligible stuff.

∑

m∈Z

k (z ,ζ+m ) =
∑

m∈Z

ψy ,η,x ,ξ(m )

= (yη)1/2
∫

R

Φ(u 2+
y

η
+
η

y
−2)e 2πi

p
yητu d u +ON ((yη)

−N )

=

∫

R

k (z ,ζ+ t )d t +O ((yη)−N ).

The key estimate is:

∑

m∈Z

k (z ,ζ+m ) =

∫

R

k (z ,ζ+ t )d t +O ((yη)−N ). (4.1.2)
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To summarize, we have found that

kΓ (z ,ζ) =

¨

0 y
η +

η
y ≥ A2 = A2(k )

∼ (yη)1/2+O ((yη)−N ) otherwise.
(4.1.3)

In particular, we see explicitly that kΓ (z ,ζ) is not Hilbert-Schmidt, as expected (since the spec-
trum is not discrete).

What’s coming next? We’re going to try to use Fredholm theory to analytically continue. For
Re s > 1, E (z , s )makes sense and so does

KΓ (E (z , s )) =

∫

H

k (z ,ζ)E (ζ, s )dζ= bk (s (1− s ))E (z , s ).

We’ll eventually express the Eisenstein series as a Fredholm determinant and deduce analytic
continuation in that way.

Lemma 4.1.2 (Uniqueness principle). If f is an eigenfunction of∆ on Γ\H of moderate growth,
with eigenvalue λ= s (1− s ) for Re s > 1, then f (z ) =αE (z , s ) for some constant α.

Proof. We have seen that moderate growth for f implies that f (z ) =αy s +β y 1−s +O (1) as y →
∞. (Here is where moderate growth is used. The argument is the same as for the Eisenstein
series, §3.4.) So define

F (z ) = f (z )−αE (z , s ) =β ′y 1−s +O (1) as y →∞.

So F ∈ L 2(XΓ ), and is an eigenfunction of ∆, so its eigenvalue is real (self-adjointness) and
positive (integration by parts). But s (1− s ) is not real and positive if Re s > 1, we must have
F = 0. �

Note the importance of using L 2-theory, which was introduced by Selberg. Earlier, people
had thought of modular forms as living in finite-dimensional spaces.

4.2. Cutoff functions. Let αA(y ) be a smooth function which is 1 if y ≥ A and 0 if y ≤ A − 1,
thinking A to be large. Now define

αA(z ) =

¨

αA(y ) y ≥ A−1,

0 otherwise

viewed as an automorphic function. Define

eE (z , s ) = E (z , s )−αA(z )y
s .

Since y s is also an eigenfunction of ∆ with eigenvalue s (1− s ) this is an eigenfunction with
eigenvalues s (1 − s ) off a compact set. By the asymptotic of Proposition 3.3.2, we will have
eE (z , s ) ∈ L 2(XΓ ), and

K ( eE (z , s )) = bk (s (1− s )) eE (z , s ) +G (z , s )
where

G (z , s ) = K (α(z )y s )− bk (s (1− s ))α(z )y s .

has compact support and extends to an entire function. We have (still assuming Re s > 1)

(K − bk (s (1− s ))) eE (z , s ) =G (z , s ).

If we can invert (K − bk (s (1− s ))) then we win. But we know this is problematic because (K −
bk (s (1 − s ))) is not compact. We will modify it to be compact. This forces us to break self-
adjointness.
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One proof is to use the resolvent to prove analytic continuation to the line Re s = 1/2, using a
compactness argument to deduce finitely many poles in [1/2, 1]. This was Selberg’s first proof,
but it is very complicated.

We will give a different proof, by cutting off K . Define a smooth function ek (z ,ζ) on Γ\H×Γ\H
by:

ek (z ,ζ) = k (z ,ζ)−α(z )
∫

R

k (z ,ζ+ t )d t

︸ ︷︷ ︸

=:k0(z ,ζ)

. (4.2.1)

The idea is that if z is large, the two things are trying to behave the same. From the analysis
of k (z ,ζ) in the cusp (4.1.3), ek (z ,ζ) is rapidly decreasing (in each variable) as z ,ζ→∞.13 So
ek is Hilbert-Schmidt, hence gives a compact operator on L 2(XΓ ). We can then apply Fredholm
theory.

Remark 4.2.1. There is a natural subspace of L 2
cusp(XΓ )⊂ L 2(XΓ ), called the cuspidal subspace.

It is defined to be the subspace of f such that
∫ 1

0

f (x + i y )d x = 0 for a.e. y .

Exercise 4.2.2. Show that L 2
cusp(XΓ ) is invariant under A(H ).

Note that eK |L 2
cusp(XΓ ) = K |L 2

cusp(XΓ ) because the correction term depends on the constant term.

Hence the compactness of eK immediately gives:

Corollary 4.2.3. The restriction K |L 2
cusp(XΓ ) is compact.

We can then apply the theory of compact operators to deduce that the spectrum of L 2
cusp(XΓ )

is discrete.

4.3. Meromorphic continuation. We now apply our operator eK , with kernel k (z ,ζ)− k0(z ,ζ)
to E (z , s ). Since k0(z + x ,ζ) = k0(z ,ζ), the term k0 only picks up the 0th Fourier coefficient of
E (z , s ). Hence we have

eK (E (z , s )) = bk (s (1− s ))E (z , s )−K0(y
s +φ(s )y 1−s )

where

K0(y
s ) =αA(y )

∫

k (z ,ζ)ηs d z dη

η2

=αA(y )bk (s (1− s ))y s .

Hence we have

( eK − bk (s (1− s )))E (z , s ) =−αA(y )bk (s (1− s ))(y s +φ(s )y 1−s ). (4.3.1)

This looks like a resolvent. We could try to use Fredholm theory, but there are two problems.

(1) The right side is not in L 2.
(2) The right side involves φ(s ), so we would need to have control over φ(s ). This shows

that meromorphic continuation of E (z , s ) amounts to meromorphic continuation of
φ(s ). (The slogan is that “meromorphic continuation of Eisenstein series is equivalent
to the meromorphic continuation of the constant term.”)

13Note that although the first term k (z ,ζ) is self-adjoint, the second term k0(z ,ζ) is certainly not.
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The first issue (1) is easily solved by cutting off the Eisenstein series, since ek (z ,ζ) is rapidly
decreasing. The second issue (2) is more difficult to deal with.

We write down a key auxiliary equation. Let E ∗(z , s ) solve the integral equation

[ eK − bk (s (1− s ))]E ∗(z , s ) =−αA(y )bk (s (1− s ))y s . (4.3.2)

The RHS of (4.3.2) is not in L 2, but it is analytic in s , on all of H. We will then use Fredholm
theory to solve for E ∗(z , s ). Set E ∗∗(z , s ) = E ∗(z , s )−α(y )y s , which is defined for Re s � 0. Then
E ∗∗(z , s ) satisfies

( eK − bk (s (1− s )))E ∗∗(z , s ) = eK (αA(y )y
s ). (4.3.3)

Now the RHS of (4.3.3) is in L 2(Γ\H), so we can apply Fredholm theory. We deduce that for s
outside the spectrum of eK , we can define E ∗∗(z , s ) in a big ball in the s parameter, as large as
we please. Hence E ∗∗(z , s ) extends to all of C as a meromorphic function for any fixed z , with
poles independent of z . Hence E ∗(z , s ) has a meromorphic continuation to C.

Now we have to put φ(s ) back. By the symmetry of the differential equation (4.3.2) with
respect to s 7→ 1− s , we have E ∗(z , s ) = E ∗(z , 1− s ) for all Re s > 1. We then have

( eK −k (s (1− s )))(E ∗(z , s ) +φ(s )E ∗(z , 1− s )) =−αA(y )bk (s (1− s ))(y s +φ(s )y 1−s ).

On the other hand, recall that

( eK −k (s (1− s )))(E (z , s )) =αA(y )bk (s (1− s )) =−α(y )bk (s (1− s ))(y s +φ(s )y 1−s ).

The point is that this is the same differential equation. Now we apply a uniqueness principle.

Lemma 4.3.1. For Re s > 1, E (z , s ) = E ∗(z , s ) +φ(s )E ∗(z , 1− s ).

Proof. For Re s > 1, we know that E ∗∗(z , s ) ∈ L 2(Γ\H ), hence f (z ) := E (z , s )−E ∗(z , s ) and satis-
fies

( eK − bk (s (1− s )))F (z , s ) = 0.

We can choose s so that bk (s (1− s )) is not in the spectrum of eK , and then we find that F (z , s )≡
0. �

Therefore, the analytic continuation of E (z , s ) is reduced to the analytic continuation ofφ(s ).

Lemma 4.3.2. For Re s > 1, and s ∈R not a pole of E ∗(z , s ) or E ∗(z , 1− s ), the function E ∗(z , s )+
λE λ(z , 1− s ) is an eigenfunction for∆with eigenvalue s (1− s ) if and only if λ=φ(s ).

Proof. If λ 6=φ(s ), consider

f (z , s ) = (E ∗(z , s ) +φ(s )E ∗(z , 1− s ))− (E ∗(z , s ) +λE ∗(z , 1− s )).

Then f (z , s ) is an eigenfunction with eigenvalues s (1− s ) for∆. For Re s > 1, it is in L 2 and off
the spectrum, hence F = 0 and λ = φ(s ). This gives an expression for λ with a visible analytic
continuation. �

Consider the system of linear differential equations for w ∈Y (the fundamental domain):

∆(E ∗(w , s ) +λE ∗(w , s ))+ s (1− s )(E ∗(w , s ) +λE ∗(w , 1− s )) = 0.

Assuming Re s > 1, by Lemma 4.3.2 this system is rank 1 and solvable in λ, i.e. there exists
w0 ∈Y (fundamental domain) where system is equivalent to the single equation

∆(E ∗(w0, s ) +λE ∗(w0, s ))+ s (1− s )(E ∗(w0, s ) +λE ∗(w0, 1− s )) = 0.

Rewrite this as

∆(λ(s )E ∗(w0, s )) =−s (1− s )(E ∗(w0, s ) +λE ∗(w0, 1− s ))−∆(E ∗(w0, s )
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This presents λ(s ) = φ(s ) as the solution to a differential equation which has meromorphic
continuation to all of C. �

4.4. The functional equation. Although we’ve now proved the meromorphic continuation, in
practice we need to be able to control the function. We have control for Re s > 1, by the explicit
equation, hence also for Re s < 0. To use a Phragmen-Lindelöf principle to control the critical
strip, we need to prove that the order is finite. In fact, the order of any automorphic L-function
should conjecturally be 1.

Theorem 4.4.1 (Functional equation). We have the following.

(1) E (z , 1− s ) =φ(1− s )E (z , s ).
(2) φ(s )φ(1− s ) = 1.
(3) |φ(1/2+ i t )|= 1, andφ is analytic on Re s = 1/2.

This gives us

E (z , 1/2+ i t ) = y 1/2+i t +φ(1/2+ i t )y 1/2−i t + . . . .

Proof. Define
f (z , s ) =φ(1− s )E (z , s )−E (z , 1− s ).

The constant term is

φ(1− s )y s +φ(1− s )φ(s )y 1−s − y 1−s −φ(1− s )y s =φ(1− s )φ(s )y 1−s − y 1−s .

Hence for Re s > 1 we have f (z , s ) ∈ L 2(Γ\H). We can choose s so that it is an eigenfunction off
the spectrum of eK , hence F = 0. The equation φ(1− s )φ(s ) = 1 follows by comparing the y 1−s

terms. �

5. THE CONTINUOUS SPECTRUM

5.1. Maass-Selberg relation. For A large and fixed, make a cutoff so that

eEA(z , s ) =

¨

E (z , s )− y s −φ(s )y 1−s y ≥ A,

E (z , s ) y < A.

We emphasize that we want this sharp cutoff – it is not continuous. We now want to compute
the inner products of these functions for different values of s .

Lemma 5.1.1. For Re s > 1, we have
∫

Y

eEA(z , s1) eEA(z , s2)d A(z ) =
As1+s2−1−A1−s1−s 2φ(s1)φ(s2)

s1+ s2−1
+
φ(s2)As1−s2 −φ(s1)As2−s1

s1− s2
.

Proof. The proof works by cutting the region Y into pieces where the functions are smooth,
and applying Stoke’s theorem. We’ll skip this calculation and focus on explaining qualitatively
why the right hand side only depends on the constant term of the Eisenstein series. The point
is that since we’ve only monkeyed around with the constant term, the answer can only depend
on the constant term. �

We now draw up two specific cases of Lemma 5.1.1. Appling Lemma 5.1.1 with s1 = s2 = s =
σ+ i r , we find that

∫

Y
| eEA(z , s )|2 d A(z ) =

A2σ−1− |φ(σ− i r )|2A1−2σ

2σ−1
+
φ(σ+ i r )A2i r −φ(σ+ i r )A−2i r

2i r
. (5.1.1)
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Now fixing r 6= 0 and lettingσ→ 1/2, we find
∫

Y
| eEA(z , s )|2 d A(z ) = 2 log A−

φ′

φ
(1/2+ i r ) +

φ(1/2+ i r )A2i r −φ(1/2+ i r )A−2i r

2i r
. (5.1.2)

On the other hand, fixingσ 6= 1/2 and taking r → 0 we find
∫

Y
| eEA(z , s )|2 d A(z ) =

A2σ−1−φ(σ)2A1−2σ

2σ−1
+φ(σ) log A−φ′(σ). (5.1.3)

Corollary 5.1.2. The function E (z , s ) is holomorphic in Re s ≥ 1/2 with only simple poles in
[1/2, 1].

Proof. Suppose E (z , s ) has a pole at s = ρ, with Re ρ > 1/2. We first want to show that the
zeroes need to lie on the real line. Note that the poles of E (z , s ) are a subset of the poles ofφ(s ).
So we have

E (z , s ) = y s +φ(s )y 1−s + . . .

withφ(s ) controlling poles of E (z , s ). Ifρ(1−ρ) is not real, then the leading pole term in E (z , s ),
say u (z ), is an eigenfunction of∆ with eigenvalue ρ(1−ρ), and is in L 2 because y s is square-
integrable for Re s > 1/2. But this contradicts the fact that∆ is self-adjoint. Thus the poles are
in (1/2, 1].

Supposeφ has a pole of order> 1 atσ0. Then the right hand side of (5.1.3) would be negative
nearσ0, contradicting the obvious positivity of the left hand side. �

The residues of E (z , s ) at the poles ρ1, . . . ,ρn are ui (z ) ∈ L 2(Γ\H), with eigenvalue ρi (1−ρi ).
These are part of the discrete spectrum of Γ\H.

5.2. Application. Let Γ = SL2(Z). The Eisenstein series is

E (z , s ) = y s +φ(s )y 1−s +
1

Λ(2s )

∑

m 6=0

σs−1/2(|m |)y 1/2Ks−1/2(2π|m |y )e (m x ),

whereφ(s ) = Λ(2s−1)
Λ(2s ) , Λ(s ) =π−s/2Γ (s )ζ(s ).

Let’s use what we have developed to prove the prime number theorem. Suppose for t0 ∈ R,
we have ζ(1+ i t0) = 0. Then the term 1

Λ(1s ) would have a pole on Re s = 1/2, so by inspection of
any non-zero Fourier coefficient in this Fourier expansion we find that E (z , s ) has a pole. But
φ(s ) has no pole on Re s = 1/2, contradiction.14 �

5.3. Continuous spectrum. Using the theory of Eisenstein series, we determine the L 2-continuous
spectrum. Let X = Γ\H, and let YΓ ⊂ H be a fundamental domain for Γ . Let f , g ∈ C∞c (0,∞)
and consider

F (z ) :=

∫ ∞

0

f (r )E (z , 1/2+ i r )d r,

G (z ) :=

∫ ∞

0

g (r )E (z , 1/2+ i r )d r.

14In general, all proofs of non-vanishing come from this argument: examine a non-constant Whittaker coefficient
for the Eisenstein series.
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This is almost in L 2 since pointwise it is. Then we easily compute that
∫ ∞

0

f (r )g (r )d r =
1

2π

∫

YΓ
F (z )G (z )d A(z ).

Hence the association f 7→ F induces an isometry from L 2(0,∞) to L 2(Γ\H). In this sense the
Eisenstein series E (z , 1/2+ i r ) furnishes the L 2 continuous spectrum of Γ\H, and the eigen-
value of F is

∆F (z ) =−
∫ ∞

0

f (r )(1/4+ r 2)E (z , r )d r.

Lemma 5.3.1. We have

〈F,G 〉YΓ =
∫

Γ\H
F (z )G (z )d A(z ) = 2π

∫ ∞

0

f (r )g (r )d r

Proof. Let A be a large parameter (for cutoff). We’ll apply the Maass-Selberg relation, soset

EA(z , 1/2+ i t ) = E (z , 1/2+ i t )−δA(y )(y
1/2+i t +φ(1/2+ i t )y 1/2+i t )

where δA(y ) is a sharp cutoff

δ(A)(y ) =

¨

1 y ≥ A

0 y < A.

We then write

F (z ) =δA(y )

∫ ∞

0

(y 1/2+i r +φ(1/2+ i r )y 1/2−i r ) f (r )d r

︸ ︷︷ ︸

F1(z )

+

∫ ∞

0

EA(z , 1/2+ i r ) f (r )d r

︸ ︷︷ ︸

F2(z )

.

Using integration by parts, we find that F1(z ) = y 1/2O (1/(log y )N ) for any N . This estimate
shows that F1(z ) ∈ L 2(YΓ ), hence also F2(z ) ∈ L 2(YΓ ). Now we have

〈F,G 〉YΓ = 〈F1+ F2,G1+G2〉= 〈F1,G1〉+ 〈F1,G2〉+ 〈F2,G1〉+ 〈F2,G2〉.

The term 〈F1,G1〉 is
∫

Γ\H
F1(w )G1(w )δA(y )d A(w )

Since |F1|2 and |G1|2 are both rapidly decreasing in y , and δA cuts off y ≥ A, this goes to 0 as
A→∞.

The two cross terms have the form
∫ ∫ ∫

δA(y ) f (r )g (r
′)EA(w , 1/2+ i r )(y 1/2+i r +φ(1/2+ i r )y 1/2−i r )d r d r ′d A(w )

which is 0 because A cuts off for large A,where EA has no constant term.
The final term is

∫

Y

∫ ∞

0

∫ ∞

0

f (r )g (r ′)EA(w , 1/2+ i r )EA(w , 1/2+ i r ′)d r d r ′d A(w ).
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We change the order of integration to move the integral over Y on the inside, and then apply
the Maass-Selberg relation (5.1.1), obtaining
∫ ∞

0

∫ ∞

0

f (r )g (r ′)

�

Ai (r+r ′)φ(1/2+ i r ′)−φ(1+ i r )A−i (r+r ′)

i (r + r ′)

�

︸ ︷︷ ︸

(I)

+ f (r )g (r ′)

�

Ai (r−r ′)−A−i (r−r ′)

i (r − r ′)

�

︸ ︷︷ ︸

(II)

+ f (r )g (r ′)

�

A−i (r−r ′)(1−φ(1/2+ i r )φ(1/2+ i r ′))
i (r − r ′)

�

︸ ︷︷ ︸

(III)

d r d r ′

We’ll study the limit A→∞. Note that 1
r+r ′ is bounded on the support of the integrand, since

f , g are compactly supported. Hence by the Riemann-Lebesgue Lemma, (I)→ 0 as A→∞.
Since

1−φ(1/2+ i r )φ(1/2+ i r ′)
i (r − r ′)

is analytic, Riemann-Lebesgue also implies that (III)→ 0 as A→∞.
Finally (II) is

2

∫ ∞

0

f (r )
sin(log A(r − r ′))

r − r ′
d r → 2π f (r ′) as A→∞

using that
∫∞
−∞

sin x
x d x =π, i.e.

1

2π

∫ ∞

0

sin(log A · x )
x

d x

is an approximate identity as A→∞. �

Lemma 5.3.1 says that “E (z , 1/2+ i r ) are sort of orthogonal”. It is the analogue of Parseval’s
formula: for

bf (ξ) =

∫

f (x )e (−xξ)d x

we have

〈 bf , bg 〉= 〈 f , g 〉.

5.4. Incomplete Eisenstein series. Letψ(y ) ∈C∞c (R>0). We can form the Eisenstein series

E (ψ) :=
∑

γ∈Γ∞\Γ
ψ(y (γz )).

This is a smooth function, in C∞c (Γ\H), so it’s certainly in L 2(Γ\H).
We can determine E (ψ) in terms of Eisenstein series. Consider the Mellin transform

eψ(s ) =

∫ ∞

0

ψ(y )y −s d y

y

is entire and decays rapidly in |t | if s = σ+ i t for fixed σ. Then the Mellin inversion formula
gives

ψ(y ) =
1

2πi y

∫

Re s=σ>1

eψ(s )y s d s .
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Then we have

E (ψ) =
∑

ψ(y (γz )) =
1

2πi

∫

Re s=σ

eψ(s )E (z , s )d s .

Thus we have defined an operator

Eis: C∞c (R>0)→Aut(Γ\H)

sendingψ 7→ E (ψ).

Remark 5.4.1. The point of functional analysis is to get good bounds on operators defined on
well-behaved functions. This implies that the operators extend automatically by completion.

Now we are going to shift the contour to the line Re s = 1/2, which is permissible by niceness
of eψ. The point is that we residues we pick up are controlled by the results on poles of E (z , s )
with Re s ≥ 1/2 established earlier in Corollary 5.1.2, they are at most simple poles, and are real,
with finitely many in (1/2, 1] with residues are L 2 eigenfunctions contributing to the discrete
spectrum.

We can write

E (ψ) =
∑

residues s∈(1/2,1]

eψ(s ) +

∫

Re s=1/2

eψ(
1

2
+ i r )E (

1

2
+ i r )d r.

So E (ψ) spans a subspace of L 2(Γ\H) lying in the continuous spectrum and the space of residues
of Eisenstein series. Is there anything else? Let E be the span of the E (ψ)’s in L 2(Γ\H), forψ as
above. We will now examine E⊥.

5.5. Cusp forms. Let f ∈ L 2(Γ\H) such that 〈 f , E (ψ)〉= 0 for allψ. This condition unravels to
∫

Γ\H
f (z )E (ψ)(z )d A(z ) =

∫ ∞

0

∫ 1

0

f (z )ψ(y )
d x d y

y 2
.

If this is to vanish for allψ, then clearly we must have

c ( f ) =

∫ 1

0

f (x + i y )d x = 0 for a.e. y .

Define the space of cusp forms

L 2
cusp(Γ\H) := E

⊥ = { f ∈ L 2(Γ\H):
∫

f (x , y )d x = 0 for a.e. y }.

This is invariant under∆ and the point-pair algebra A(H).
Let me give a cleaner representation-theoretic description of cusp forms, which leads the

way to a generalization for an arbitrary semisimple group.
Let G = SL2(R). We define L 2

cusp(Γ\G ) by the condition
∫

N∩Γ\N
f (ng )d n = 0 for a.e. g

where N = {
�

1 ∗
1

�

}. (In general, you take the unipotent radical of every rational parabolic.)

Clearly L 2
cusp(Γ\G ) is invariant under the right regular representation. Of course, it could be

0. In fact it often is 0.
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Recall that in the proof of the meromorphic continuation, we introduced a cutoff operator

ek (z ,ζ) = k (z ,ζ)−ηA(y )

∫

R

k (z ,ζ+ t )d t .

This was a compact operator. Also, eK |L 2
cusp(Γ\H) = K |L 2

cusp(Γ\H) is both normal and compact. Hence
the spectrum of K on cusp forms is discrete.

Corollary 5.5.1. The spectrum of∆ or of A(H) on L 2
cusp(Γ\H) is discrete, and there is an orthonor-

mal basisφ1, . . . ,φ2 of simultaneous eigenfunctions.

Finally, we have a spectral decomposition

f =
∑̀

j=1

〈 f ,ψi 〉

︸ ︷︷ ︸

residual spectrum

+

∫

〈 f , E (1/2+ i r )〉E (z , 1/2+ i r )d r

︸ ︷︷ ︸

continuous spectrum

+
∑

j

〈 f ,φ j 〉φ j (z )

︸ ︷︷ ︸

cuspidal spectrum

.

5.6. The case of general hyperbolic surfaces. Let Γ ⊂ SL2(R) be a discrete subgroup, such that
XΓ := Γ\H has finite area. Then XΓ has finitely many cusps, say ξ1,ξ2, . . . ,ξn−1,∞. For each
cusp ξ j , let yj be the “y -variable” for the j th cusp. Then we can form an Eisenstein series
E j (z , s ) for each j . The expansion of Ei in the j th cusp looks like

Ei (z , s ) =δi j (y
j )s +φi j (s )(yj )

1−s + (higher coefficients).

Let
Φ(s ) = (φi j (s ))n×n .

As before, we have
Φ(s )Φ(1− s ) = Id,

with Φ(1/2+ i t ) being unitary. Letting φ(s ) = detΦ(s ), we have |φ(1/2+ i t )| = 1. The space of
cusp forms is defined to be the orthogonal complement of the space of Eisenstein series (com-
ing from all cusps). The analytic continuation is proved as before, using cut-offs and auxiliary
equations.

Define the Eisenstein vector

E (z , s ) =





E1(z , s )
...

En (z , s )



 .

It satisfies the functional equation

E (z , s ) =Φ(1− s )E (z , s ).

We have a spectral decomposition of L 2(XΓ ) (coming from Maass-Selberg), into the pieces

• L 2
cusp(XΓ ), which has discrete eigenvalues,

• the residues of of Eisenstein series, which also have discrete spectrum, and
• the continuous spectrum coming from Eisenstein series.

Let u1, . . . , be the eigenfunctions corresponding to the discrete spectrum. From this spectral
decomposition we obtain that any f can be written as

f =
∑

j

〈 f , u j 〉+
∫ ∞

−∞
〈 f , E j (z , 1/2+ i t )〉E j (z , 1/2+ i t )d t .
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6. APPLICATIONS

6.1. The Arthur-Selberg trace formula. The theory of Eisenstein series was developed for the
trace formula. We’ll state what it says for finite area hyperbolic surfaces (i.e. the rank 1 case),
and hint at some applications.

Let g be an even, smooth function on R of compact support. Let

h (t ) =

∫ ∞

−∞
g (x )e i t x d x

Remark 6.1.1. Although h (t ) is the Fourier transform of g , we want to emphasize that it plays
a very different role from g hence should not be viewed as being in a symmetric position: g is
compactly supported on R while h extends to an entire function on C.

For λ j in the spectrum, write λ j = 1/4+ t 2
j , normalized with t j ≥ 0 if λ j ≥ 1/4, and Re t j > 0

if 0≤λ j ≤ 1/4. Consider
∞
∑

j=0

h (t j )−
1

2π

∫ ∞

−∞
h (t )

φ′

φ
(1/2+ i t )d t .

Note that we haven’t yet proved that
∑∞

j=0 h (t j )makes sense. 15

Theorem 6.1.2 (Trace formula). With the notation above, we have
∞
∑

j=0

h (t j )−
1

2π

∫ ∞

−∞
h (t )

φ′

φ
(1/2+ i t )d t

=
A(XΓ )

4π

∫ ∞

−∞
t · tanh(πt )h (t )d t+

∑

{R }Γ elliptic
(finite order m)

m−1
∑

k=1

1

m sin(πk/m )

∫ ∞

−∞

e −2πt k/m

1− e −2πt
h (t )d t

+2
∑

{P }Γ

∞
∑

k=1

log N (P )
N (P )k/2−N (P )−k/2

g (k log N (P ))

+CΓ ,n g (0) +
1

2
(n −TrΦ(1/2))h (0)−

n

π

∫ ∞

−∞
h (t )

Γ ′

Γ
(1+ i t )d t .

Here

• n is still the number of cusps, and
• P denotes a hyperbolic conjugacy class, which means it can be diagonalized as

�

λ
λ−1

�

with λ> 1 real. By definition, N (P ) =λ2.

Remark 6.1.3. The left hand side of the trace formula is the “spectral side”, and the right hand
side is the “geometric side”. You think of the right hand side as being the computable one. In
the “simple trace formula” (i.e. the case where Γ is cocompact) you see only the first two terms
on the right hand side. The Eisenstein series contributes the second term on the left hand side.

15Note that since λ0 = 0 is an eigenvalue, t0 = i/2 so we are already uses that h admits an analytic continuation.
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You can think of this as a formula as a trace on the discrete spectrum, which is the mysterious
part.

Proof sketch. Take a kernel function k (x , y ) and form

K (x , y ) =
∑

γ∈Γ
k (γx , y ).

Setx = y and try to compute the trace. By decomposing the kernel spectrally, you get the left
side. By unfolding the integral, you get the right side. �

How can you use the formula? If we make f big and long, then bf will be very localized.
Localizing h or g gives a formula for the “counting function” on the left or right side.

(1) Let hR (t ) = h0(t /R ) for some h0. As R →∞, this localizes g to a delta function at 0. So
the trace formula becomes

∑

t j≤R

1−
1

2π

∫ R

−R

φ′

φ
(1/2+ i t )d t

︸ ︷︷ ︸

≥ 0 for large R

∼
A(XΓ )

4π
R 2 ∼

A(XΓ )
4π

R 2

(We are only counting real t j since the contribution form the finitely many imaginary
t j becomes negligible).

(2) Swapping the roles of g and h , i.e. considering the family gR (t ) = g0(t /R ), the formula
instead count the geodesics by length, yielding the “prime geodesic theorem”: defining
π(X ) = #{P : N (P )≤ X }, i.e. the number of closed geodesics of length at most log X , we
have π(X )∼ X

log X .

Remark 6.1.4. The trace formula is sort of analogous to Riemann’s Explicit formula: for h and
g as above, writing the zeroes of ζ(s ) as 1/2+ iγ j , then

∑

j

−h (γ j )∼
∫

Γ ′

Γ
(1/4+ i t )h (t )d t −

∑

p

∑

k

log p

p k/2−p−k/2
g (k log p ).

Langlands and Shelstad understood that the trace formula could be used to many other pur-
poses, especially to prove functoriality. The philosophy is that you can compute the orbital
integrals, and you want to use this to understand the eigenvalues. You want to compare the
geometric sides of different trace formula, in order to compare the spectral sides.

6.2. Existence of cusp forms. We say that Γ ⊂ SL2(Z) is a congruence subgroup if Γ ⊃ Γ (N ). In
this case one can generalize the computation of φΓ (s ), expressing it as a ratio of products of
(completed) L-functions16 of the form

Λ(2s −1,χ)
Λ(2s ,χ)

.

Hence
∫ R

−R

φ′Γ
φΓ
(1/2+ i t )d t �R log R

and there are no residues in (1/2, 1). Plugging this into the trace formula, one sees that there
must be cusp forms.

16Everything that we call an “L-function” has an Euler product, a Riemann hypothesis, and has a functional equa-
tion s ↔ 1− s . (Note the normalization of the center.) We do not include the archimedean factors.
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Corollary 6.2.1. Congruence subgroups have mostly cuspidal spectrum, meaning that writing
the trace formula as Ncusp(R ) +Nres(R ) +M (R )∼ A(XΓ )

4π R 2, we have already

Ncusp(R )∼
A(XΓ )

4π
R 2

Example 6.2.2. There are ≈ k/12 cusp forms of weight k on SL2(Z), and only one Eisenstein
series.

It was originally conjectured by Selberg that the spectrum mostly comes from cusp forms in
general, but later this was disproved – it should be a special case of the congruence case.

6.3. Work of Phillips-Sarnak. The space of Γ ⊂ SL2(R) is Teichmüller space, T (Γ ). The cotan-
gent space to T (Γ ) at Γ is canonically isomorphic to the space of holomorphic quadratic differ-
entials. We’re going to reformulate this in terms of global coordinates.

Let X = Γ\H. This gives a global coordinate z on X .

Definition 6.3.1. A tensor of weight (m , n ) on X is an expression of the form f (d z )⊗m/2(d z )⊗n/2

on X =H/Γ , with f holomorphic, i.e.

f (γz ) = (c z +d )m (c z +d )n f (z ).

A quadratic differential is a tensor of weight (4, 0).
Example 6.3.2. The function y (imaginary part of z ) is a tensor of type (−1,−1).

We consider deforming a line element

d s 2 =λ2(z )|d z +µd z |2.

For this to be invariant,µmust be a tensor of weight (−2, 2). This is called a Beltrami differential.
To get our hands on such a thing, let Q be a weight 4 holomorphic cusp form (this is the same
thing as a quadratic differential). Then y 2Q (z ) is a tensor of weight (−2, 2), so we can consider
the deformation

d s 2 =λ2
ε(z )|d z +εs y 2Q (z )d z |2.

Definition 6.3.3. The singular set of Γ is the subsetσ(Γ )⊂C defined as follows:

(1) For Re s ≥ 1/2 and s 6= 1/2, ρ ∈σ(Γ ) if ρ(1−ρ) is an eigenvalue of∆, with multiplicity,
(2) For s = 1/2< there is a special definition involving Φ(1/2).
(3) For Re s < 1/2, ρ ∈σ(Γ ) if it is a pole of and the multiplicity is the order.

It turns out that the singular set deforms very nicely.

Theorem 6.3.4 (Phillips-Sarnak). If Γt is a real-analytic curve in T (Γ ), then σ(Γt ) varies as an
algebroid function of t (i.e. the members vary real-analytically except for algebraic singularities
when they collide).

The proof relies on a certain “Phillips operator B ”, which realizes the singular set as its eigen-
values.

Note that singular elements on the line Re s = 1/2 can only move to the left. So the first
derivative of the real part of ρ j = 1/2+ i t j is 0, hence the second derivative is the interesting
part.

Theorem 6.3.5 (Phillips-Sarnak, “Fermi Golden rule”). Let Γ be a congruence subgroup, Q a
cuspidal Hecke eigenform of weight 4. Then we have

d 2

d t 2
Re (ρ j (t ))|t=0 ∼−|L (1/2+ i t j ,Q ×u j )|2.
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6.4. The Selberg-Ramanujan conjecture. Let Γ be a congruence subgroup, with no residues
in (1/2, 1).

Conjecture 6.4.1. The smallest non-zero eigenvalue λ1(XΓ ), which must correspond to a cusp
form, satisfies ≥ 1/4.

Remark 6.4.2. Ifφ j is a cusp form, then we have

L∞(s ,φ j ) =π
−s Γ

�

s + i t j

2

�

Γ

�

s − i t j

2

�

.

Note that if t j = 0, then L∞(s ,φ j ) =π−s Γ (s/2)2. This coincides with the archimedean factor of
an Artin L-function attached to an even Galois representationρ : G =Gal(K /Q)→GL2(C). Even
Galois representations correspond to Maass forms, and odd Galois representations correspond
to modular forms of weight one. Icosahedral Artin representations should correspond to Maass
forms with eigenvalue 1/4, so in particular it should be possible to realize λ1 = 1/4.

The fact that the inequality is sharp makes it very difficult to attack using analytic methods.
There is a variational formulation that leads to weaker bounds.

Lemma 6.4.3. Let Γ be a congruence subgroup. Then

λ1(XΓ ) = inf
f ⊥constants

∫

XΓ
|∆H f |2 d x d y

y 2

∫

XΓ
| f |2 d x d y

y 2

.

Hence by choosing specific f one can give a lower bound, e.g. for SL2(Z)we can prove λ1 ≥ 7
where the true lower bound appears to be about 90.

6.5. Rankin-Selberg method. Let f be a holomorphic cusp form of weight k for SL2(Z). By
unfolding, we have

∫

XΓ

| f (z )|2 y k E (z , s )
d x d y

y 2
=

∫ ∞

0

∫ 1

0

| f (z )|2 y s+k−1 d x d y

y
. (6.5.1)

Writing

f (z ) =
∞
∑

n=1

λ f (n )n
k−1

2 e (n z )

(this is normalized to be symmetric about s = 1/2), the integral (6.5.1) becomes
∞
∑

n=1

|λ f (n )|2

n s
Γ (s +k −1).

Hence we’ve deduced
∞
∑

n=1

|λ f (n )|2

n s
=

1

Γ (s +k −1)

∫

XΓ

| f (z )|2 y k E (z , s )
d x d y

y 2
.

This can be used to show
∑

n≤X

|λ f (n )|2 = c X +O (X 3/5)

which leads to |λ f (n )| � n 3/10. This is an illustration of the Rankin-Selberg method, which was
a source of inspiration for Deligne’s proof of the Weil Conjectures.
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Let’s turn to an even more interesting application, namely studying the sum
∑

n≤X

λ f (n )λ f (n +h ).

The signs of λ f (n ) to should fluctuate randomly, so one hopes for square-root cancellation in
this sum, which is equivalent to the Ramanujan-Selberg conjecture. How can we control a sum
like this? We replace the Eisenstein series with another function. Instead of averaging y s over
Γ/Γ∞, we start with the function y s e −h x , which is also Γ∞-invariant. Then

(∆+ s (1− s ))(y s e (−h x )) =−y s+24π2h 2e (−h x )

Now form the Poincaré series

Uh (z , s ) :=
∑

γ∈Γ∞\Γ
y (γz )s e (−h x (γz )),

which converges for Re s > 1. Then

(∆+ s (1− s ))Uh (z , s ) =−4π2h 2Uh (z , s +2). (6.5.2)

The left hand side of (6.5.2) is defined for Re s > 1, but the right hand side is defined for Re s >
−1. If (∆+ s (1− s )) doesn’t kill Uh (z , s ) then this can be used to analytically continue Uh (z , s ) to
the left; this breaks down at λ1. So if the Selberg-Ramanujan conjecture is true, then the equa-
tion (6.5.2) implies that Uh (z , s ) is analytic for Re s > 1/2, leading to square-root cancellation.

We explain a bit more on why the analytic continuation ofUh up to Re s > 1/2 leads to square-
root cancellation of the sum

∑

n≤X λ f (n )λ f (n +h ). Note that there is a formula

1

Γ (s +k −1)

∫

XΓ

y k | f (z )|2Uh (z , s )
d x d y

y 2
=
∑ λ f (n )λ f (n +h )

(n +m )s

�p
nm

m +h

�k−1

, (6.5.3)

which is basically just an unfolding. On the other hand, let φ0,φ1, · · · be an orthonormal basis
of eigenfunctions of ∆ on discrete spectrum of L 2(XΓ ), with φ0 ≡ 1. Then the spectral decom-
position gives you a formal expression

Uh (z , s ) =
∞
∑

j=1

〈Uh (·, s ),φ j 〉φ j +

∫

continuous part.

This expression as itself does not make sense, as Uh is not in L 2 (expected to barely miss being
L 2 by Selberg-Ramanujan). However, this can still be used to evaluate an integral of a nice
function that is integrated against Uh (z , s ), in particular it is applicable to the calculation of the
LHS of (6.5.3).

As Γ is a congruence subgroup, the continuous contribution is dominated by the cuspidal
contribution. For the cuspidal contribution, we need a general estimate for

∫

XΓ
y k | f (z )|2φ j d A

which should achieve a polynomial of λ j of degree independent of j times an exponential fac-
tor that matches with the Gamma value of the LHS of (6.5.3) via Stirling’s formula. This estimate
basically follows from the following general

Proposition 6.5.1 ([Sar94]). Let P be a polynomial in the eigenfunctions φk ’s. Then there are
constants A, B depending on P only such that

∫

XΓ

P (φ1, · · · ,φk )(z )φ j (z )d A(z )≤ A(|λ j |+1)B e −π
p
λ j /2.

A similar strategy applies to the rest of the estimate. A full argument can be found in e.g.
[Sar01, Appendix A].
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6.6. Approaches to Selberg’s eigenvalue conjecture. First of all, the Selberg’s 1/4 conjecture is
not true without congruence assumption, even with arithmeticity. Pick a congruence subgroup
Γ such that the first Betti number h1(XΓ ) is positive. As Γ ab has at least one copy of Z, we can
pick a one-parameter family of unitary characters χθ : Γ → S 1, where 0≤ θ < 2πwith χ0 = Id.

For a unitary characterχ , consider the collectionCχ of functions u such that u (γz ) =χ(γ)u (z )
for γ ∈ Γ . Let∆χ be the Laplacian on these χ-twisted functions. Recalling the variational char-
acterization of the zeroth eigenvalue, we define

λ0(χ) = inf
u∈Cχ

∫

XΓ
|∇u |2d A

∫

XΓ
u 2d A

.

The value λ0(χθ ) is continuous as a function θ . Also, if λ0(χ) = 0, then
∫

XΓ
|∇u |2 = 0, so u is a

constant, which means χ = 1.
Choose small enough ε > 0 so that there is δ > 0 such that |θ |<δ implies |λ0(θ )|< ε. Choose

|θ |<δ such that θ is rational. Thenχθ has finite image, so kerχθ = Γ ′ is a finite index subgroup
of Γ . The eigenfunction u0 achieving the infimumλ0(χθ ) is indeed a function on XΓ ′ as u0(γz ) =
χθ (γ)u0(z ) = u0(z ) for γ ∈ Γ ′. Thus, u0 is an eigenfunction of Laplacian on XΓ ′ and λ1 ≥ 1/4 fails
for it.

On the other hand, Selberg himself provided an evidence of his conjecture by proving the
following

Theorem 6.6.1 (Selberg). λ1(XΓ )≥ 3/16 for congruence Γ .

How? An idea is that to work in reverse, namely by using a bound on
∑

n≤X τ(n )τ(n + h )
proved by using some other method, e.g. Kloosterman sum, circle method, etc. This is about
the same as counting solutions to a d − b c = h inside a ball, and the circle method does this
kind of thing very effectively for quadratic equations of five or more variables. On the other
hand, the situation we are in is a four-variable case, so we need to use a Kloosterman sum.

Proof sketch. Consider a Kloosterman sum S (m , n ; c ) =
∑∗

x x≡1(mod c ) e (
m x+n x

c ). By the Weil

bound, we have |S (m , n ; p )| ≤ 2
p

p , so in general S (m , n ; c )� c 1/2+ε , as the number of divisors
of c is� c ε . This bound implies that the series Z (m , n , s ) :=

∑∞
c

S (m ,n ;c )
c 2s can be holomorphi-

cally continued to Re s > 3/4. By Goldfeld-Sarnak,
∫

Um (z , s )Un (z , s +2)d A =
4−s−1n−2Γ (2s +1)
πΓ (s )Γ (s +2)

Z (m , n , s ) +R (s ),

where R (s ) is holomorphic in Re s > 1/2 with an estimate R (s )� 1
Re s−1/2 in that region. Thus,

any exceptional eigenvalue λ j with t j =
Æ

1/4−λ j will contribute to a pole of Z (m , n , s ) at s =
1/2+ t j . In particular, any exceptional eigenvalue < 3/16 will contribute to a pole of Z (m , n , s )
at s > 3/4. �

Remark 6.6.2. Using E8 and functoriality, Kim-Sarnak proved the world record of λ1 ≥ 1/4−
(7/64)2. This is in some sense the optimal bound that can be obtained using this kind of idea.

There is another elementary proof of a slightly worse bound using density estimates. For a
principal congruence subgroup Γ (q ), consider a point-pair invariant K (z ,ζ)which is a smooth
approximation of characteristic function of d (z ,ζ)≤R . Spectrally,

K (z ,ζ) =
∑

discrete

k̂ (t j )φ j (z )φ j (ζ) +

∫

continuous part.
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Since we are in a congruence subgroup case, the discrete spectrum is the main bound, which is
∼ vol(B (R ))/|XΓ (q )|, which comes from the constant function (put z = i ). This in turn is∼R 2q−3,
as [Γ : Γ (q )]∼ q 3.

This can also be achieved by a bare-hand counting argument. We are counting the number
of γ ∈ Γ (q ) with ‖γ‖ ≤ R . Naively, just from a d − b c = 1, if we choose a and d and use trivial
estimate on the divisor function, we get a slightly worse bound∼C R 2+εq−2. The correct bound,
∼ R 2q−3, can be obtained by a (surprisingyly) simple observation that, for all γ ∈ Γ (q ), a +d ≡
2(mod q 2). So, if we first choose a +d and then a , we get ∼ R 2q−3, which is a correct order of
magnitude.

This line of thought leads to

Theorem 6.6.3 (Sarnak-Xue for compact case, Gambard for non-compact case). Let N (σ, q ) be
the number of exceptional eigenvalues smaller than 1/4−σ2 of Γ (q ) (of course Selberg’s conjecture
expects this to be zero). Then N (σ, q )� |XΓ (q )|1−2σ+ε

We end this with yet another approach of Bernstein-Kazhdan using representation theory.
As Γ (q )⊂ Γ (1) is a normal subgroup, SL2(Z/q Z) acts on XΓ (q ) as isometries. For λ> 0 an excep-
tional eigenvalue, the eigenspace Vλ is acted by SL2(Z/q Z) and is not 1-dimensional (as it is not
trivial). The character table of SL2(Z/q Z) says that a nontrivial representation of SL2(Z/q Z)
has dimension at least q−1

2 . This gives a bound λ1 ≥ 5/36.

6.7. Subconvexity. Suppose that somehow you are interested in approximating ζ(1/2 + i t ).
The “approximate functional equation" gives

ζ(1/2+ i t ) =
smooth
∑

n≤
p

t

n−1/2−i t +γ(1/2+ i t )
smooth
∑

n≤
p

t

n−1/2+i t .

This gives a trivial upper bound |ζ(1/2 + i t )| � |t |1/4+ε . Considering cancellation, Weyl im-
proved this to |t |1/6+ε by nontrivially controlling

∑

n≤N e (n kα) and using a Taylor expansion of
n i t .

For a holomorphic modular form f , suppose we want to estimate L (1/2 + i t , f ) (here L-
functions do not include archimedean factor). The approximate functional equation in this
setting gives

L (1/2+ i t , f ) =
smooth
∑

n≤t

λ f (n )

n 1/2+i t
+γ(1/2+ i t )

smooth
∑

n≤t

λ f (n )

n 1/2−i t
.

The trivial bound is then L (1/2+i t , f )� |t |1/2+ε , which is called the “convex bound"; in general,
for an automorphic representation π, the convex bound is L (1/2,π)� C (π)1/4, where C (π) is
the conductor ofπ. Any better bound is called a subconvex bound. To use Weyl’s idea, we need
an estimate of Fourier coefficients of modular form. This can only be done in two ways, either
by using a trace formula or by putting a modular form in a family.

Remark 6.7.1. The Riemann hypothesis gives a bound of C (π)ε . This easily follows from the
three-lines theorem applied to log L (s ,π), which is analytic up to Re s > 1/2, assuming the
Riemman Hypothesis.

The approximate functional equation can give a bound
∫ 2T

T
|L (1/2+ i t , f )|2d t � T log T by

expanding and bounding each summand. Note that in this process one needs to take a cut-
off test function whose Fourier transform is compactly supported, so that the non-diagonal
expansion terms become negligible.

There is a more difficult theorem,
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Theorem 6.7.2 (Good).
∫ T+H

T
|L (1/2+ i t , f )|2d t �H t ε for H > T 2/3.

This theorem gives |L (1/2+i t , f )| � t 1/3 which is a “Weyl-quality" bound. The proof heavily
relies on the spectral theory.

6.8. Selberg vs. Ramanujan. What is L 2(H)? That λ1 ≥ 1/4 means that the corresponding ra-
dial point-pair invariant barely misses L 2. We will see why this is eqvuialent to the Ramanujan’s
conjecture at infinity.

Let G = GL2(Qv ), and π be an irreducible unitary representation of G . Let p (π) be the infi-
mum of all p such that the matrix coefficient of π are in L p (G /Z ). We say that π is tempered
if p (π) = 2. Adelically, a cusp form is a function f such that

∫

N (Q)\N (A) f (ng )d n = 0 for all

unipotent radicals N of all parabolic subgroups P of G . The cuspidal spectrum is discretely
decomposed, and by the tensor product theorem, each irreducible representation is a tensor
product of local representations. In this setting, the Ramanujan conjecture asserts that any
local constituent of automorphic cuspidal representation is tempered. Thus, at infinity this is
equivalent to Selberg’s conjecture.

The Ramanujan conjecture is proved by Deligne-Serre at GL(2) for cusp forms having infinity
type holomorphic discrete series or limits of them. This has been considerably generalized to
most of cohomological automorphic representations by a work of many mathematicians.

Remark 6.8.1. The Ramanujan conjecture also has an implication to dynamics. The mixing
condition in ergodic theory is actually about the convergence of matrix coefficients, so the Ra-
manujan conjecture tells you that the mixing rate is the fastest for those other than a constant
function.

7. HIGHER RANK CASES

There are several notions of “rank" one can consider. Suppose that we have a reductive group
G /Q with a maximal compact subgroup K ⊂ G (R) and a discrete subgroup Γ ⊂ G (R) (mostly
arithmetic in our cases) with finite covolume. Let S =G (R)/K be the symmetric space.

• For a field F =Q,R or C, the F -rank of G is the dimension of a maximal F -split torus
of G . It is obvious that rankQG ≤ rankRG ≤ rankCG .
• On the other hand, the Γ -rank is the maximum dimension of a closed, simply con-

nected, totally geodesic flat (simply a flat in Riemannian geometry terms) submanifold
in a finite cover of Γ\S . If Γ is arithmetic, or in other words if Γ ⊂ G (Q) and G (Z) are
commensurable, then it turns out that Γ -rank is the same as theQ-rank. In this terms,
R-rank is the maximum dimension of a closed simply connected flat of S .

Another geometric characterization of Γ -rank is the maximum dimension of R-split
torus which has a proper orbit in Γ\G (R). The Γ -rank is always greater than or equal to
theQ-rank, as any maximalQ-split torus has a proper orbit in G (R)/G (Z).

Remark 7.0.1. It is proved by Margulis that a higherR-rank group does not have a non-arithmetic
lattice.

For any case of Γ -rank 1 and R-rank 1 (e.g. G /K = Hn , the hyperbolic n-space, with a non-
cocompact lattice Γ ⊂ G ), the proof we have seen above using Fredholm theory and auxiliary
equations works exactly the same.

7.1. Γ -rank 1, higher R-rank cases. A basic example for Γ -rank 1 and R-rank ≥ 2 case is that
of a Hilbert-Blumenthal group.
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Let K =Q(
p

d ) for a squarefree integer d ≥ 2. For Γ = SL2(O ), where O is the ring of integers
of K , we have a natural embedding of Γ ,→ SL2(R)× SL2(R) via γ 7→ (γ,γ). Through this twisted
diagonal embedding, Γ = SL2(O ) acts onH×H discontinuously, and it has a finite volume quo-
tient.

In this case, the symmetric space is S =H×H, which hasR-rank 2, with a maximal flat given
by for example F = {(0, y1)×(0, y2)}. The ring of invariant differential operators D (S ) is generated
by two operators,∆1 and∆2, where∆i is the Laplacian in zi , the complex coordinate of the i -
th H-factor of S =H×H. In general, D (S ) is always a commutative ring generated by rankRG
algebraically independent elements.

The locally symmetric space Γ\H×H is a four-dimensional real manifold. Note that Γ\H×H
is very different from Γ\H×Γ\H. In particular, the projection of the twisted diagonal Γ ≤H×H
on each factor is dense. This amounts to the fact that the twisted diagonal is an irreducible
lattice.

For simplicity, assume h (O ) = 1, which is the same as assuming that there is only one cusp.

We take a parabolic subgroup P =
§�

η ξ
0 η−1

�ª

, and Γ∞ := P ∩ Γ =
§�

η ξ
0 η−1

�

|η ∈O ×,ξ ∈O
ª

.

We want to develop a theory of Eisenstein series. To mimic the argument we used in the
upper half plane, we want to have a control on an automorphized kernel when approaching to
infinity. Thus we need to know how far a Γ -action sends a point when the point is approaching
infinity.

Instead of exactly pinning down a fundamental domain, we only need a Siegel set that in-
tersects only with finitely many fundamental domains. For example, for H, we can take a box
[−a , a ]× [b ,∞). To get a handle on Γ action around infinity, we investigate the set of geodesic
rays that are completely contained in the Siegel set. In the upper half plane case, this is a set of
vertical rays. We say that two rays are equivalent when the two remains to be within a bounded
distance when they are parametrized properly (say by arclength). In this example ofH, there is
only one equivalence class, we can say the cusp at infinity is “point-like".

Let’s get back to our original example of Γ\H×H. We can take a Siegel set for Γ = SL2(O ) as

C = {(ξ1, y1,ξ2, y2) | |ξ1|, |ξ2| ≤ c1,ε−1
0 ≤ y1/y2 ≤ ε0, y1, y2 ≥ a > 0},

for some appropriate c1, a ,ε0. One can check by hand that this is indeed a Siegel set.
Fix p0 = ((0, 1), (0, 1)). If we look at geodesics out of p0 that remain in C , it is also checkable by

hand that this can only happen when the geodesic is in the flat F .
If we change variables to y1 = e u , y2 = e v , C is characterized by new conditions, |u − v | ≤ c3

and 1 ≤ u + v <∞, for some appropriate choice of c3. Also, the geometry in (u , v ) is just that
of a Euclidean plane. Thus we know that the boundary ∂ (FΓ ) of a fundamental domain FΓ is
“point-like".

We now define the Eisenstein series to be

E (z , s1, s2) =
∑

γ∈Γ∞\Γ
y1(γz )s1 y2(γz )s2 .

In order that y s1
1 y s2

2 is Γ∞-invariant, we need s1−s2 = 2πi m/ logε0, where ε0 is the fundamental
unit and m is an integer. So, the Eisenstein series is really indexed by E (z , m , s ), which implies
that there are infinitely (countably) many continuous spectra. For each fixed m ∈ Z, one can
meromorphically continue E (z , m , s ) as in real rank 1 case. The spectral decomposition we get
looks like

L 2(Γ\H×H) = (constant)⊕ (cusp forms)⊕
⊕

m∈Z
(E (z , m , s ) part) .
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7.2. Higher Γ -rank. From now on, we change a convention so that Γ is acting on the right.
Let’s consider G = SLn (R) and Γ = SLn (Z). Both the real rank and the Γ -rank are n − 1, and

Γ has a finite covolume. In this case, there is only one cusp, but with complicated structure
around it.

We write G = K AN for an Iwasawa decomposition, where K = SO(n ,R), A is the group of
diagonal matrices with positive entries, and N is the group of unipotent upper triangular ma-
trices. Using the Iwasawa decomposition, we can define a Siegel set in this case.

Definition 7.2.1. For t , u > 0, let Ct ,u = K At Nu , where At is the set of diagonal matrices with
ai ,i ≤ t ai+1,i+1 and Nu is the set of unipontent upper triangular matrices with off-diagonal
entries having absolute values ≤ u .

Proposition 7.2.2 (Minkowski, Siegel). C 2p
3

, 1
2

is indeed a Siegel set.

Proof. It is sufficient to show that the same thing holds with a similar construction for GL+n (R).

LetΦ(g ) = ‖g e1‖, where e1 =







1
0
· · ·
0






and ‖·‖ is a Euclidean norm. Then,Φ is a continuous function

on G . Also, Φ(k a n ) =Φ(a ).
Fix g ∈G , and consider values ofΦ(g γ) = ‖g γe1‖ for γ ∈ Γ . As γe1 runs over primitive nonzero

vectors, Γ e1 is a part of a lattice. Thus, for some γ0 ∈ Γ , Φ(g γ0) attains its minimum.

Lemma 7.2.3. Let g = k a n and Φ(g )≤Φ(g γ0) for all g ∈ Γ . Then a11 ≤ 2a22/
p

3.

Proof of lemma. Note that Φ(g u ) =Φ(g ) for u ∈N (Z). Thus, we can assume that |ni j | ≤ 1/2. Let
δ ∈ Γ be an element which swaps e1, e2 and fixes e3, · · · , en . Then

gδ(e1) = g (e2) = k a n (e2) = k a (e2+n12e1) = k (a22e2+a11n12e1).

Thus ‖g e1‖2 = a 2
11 ≤ a 2

22+a 2
11/4, which gives the conclusion. �

Lemma 7.2.4. For x ∈G , the minimum of Φ(x Γ ) is attained over x Γ ∩C 2p
3

, 1
2

.

Proof of lemma. Let y ∈ x Γ be an element over which Φ attains its minimum amongst Φ(x Γ ).

Let ky ∈ K be such that k−1
y y =

�

a11 ∗
0 b

�

, for some (n − 1)× (n − 1)matrix b . Then Φ(k−1
y y ) ≤

Φ(k−1
y Γ ). By induction, there is z ′ ∈ SLn−1(Z) such that b z ′ ∈C 2p

3
, 1

2
. Using the Iwasawa decom-

position with similar choice of K ′, A′, N ′ for SLn−1(R), we get a decomposition b z ′ = k ′a ′n ′,
which yields

k−1
y y

�

1 0
0 z ′

�

=
�

a11 ∗
0 k ′a ′n ′

�

= k ′′a ′′n ′′,

where n ′′ =
�

1 0
0 n ′

�

, k ′′ = ky

�

1 0
0 k ′

�

∈ K , a ′′ =
�

a11 0
0 a ′

�

. Obviously n ′′ ∈ N 1
2

. Also, applying

the above lemma, we get a ′′11 ≤
2p
3

a ′′22. Thus a ′′ ∈ A 2p
3

. As y
�

1 0
0 z ′

�

= ky k ′′a ′′n ′′ ∈ C 2p
3

, 1
2

and

Φ(y ) =Φ(y
�

1 0
0 z ′

�

), the claim is proved. �

The above lemmas prove that C 2p
3

, 1
2

is a Siegel set. �
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Exercise 7.2.5. Solve the Pell’s equation x 2−d y 2 = 1 by using similar arguments on geometry
of numbers.

Hint: SO(1, 1)/SO(1, 1,Z) is compact.

Exercise 7.2.6. A Haar measure on SLn (R) can be defined to be d g = e −2ρ(α)d k dαd n with
respect to the Iwasawa decomposition G = K AN , where A = exp(α1, · · · ,αn ) and ρ is half the
sum of positive roots, with respect to the standard choice of everything.

Using the Siegel set C =C 2p
3

, 1
2

and the Haar measure d g , show that vol(SLn (R)/SLn (Z))<∞,

by showing that
∫

C
d g <∞.

Exercise 7.2.7. Let F (x1, · · · , xn )be a rational indefinite quadratic form overR. If F is anisotropic,
i.e. if F (x ) = 0 implies x = 0, show that OF (R)/OF (Z) is compact.

Hint: this is some set of lattices L ⊂ SLn (R)/SLn (Z). The Mahler compactness criterion says
that a set L of lattices is pre-compact if and only if there exist 0 < c1, c2 <∞ such that, for all
L ∈L ,

• vol(L )< c1,
• minv∈L\{0} |v | ≥ c2.

Now let C = C 2p
3

, 1
2

be a Siegel set. As before, fix p0 ∈ C and look at geodesic rays out of p0

that are in C . The torus A of diagonal matrices is a totally geodesic subspace, and actually a
maximal flat. One can check that a geodesic can remain inside C only if it is contained in this
maximal flat.

For example, if n = 3, and if we make a substitution ai = e αi , then the flat, as a set inR2 with
coordinates α1,α2, is

{(α1,α2) |α1 ≥α2+ c ,α2 ≥−α1−α2+ c ,

for some constant c . Thus, geodesic rays coming out of p0 = (0, 0) in this flat are of form α1 =
βα2 for a choice of −1/2≤β ≤ 1. From this, we know that the cusps form a line.

The key difference between the rays at the boundary (i.e. β =−1/2 or 1) and those in between
is that the stablizers are different; the boundary rays are of form

m1(t ) =





e t

e t

e −2t



 , m2(t ) =





e t

e −t /2

e −t /2



 .

Note that these two rays are precisely the rays with repeated eigenvalues.Thus,

Stab(m1) = P1 =





∗ ∗ ∗
∗ ∗ ∗
0 0 ∗



 , Stab(m2) = P2 =





∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗



 ,

whereas
Stab(m ) = B = P1 ∩P2 for m 6=m1, m2.

This matters a lot for our purpose, because we want to know the blow-up behavior at infinity of
the automorphized point-pair invariant

∑

k (γz , w ). Such behavior should change depending
on whether we approach infinity through boundary rays (with larger stabilizer) or other rays
(with smaller stabilizer).

We want to define Eisenstein series for various parabolic subgroups. For SLn , upon the
choice of standard Borel, parabolic subgroups correspond to partitions n = t1 + · · ·+ tr . Let
the corresponding parabolic of block upper triangular matrices be denoted as P(t1,··· ,tr ). It de-
composes as M AN where
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• M is the set of block diagonal matrices, with each diagonal block a matrix of determi-
nant 1,
• A is the set of block diagonal matrices of determinant 1, with each block a scalar matrix,
• N is the unipotent radical of this parabolic, consisting of appropriate block unipotent

matrices.

We will construct Eisenstein series next time.
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