HW \#1

ALGEBRAIC NUMBER THEORY, GU4043; INSTRUCTOR: GYUJIN OH

Due Tuesday, January 23 by 11:59pm on Gradescope.
Question 1. Show that $\mathbb{Z}\left[\zeta_{3}\right]$ is a Euclidean domain, where

$$
\zeta_{3}=\frac{-1+\sqrt{-3}}{2}
$$

is a primitive third root of unity, by exhibiting the division algorithm with ${ }^{1}$

$$
N\left(a+b \zeta_{3}\right)=a^{2}-a b+b^{2}
$$

Question 2. Let p be an odd prime, and $a \in \mathbb{Z}$. Using that \mathbb{F}_{p}^{\times}is a cyclic group, show that

$$
\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}}(\bmod p)
$$

Question 3. Show that there are no integer solutions to $y^{2}=x^{3}-16$. You may start by showing that any hypothetical solution (x, y) should require x, y to be odd.
Question 4. Show that every quadratic field is of the form $\mathbb{Q}(\sqrt{d})$ for some integer $d \in \mathbb{Z}$.
Question 5. This exercise aims to prove Fermat's theorem: an odd prime number $p \in \mathbb{N}$ is of the form $p=x^{2}+y^{2}$ for some integers x, y if and only if $p \equiv 1(\bmod 4)$.
(1) Show that $p=x^{2}+y^{2}$ implies that $p \equiv 1(\bmod 4)$.
(2) Conversely, if $p \equiv 1(\bmod 4)$, then we have $\left(\frac{-1}{p}\right)=1$, so there is an integer n such that $n^{2} \equiv-1(\bmod p)$. This implies that $p \mid\left(n^{2}+1\right)$.
By using the UFD property of $\mathbb{Z}[i]$, show that p has to be a reducible element in $\mathbb{Z}[i]$.
(3) Show that p being reducible in $\mathbb{Z}[i]$ implies that $p=x^{2}+y^{2}$ for some integers x, y.

[^0]$$
N\left(a+b \zeta_{3}\right)=\left(a+b \zeta_{3}\right)\left(a+b \overline{\zeta_{3}}\right)
$$
where $\overline{\zeta_{3}}=\frac{-1-\sqrt{-3}}{2}$.

[^0]: ${ }^{1}$ Here, this formula comes from

