HW \#10

ALGEBRAIC NUMBER THEORY, GU4043; INSTRUCTOR: GYUJIN OH

Due Tuesday, April 2 by 11:59pm on Gradescope.
Question 1. Let L be a field, and let K_{1}, K_{2} be two commutative L-algebras. We aim to provide several ways to think about the tensor product $K_{1} \otimes_{L} K_{2}$.
(1) Note that $K_{1} \otimes_{L} K_{2}$ has natural L-algebra homomorphisms

$$
\iota_{1}: K_{1} \xrightarrow{x \mapsto x \otimes 1} K_{1} \otimes_{L} K_{2}, \quad \iota_{2}: K_{2} \xrightarrow{x \mapsto 1 \otimes x} K_{1} \otimes_{L} K_{2} .
$$

Show that $K_{1} \otimes_{L} K_{2}$ satisfies the universal property of tensor products of commutative algebras, as follows. If R is a commutative L-algebra, and if $f_{1}: K_{1} \rightarrow R$, $f_{2}: K_{2} \rightarrow R$ are L-algebra homomorphisms, then there exists a unique L-algebra homomorphism $f: K_{1} \otimes_{L} K_{2} \rightarrow R$ such that

$$
f_{1}=f \circ \iota_{1}, \quad f_{2}=f \circ \iota_{2} .
$$

(2) Show that the above universal property uniquely characterizes $K_{1} \otimes_{L} K_{2}$ as an L-algebra. Namely, show that if a commutative L-algebra S with L-algebra homomorphisms j_{1} : $K_{1} \rightarrow S$ and $j_{2}: K_{2} \rightarrow S$ satisfies the above universal property (i.e. given any two maps $f_{1}: K_{1} \rightarrow R, f_{2}: K_{2} \rightarrow R$, there is a unique map $f: S \rightarrow R$ such that $f_{1}=f \circ j_{1}$, $f_{2}=f \circ j_{2}$), then $S \cong K_{1} \otimes_{L} K_{2}$.
(3) Let X be the L-vector space spanned by the basis vectors $v \otimes w$ for any pair of $v \in$ $K_{1}, w \in K_{2}$, and endow the L-algebra structure by defining the multiplication to be $\left(v_{1} \otimes w_{1}\right)\left(v_{2} \otimes w_{2}\right)=\left(v_{1} v_{2}\right) \otimes\left(w_{1} w_{2}\right)$. Let $I \subset X$ be the L-vector subspace spanned by the following elements:

$$
\begin{gathered}
I=\left\langle\left\{\left(v_{1}+v_{2}\right) \otimes w-v_{1} \otimes w-v_{2} \otimes w: v_{1}, v_{2} \in K_{1}, w \in K_{2}\right\},\right. \\
\left\{v \otimes\left(w_{1}+w_{2}\right)-v \otimes w_{1}-v \otimes w_{2}: v \in K_{1}, w_{1}, w_{2} \in K_{2}\right\}, \\
\left\{t(v \otimes w)-(t v) \otimes w: t \in L, v \in K_{1}, w \in K_{2}\right\}, \\
\\
\left.\left\{t(v \otimes w)-v \otimes(t w): t \in L, v \in K_{1}, w \in K_{2}\right\}\right\rangle .
\end{gathered}
$$

Show that $I \subset X$ is an ideal.
(4) Show that the L-algebra X / I, together with the natural maps

$$
j_{1}: K_{1} \xrightarrow{x \mapsto x \otimes 1} X / I, \quad j_{2}: K_{2} \xrightarrow{x \rightarrow 1 \otimes x} X / I,
$$

satisfies the universal property of (1). This gives another construction of $K_{1} \otimes_{L} K_{2}$.

Question 2. Let L be a p-adic local field of characteristic 0 .
(1) Using Hensel's lemma, show that a finite field extension K / L is unramified if and only if $K=L\left(\zeta_{n}\right)$ for some $(n, p)=1$.
(2) If K / L is an unramified extension, and if M is a p-adic local field of characteristic 0 , show that $K M / L M$ is unramified.

Question 3. Let $K=\mathbb{Q}(\alpha, i)$, where $\alpha^{4}=2$ and $i^{2}=-1$. Note that K / \mathbb{Q} is Galois with $G:=\operatorname{Gal}(K / \mathbb{Q}) \cong D_{4}$, a dihedral group, generated by $s, t \in G$ where

$$
s(\alpha)=i \alpha, \quad s(i)=i, \quad t(\alpha)=\alpha, \quad t(i)=-i
$$

so that $s^{4}=t^{2}=1$ and $t s t^{-1}=s^{-1}$. Note that K contains two particular subfields, $\mathbb{Q}(\alpha)$ and $\mathbb{Q}(i)$.
(1) Show that 2 is totally ramified in both $\mathbb{Q}(\alpha)$ and $\mathbb{Q}(i)$.
(2) Show that $\mathbb{Q}_{2}(\alpha) \cap \mathbb{Q}_{2}(i)=\mathbb{Q}_{2}$.

Hint. Otherwise, $\mathbb{Q}_{2}(\alpha) \supset \mathbb{Q}_{2}(i)$, and therefore $\mathbb{Q}_{2}(\alpha) / \mathbb{Q}_{2}(i)$, which is a quadratic extension, is automatically Galois. Show that the nontrivial element $\sigma \in \operatorname{Gal}\left(\mathbb{Q}_{2}(\alpha) / \mathbb{Q}_{2}(i)\right)$ must send $\sigma(\alpha)=-\alpha$. This implies that $\mathbb{Q}_{2}(\sqrt{2})=\mathbb{Q}_{2}(i)$. Deduce a contradiction using HW9.
(3) Show that $K_{2}:=K \otimes_{\mathbb{Q}} \mathbb{Q}_{2}$ is a field.
(4) Show that K_{2} / \mathbb{Q}_{2} is totally ramified. Deduce that 2 is totally ramified in K.

Hint. Suppose not. As $\mathbb{Q}_{2}(\alpha) / \mathbb{Q}_{2}$ is totally ramified, it should be the case that $e_{K_{2} / \mathbb{Q}_{2}}=4$ and $f_{K_{2} / \mathbb{Q}_{2}}=2$. Therefore, the maximal unramified extension of \mathbb{Q}_{2} in K_{2} is a quadratic extension of \mathbb{Q}_{2}. Using that $\operatorname{Gal}\left(K_{2} / \mathbb{Q}_{2}\right) \cong D_{4}$, enumerate all quadratic subfields of K_{2}, and show that they are all ramified over \mathbb{Q}_{2} (use HW9), yielding a contradiction.
(5) Show that any rational prime $p \neq 2$ is unramified in K.

Question 4. What we have learned so far suggests that absolute values correspond to primes - from this perspective, the archimedean absolute values should be primes! In this analogy, we regard \mathbb{R} and \mathbb{C} as local fields as well, and they are called either ∞-adic local fields or archimedean local fields. Given a number field K, an embedding $i: K \hookrightarrow \mathbb{C}$ defines an archimedean prime of K, where a real embedding defines a real prime, and a pair of complex embeddings defines a complex prime. The extension \mathbb{C} / \mathbb{R} is considered ramified

We will see that many aspects of theory of primes and the local class field theory translate well into the case of archimedean primes and local fields.
(1) Let K / L be an extension of number fields. Using the above perspective, define what it means for an archimedean prime of K to lie over an archimedean prime of L.
(2) Retaining the setup of (1), define what it means for an archimedean prime of L to be unramified in K.
(3) The local Artin map for \mathbb{R} can be defined as

$$
\operatorname{Art}_{\mathbb{R}}: \mathbb{R}^{\times} \rightarrow \operatorname{Gal}(\mathbb{C} / \mathbb{R}) \cong\{ \pm 1\}, \quad x \mapsto \frac{x}{|x|}
$$

Show that Part (1) of local Artin reciprocity (Theorem 15.10(1) of the notes) holds.
(4) State and prove the local existence theorem for $L=\mathbb{R}$.

