HW \#11

ALGEBRAIC NUMBER THEORY, GU4043; INSTRUCTOR: GYUJIN OH

Due Tuesday, April 9 by 11:59pm on Gradescope.
Question 1. Let $L=\mathbb{Q}(\sqrt{3})$.
(1) Show that $h_{L}=1$, so that the Hilbert class field of L is $H_{L}=L$.
(2) Let $K=L(\sqrt{-1})$. Show that every prime ideal $\mathfrak{p} \subset \mathcal{O}_{L}$ is unramified in K.
(3) Why are (1) and (2) consistent with the global class field theory?

Hint. Compute the conductor $\mathfrak{f}_{K / L}$.

Question 2. In this question, we determine the ray class fields of \mathbb{Q}. Let ∞ denote the unique archimedean prime of \mathbb{Q}.
(1) Let $m>1$ is such that $v_{2}(m) \neq 1$. Show that the kernel of the Artin map

$$
\operatorname{Art}_{\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}}^{m}: J_{\mathbb{Q}}^{m} \rightarrow \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}\right),
$$

is equal to $P_{\mathbb{Q}}^{m \infty}$. Deduce that $\mathbb{Q}\left(\zeta_{m}\right)$ is the ray class field of \mathbb{Q} for modulus $m \infty$. Deduce that $\mathfrak{f}_{\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}}=n \infty$ with $n \mid m$.
(2) Retaining the same notation as (1), show that $\mathbb{Q}\left(\zeta_{m}\right) \subset \mathbb{Q}\left(\zeta_{n}\right)$. Deduce that $n=m$.
(3) For $m \geq 1$ odd, show that $\mathbb{Q}\left(\zeta_{2 m}\right)=\mathbb{Q}\left(\zeta_{m}\right)$. Deduce that, for $n \geq 1$,

$$
f_{\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}}= \begin{cases}1 & \text { if } n=1 \\ \frac{n}{2} \infty & \text { if } n \text { is even, } \frac{n}{2} \text { is odd } \\ n \infty & \text { otherwise }\end{cases}
$$

(4) For a finite extension K / \mathbb{Q}_{2}, show that the local conductor $\mathfrak{f}_{K / \mathbb{Q}_{2}}$ cannot be equal to 1 .
(5) Using (3) and (4), deduce that the ray class field of \mathbb{Q} for modulus \mathfrak{m} is

$$
\mathbb{Q}(\mathfrak{m})= \begin{cases}\mathbb{Q}\left(\zeta_{n}\right) & \text { if } \mathfrak{m}=n \infty \\ \mathbb{Q}\left(\zeta_{n}\right)^{+}:=\mathbb{Q}\left(\zeta_{n}+\zeta_{n}^{-1}\right) & \text { if } \mathfrak{m}=n\end{cases}
$$

Question 3. In this question, we revisit HW7, Question 1, on the primes $p \neq 2,7$ of the form $p=x^{2}+14 y^{2}$ for some integers $x, y \in \mathbb{Z}$. We have already seen that $\operatorname{Cl}(\mathbb{Q}(\sqrt{-14})) \cong \mathbb{Z} / 4 \mathbb{Z}$.
(1) Let $K=\mathbb{Q}(\sqrt{-14})$ and $K^{\prime}=K(\sqrt{2})$. Show that K^{\prime} / K is an unramified extension (including the archimedean primes).
Hint. Use that $K^{\prime}=\mathbb{Q}(\sqrt{2}, \sqrt{-7})$ and that 2 splits completely in $\mathbb{Q}(\sqrt{-7})$.
(2) Let $K^{\prime \prime}=K^{\prime}(\sqrt{2 \sqrt{2}-1})$. Using that $(2 \sqrt{2}-1)(-2 \sqrt{2}-1)=-7$, show that $K^{\prime \prime}=$ $K^{\prime}(\sqrt{-2 \sqrt{2}-1})$. Using the discriminant, show that $K^{\prime \prime} / K^{\prime}$ is unramified at every prime coprime to 2 (including the archimedean primes).
(3) Note that $2 \sqrt{2}-1=(1+\sqrt{2})^{2}-4$, so that $K^{\prime \prime}=K^{\prime}(\alpha)$, where

$$
\alpha=\frac{1+\sqrt{2}+\sqrt{2 \sqrt{2}-1}}{2}, \quad \alpha^{2}-(1+\sqrt{2}) \alpha+1=0 .
$$

Using the discriminant, show that $K^{\prime \prime} / K^{\prime}$ is unramified at every prime.
(4) Show that $K^{\prime \prime} / K$ is an abelian extension. Deduce that $K^{\prime \prime}=H_{K}$.
(5) Show that, for $p \neq 2,7$ a rational prime,
$p=x^{2}+14 y^{2}$ for some $x, y \in \mathbb{Z} \Leftrightarrow\left(\frac{-14}{p}\right)=1$ and $X^{4}+2 X^{2}-7 \equiv 0(\bmod p)$ has an integer solution.

Question 4. Let $n>1$ be an odd integer, and let K be a local field of characteristic 0 that contains μ_{n}. For $a, b \in K^{\times}$with $a \neq-b$, show that

$$
(a, b)=(a, a+b)(a+b, b)
$$

Hint. Let $a+b=c$. Then, we have

$$
1=\left(1-a c^{-1}, a c^{-1}\right)=\left(b c^{-1}, a c^{-1}\right)
$$

Use that -1 is an n-th power.

Question 5. Let p be an odd rational prime, and let $K=\mathbb{Q}\left(\zeta_{p}\right)$. Let $\pi=1-\zeta_{p}$, which generates the unique prime ideal $\mathfrak{p}=(\pi)$ lying over p (more precisely, $p=\mathfrak{p}^{p-1}$), and define $e_{i}=1-\pi^{i}$ for $i \geq 1$.
(1) Using HW9, show that, in $K_{\mathfrak{p}},\left(1+\pi^{2} \mathcal{O}_{K_{\mathfrak{p}}}, \times\right) \cong\left(\pi^{2} \mathcal{O}_{K_{\mathfrak{p}}},+\right)$. Deduce that $\left(\mathcal{O}_{K_{\mathfrak{p}}}^{\times}\right)^{p} \supset$ $1+\pi^{p+1} \mathcal{O}_{K_{\mathrm{p}}}$.
(2) For $i, j \geq 1$ with $i+j \geq p+1$, use $e_{i}+\pi^{i} e_{j}=e_{i+j}$ and Question 4 to show that $\left(e_{i}, e_{j}\right)_{\mathfrak{p}}=1$.

Hint. Using (1), show that e_{i+j} is a p-th power in $K_{\mathfrak{p}}$. Apply Question 4 to $\left(e_{i}, \pi^{i} e_{j}\right)$.
(3) Show that, if $x \in 1+\pi^{i} \mathcal{O}_{K_{\mathrm{p}}}, x$ can be expressed as an infinite product

$$
x=e_{i}^{m_{i}} e_{i+1}^{m_{i+1}} \cdots, \quad \text { for some } m_{i}, m_{i+1}, \cdots \in \mathbb{Z}
$$

Here, the above expression means that the sequence $x_{i}, x_{i+1}, \cdots \in \mathcal{O}_{K_{\mathfrak{p}}}$ defined by

$$
x_{j}:=e_{i}^{m_{i}} e_{i+1}^{m_{i+1}} \cdots e_{j}^{m_{j}}, \quad j \geq i
$$

converges to x.
Hint. Note that $\mathcal{O}_{K_{\mathfrak{p}}} / \pi \mathcal{O}_{K_{\mathfrak{p}}} \cong \mathbb{F}_{p}$ with representatives $\{0,1, \cdots, p-1\}$. Deduce that, if $x \equiv 1+r \pi^{i}\left(\bmod \pi^{i+1}\right), 0 \leq n \leq p-1$, then $\frac{x}{e_{i}^{-r}} \equiv 1\left(\bmod \pi^{i+1}\right)$.
(4) Show that for $a, b \in K^{\times}$coprime to each other and to p, such that $a, b \equiv 1\left(\bmod \pi^{\frac{p+1}{2}}\right)$, the p-th power residue symbols satisfy

$$
\left(\frac{a}{b}\right)=\left(\frac{b}{a}\right)
$$

