HW #11

ALGEBRAIC NUMBER THEORY, GU4043; INSTRUCTOR: GYUJIN OH

Due Tuesday, April 9 by 11:59pm on Gradescope.

Question 1. Let $L = \mathbb{Q}(\sqrt{3})$.

- (1) Show that $h_L = 1$, so that the Hilbert class field of L is $H_L = L$.
- (2) Let $K = L(\sqrt{-1})$. Show that every prime ideal $\mathfrak{p} \subset \mathcal{O}_L$ is unramified in K.
- (3) Why are (1) and (2) consistent with the global class field theory?

Hint. Compute the conductor $f_{K/L}$.

Question 2. In this question, we determine the ray class fields of \mathbb{Q} . Let ∞ denote the unique archimedean prime of \mathbb{Q} .

(1) Let m > 1 is such that $v_2(m) \neq 1$. Show that the kernel of the Artin map

$$\operatorname{Art}_{\mathbb{Q}(\zeta_m)/\mathbb{Q}}^m : J_{\mathbb{Q}}^m \to \operatorname{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q}),$$

is equal to $P_{\mathbb{Q}}^{m\infty}$. Deduce that $\mathbb{Q}(\zeta_m)$ is the ray class field of \mathbb{Q} for modulus $m\infty$. Deduce that $\mathfrak{f}_{\mathbb{Q}(\zeta_m)/\mathbb{Q}} = n\infty$ with n|m.

- (2) Retaining the same notation as (1), show that $\mathbb{Q}(\zeta_m) \subset \mathbb{Q}(\zeta_n)$. Deduce that n = m.
- (3) For $m \ge 1$ odd, show that $\mathbb{Q}(\zeta_{2m}) = \mathbb{Q}(\zeta_m)$. Deduce that, for $n \ge 1$,

$$\mathfrak{f}_{\mathbb{Q}(\zeta_n)/\mathbb{Q}} = \begin{cases} 1 & \text{if } n = 1\\ \frac{n}{2}\infty & \text{if } n \text{ is even, } \frac{n}{2} \text{ is odd}\\ n\infty & \text{otherwise.} \end{cases}$$

- (4) For a finite extension K/\mathbb{Q}_2 , show that the local conductor $\mathfrak{f}_{K/\mathbb{Q}_2}$ cannot be equal to 1.
- (5) Using (3) and (4), deduce that the ray class field of \mathbb{Q} for modulus \mathfrak{m} is

$$\mathbb{Q}(\mathfrak{m}) = \begin{cases} \mathbb{Q}(\zeta_n) & \text{if } \mathfrak{m} = n\infty \\ \mathbb{Q}(\zeta_n)^+ := \mathbb{Q}(\zeta_n + \zeta_n^{-1}) & \text{if } \mathfrak{m} = n. \end{cases}$$

Question 3. In this question, we revisit HW7, Question 1, on the primes $p \neq 2, 7$ of the form $p = x^2 + 14y^2$ for some integers $x, y \in \mathbb{Z}$. We have already seen that $\operatorname{Cl}(\mathbb{Q}(\sqrt{-14})) \cong \mathbb{Z}/4\mathbb{Z}$.

(1) Let $K = \mathbb{Q}(\sqrt{-14})$ and $K' = K(\sqrt{2})$. Show that K'/K is an unramified extension (including the archimedean primes).

Hint. Use that $K' = \mathbb{Q}(\sqrt{2}, \sqrt{-7})$ and that 2 splits completely in $\mathbb{Q}(\sqrt{-7})$.

(2) Let $K'' = K'(\sqrt{2\sqrt{2}-1})$. Using that $(2\sqrt{2}-1)(-2\sqrt{2}-1) = -7$, show that $K'' = K'(\sqrt{-2\sqrt{2}-1})$. Using the discriminant, show that K''/K' is unramified at every prime coprime to 2 (including the archimedean primes).

(3) Note that $2\sqrt{2} - 1 = (1 + \sqrt{2})^2 - 4$, so that $K'' = K'(\alpha)$, where

$$\alpha = \frac{1 + \sqrt{2} + \sqrt{2\sqrt{2} - 1}}{2}, \quad \alpha^2 - (1 + \sqrt{2})\alpha + 1 = 0.$$

Using the discriminant, show that K''/K' is unramified at every prime.

- (4) Show that K''/K is an abelian extension. Deduce that $K'' = H_K$.
- (5) Show that, for $p \neq 2, 7$ a rational prime,

$$p = x^2 + 14y^2$$
 for some $x, y \in \mathbb{Z} \Leftrightarrow \left(\frac{-14}{p}\right) = 1$ and $X^4 + 2X^2 - 7 \equiv 0 \pmod{p}$ has an integer solution

Question 4. Let n > 1 be an odd integer, and let K be a local field of characteristic 0 that contains μ_n . For $a, b \in K^{\times}$ with $a \neq -b$, show that

$$(a,b) = (a,a+b)(a+b,b).$$

Hint. Let a + b = c. Then, we have

$$1 = (1 - ac^{-1}, ac^{-1}) = (bc^{-1}, ac^{-1}).$$

Use that -1 is an *n*-th power.

Question 5. Let p be an odd rational prime, and let $K = \mathbb{Q}(\zeta_p)$. Let $\pi = 1 - \zeta_p$, which generates the unique prime ideal $\mathfrak{p} = (\pi)$ lying over p (more precisely, $p = \mathfrak{p}^{p-1}$), and define $e_i = 1 - \pi^i$ for $i \ge 1$.

- (1) Using HW9, show that, in $K_{\mathfrak{p}}$, $(1 + \pi^2 \mathcal{O}_{K_{\mathfrak{p}}}, \times) \cong (\pi^2 \mathcal{O}_{K_{\mathfrak{p}}}, +)$. Deduce that $(\mathcal{O}_{K_{\mathfrak{p}}}^{\times})^p \supset 1 + \pi^{p+1} \mathcal{O}_{K_{\mathfrak{p}}}$.
- (2) For $i, j \ge 1$ with $i + j \ge p + 1$, use $e_i + \pi^i e_j = e_{i+j}$ and Question 4 to show that $(e_i, e_j)_{\mathfrak{p}} = 1$.

Hint. Using (1), show that e_{i+j} is a *p*-th power in K_p . Apply Question 4 to $(e_i, \pi^i e_j)$.

(3) Show that, if $x \in 1 + \pi^i \mathcal{O}_{K_p}$, x can be expressed as an infinite product

$$x = e_i^{m_i} e_{i+1}^{m_{i+1}} \cdots$$
, for some $m_i, m_{i+1}, \cdots \in \mathbb{Z}$.

Here, the above expression means that the sequence $x_i, x_{i+1}, \dots \in \mathcal{O}_{K_p}$ defined by

$$x_j := e_i^{m_i} e_{i+1}^{m_{i+1}} \cdots e_j^{m_j}, \quad j \ge i,$$

converges to x.

Hint. Note that $\mathcal{O}_{K_{\mathfrak{p}}}/\pi\mathcal{O}_{K_{\mathfrak{p}}} \cong \mathbb{F}_p$ with representatives $\{0, 1, \dots, p-1\}$. Deduce that, if $x \equiv 1 + r\pi^i \pmod{\pi^{i+1}}, 0 \leq n \leq p-1$, then $\frac{x}{e_i^{-r}} \equiv 1 \pmod{\pi^{i+1}}$.

(4) Show that for $a, b \in K^{\times}$ coprime to each other and to p, such that $a, b \equiv 1 \pmod{\pi^{\frac{p+1}{2}}}$, the *p*-th power residue symbols satisfy

$$\left(\frac{a}{b}\right) = \left(\frac{b}{a}\right).$$