Due Tuesday, April 16 by 11:59pm on Gradescope.
Question 1. Let $K=\mathbb{Q}(\sqrt{d})$ be a real quadratic field with $d>1$ is a square-free integer with $d \equiv 1(\bmod 4)$, i.e. $\operatorname{disc}(K)=d$, and $\mathcal{O}_{K}=\mathbb{Z}\left[\frac{\sqrt{d}+1}{2}\right]$.
(1) Show that the continued fraction of

$$
\left\lfloor\frac{\sqrt{d}+1}{2}\right\rfloor+\frac{\sqrt{d}-1}{2},
$$

is purely periodic.
(2) Let $\left(a_{0} ; a_{1}, \cdots\right)$ be the continued fraction of $\frac{\sqrt{d}-1}{2}$, whose period is ℓ. Show that the fundamental unit of K is $\epsilon=P_{\ell-1}+Q_{\ell-1} \frac{\sqrt{d}+1}{2}$.

Question 2. Let $K=\mathbb{Q}(\sqrt{d}) \subset \mathbb{R}$ be a real quadratic field, with $d>1$ a square-free integer. The sign of K is $N(K):=N_{K / \mathbb{Q}}(\epsilon)$, where ϵ is the fundamental unit of K (i.e. the smallest unit $>1)$.
(1) Show that $N(K)=-1$ if and only there is a unit whose norm is -1 . Deduce that $N(K)=$ -1 if and only if the equation $x^{2}-\operatorname{disc}(K) y^{2}=-4$ has integer solutions $x, y \in \mathbb{Z}$.
(2) If d has a prime factor that is $\equiv 3(\bmod 4)$, show that $N(K)=1$.
(3) Let \mathfrak{m} be the modulus of K such that $\mathfrak{m}_{f}=1$ and \mathfrak{m}_{∞} is the product of the two real embeddings of K. Show that the natural surjective map $\mathrm{Cl}_{K}^{\mathrm{m}} \rightarrow \mathrm{Cl}(K)$ is an isomorphism if and only if there exists a unit of norm -1 .
(4) Using (2) and (3), deduce that if d has a prime factor that is $\equiv 3(\bmod 4)$, then there is an abelian extension L / K that is strictly bigger than H_{K} and is unramified at every prime ideal $\mathfrak{p} \subset \mathcal{O}_{K}$ (cf. Question 1, HW11).

Question 3. Let χ be a primitive odd Dirichlet character of modulus m, and let

$$
\widetilde{\theta}_{\chi}(i y)=\sum_{n \in \mathbb{Z}} \chi(n) n \sqrt{y} e^{-\pi n^{2} y}, \quad y>0 .
$$

(1) Show that, for $\operatorname{Re}(s)>1$,

$$
\pi^{-\frac{s+1}{2}} \Gamma\left(\frac{s+1}{2}\right) L(s, \chi)=\int_{0}^{\infty} y^{\frac{s}{2}} \frac{\widetilde{\theta}_{\chi}(i y)}{2} \frac{d y}{y}
$$

(2) Using the Poisson summation formula, show that

$$
\widetilde{\theta}_{\chi}(i y)=-\frac{i G(\chi)}{m \sqrt{y}} \widetilde{\theta}_{\bar{\chi}}\left(\frac{i}{m^{2} y}\right) .
$$

Hint. The Fourier transform of $f(x)=x e^{-\pi x^{2}}$ is $\widehat{f}(x)=-i x e^{-\pi x^{2}}$.

Question 4. Let χ be a Dirichlet character. Note that the Euler product expansion of $L(s, \chi)$ implies that, for $\operatorname{Re}(s)>1$,

$$
\log L(s, \chi)=-\sum_{p \text { prime }} \log \left(1-\chi(p) p^{-s}\right)
$$

(1) Show that, for $\operatorname{Re}(s)>1$,

$$
\log L(s, \chi)=\sum_{p \text { prime }} \sum_{n=1}^{\infty} \frac{\chi(p)^{n} p^{-n s}}{n}
$$

and the double infinite sum on the right hand side is absolutely convergent.
(2) Show that there exists a constant $C>0$ such that for any χ and $\operatorname{Re}(s)>1$,

$$
\left|\log L(s, \chi)-\sum_{p \text { prime }} \chi(p) p^{-s}\right|<C
$$

(3) Let $n>1$, and let $a \in(\mathbb{Z} / n \mathbb{Z})^{\times}$. Show that

$$
\left|\frac{1}{\varphi(n)}\left(\sum_{\chi \in(\mathbb{Z} / n \mathbb{Z})^{\times}} \overline{\chi(a)} \log L(s, \chi)\right)-\left(\sum_{p \text { prime }, p \equiv a(\bmod n)} p^{-s}\right)\right|<C .
$$

Deduce that there are infinitely many primes that are $\equiv a(\bmod n)$.
Hint. Show that $\lim _{s \rightarrow 1^{+}} \sum_{p \text { prime, } p \equiv a(\bmod n)} p^{-s}$ diverges.

