HW #14

ALGEBRAIC NUMBER THEORY, GU4043; INSTRUCTOR: GYUJIN OH

Due Tuesday, April 30 by 11:59pm on Gradescope.

Question 1.

(1) Show that the Bernoulli polynomials $B_n(X)$ can be defined by the equation

$$\frac{Ze^{XZ}}{e^Z - 1} = \sum_{n=0}^{\infty} \frac{B_n(X)}{n!} Z^n.$$

- (2) Show that $B_{n+1}(X+1) B_{n+1}(X) = (n+1)X^n$.
- (3) Let $n, m \in \mathbb{N}$. Show that

$$\sum_{a=1}^{m} a^{n} = \frac{B_{n+1}(m) - B_{n+1}(0)}{n+1} = \frac{1}{n+1} \sum_{j=0}^{n} (-1)^{j} \binom{n+1}{j} B_{j} m^{n+1-j}.$$

This is called the **Faulhaber's formula**.

(4) Let p be an odd prime and n > 0 be even integer not divisible by p - 1. Using (3), show that

$$\sum_{a=1}^{p} a^{n} \equiv pB_{n} \; (\operatorname{mod} p^{2}).$$

(5) Let $b \in \mathbb{N}$, (b, p) = 1. Show that, for $1 \le a \le p$, if $ab = px_a + r_a$ for $x_a, r_a \in \mathbb{Z}, 0 \le r_a < p$,

$$(ab)^n \equiv r_a^n + pn(ab)^{n-1} \left\lfloor \frac{ab}{p} \right\rfloor \pmod{p^2}.$$

By adding the above equation over $1 \le a \le p$, show

$$(b^n - 1) \sum_{a=1}^p a^n \equiv pnb^{n-1} \sum_{a=1}^{p-1} a^{n-1} \left\lfloor \frac{ab}{p} \right\rfloor \pmod{p^2}.$$

(6) Let p be an odd prime and a, b be positive even integers such that $a \equiv b \not\equiv 0 \pmod{p-1}$ and a, b are coprime to p. Using (4), (5), show that

$$\frac{B_a}{a} \equiv \frac{B_b}{b} \; (\bmod \; p).$$

This is called the **Kummer's congruences**.

Question 2.

(1) Let p be an odd prime. Recall that the Teichmüller character $\omega : \mathbb{F}_p^{\times} \to \mathbb{Z}_p^{\times}$ takes a to the (p-1)-st root of unity congruent to $a \mod p$. Show that, for $1 \le a \le p-1$,

$$\omega(a) \equiv a + \frac{a^{p-1} - 1}{a^{p-2}} \pmod{p^2}.$$

(2) Let p be an odd prime, and let $3 \le i \le p-2$ be an odd integer. Using Question 1, show that

$$B_{1,\omega^{-i}} \equiv \frac{B_{p-i}}{p-i} \; (\text{mod } p)$$

This implies that one may replace $B_{1,\omega^{-i}}$ with B_{p-i} in the statement of Herbrand's theorem.

Question 3. Let *p* be a prime, and let $1 \le a \le b$. Show that the norm map

$$N_{\mathbb{Q}(\zeta_{p^b})/\mathbb{Q}(\zeta_{p^a})} : \mathrm{Cl}(\mathbb{Q}(\zeta_{p^b})) \to \mathrm{Cl}(\mathbb{Q}(\zeta_{p^a})),$$

is surjective. Deduce that $h_{\mathbb{Q}(\zeta_{p^a})}$ divides $h_{\mathbb{Q}(\zeta_{p^b})}$.

Hint. Show that, for any subextension $\mathbb{Q}(\zeta_{p^b})/K/\mathbb{Q}(\zeta_{p^a})$, the unique prime \mathfrak{p} of $\mathbb{Q}(\zeta_{p^a})$ over p is ramified in $K/\mathbb{Q}(\zeta_{p^a})$. Deduce that $H_{\mathbb{Q}(\zeta_{p^a})} \cap \mathbb{Q}(\zeta_{p^b}) = \mathbb{Q}(\zeta_{p^a})$.

Question 4. Let $p \equiv 3 \pmod{4}$ be a prime. Let $K = \mathbb{Q}(\sqrt{-p})$, and let χ_p be the quadratic Dirichlet character of modulus p (cf. Definition 19.14).

(1) Show that Theorem 19.17(1) reads

$$h_K = -\frac{1}{p} \sum_{a=1}^p \chi_p(a) a = \frac{1}{p} \left(-2 \sum_{a=1}^{\frac{p-1}{2}} \chi_p(a) a + p \sum_{a=1}^{\frac{p-1}{2}} \chi_p(a) \right).$$

Hint. We know exactly what the value of $G(\chi_p)$ is.

(2) Show that (1) can be massaged into

$$h_K = \frac{1}{p} \left(-4 \sum_{a=1}^{\frac{p-1}{2}} \chi_p(2a)a + p \sum_{a=1}^{\frac{p-1}{2}} \chi_p(2a) \right).$$

Hint. $\chi(2a) = -\chi(p - 2a).$

(3) Show that (1) and (2) together gives

$$h_K = \frac{1}{2 - \chi_p(2)} \sum_{a=1}^{\frac{p-1}{2}} \chi_p(a).$$

Deduce that there are more quadratic residues than non-residues in the interval $(0, \frac{p}{2})$.

(4) If $p \equiv 1 \pmod{4}$ is a prime, show that the number of quadratic residues in the interval $(0, \frac{p}{2})$ is the same as the number of quadratic non-residues.