Due Tuesday, January 30 by 11:59pm on Gradescope.
Question 1. Let A be a commutative ring with 1 , and let M, N be A-modules. Find the natural A-module structure on the set $\operatorname{Hom}_{A}(M, N)$, as claimed in the lecture notes.

Question 2. Let $f(X)=X^{3}+a X+b, a, b \in \mathbb{Q}$, such that $f(X)$ is irreducible in $\mathbb{Q}[X]$ (i.e. $f(X)$ has no rational roots). Let α be a root of $f(X)$, and let $K=\mathbb{Q}(\alpha)$ be a degree 3 number field. Show that

$$
D\left(1, \alpha, \alpha^{2}\right)=-27 b^{2}-4 a^{3} .
$$

Question 3. Read the proof of the Primitive Element Theorem. Using the Primitive Element Theorem, we aim to prove that, for a number field $K, \operatorname{disc}(K) \neq 0$.
(1) Use the Primitive Element Theorem to show that one can find $\alpha \in \mathcal{O}_{K}$ satisfying $K=$ $\mathbb{Q}(\alpha)$.
(2) Show that $D\left(1, \alpha, \cdots, \alpha^{n-1}\right) \neq 0$, where $n=[K: \mathbb{Q}]$. Deduce that $\operatorname{disc}(K) \neq 0$.

Question 4. Let $n>1$ be an integer, and choose a primitive n-th root of unity $\zeta_{n} \in \mathbb{C}$. This is an algebraic integer, and the field $\mathbb{Q}\left(\zeta_{n}\right)$ is called the n-th cyclotomic field. We will focus on the case when $n=p^{a}$ is a prime power.
(1) Prove the Eisenstein's irreducibility criterion: given a polynomial

$$
f(X)=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0} \in \mathbb{Z}[X],
$$

if there is a prime number p such that the following two Conditions are satisfied, then $f(X)$ is irreducible in $\mathbb{Z}[X]$ (and thus $\mathbb{Q}[X]$, by Gauss's Lemma).

Condition 1. p divides $a_{n-1}, a_{n-2}, \cdots, a_{0}$.
Condition 2. p^{2} does not divide a_{0}.
(2) Using the Eisenstein's irreducibility criterion, show that the minimal polynomial of $\zeta_{p^{a}}$ over \mathbb{Q} is

$$
\Phi_{p^{a}}(X)=X^{p^{a-1}(p-1)}+X^{p^{a-1}(p-2)}+\cdots+X^{p^{a-1}}+1 .
$$

This polynomial is called the p^{a}-th cyclotomic polynomial.
Hint. First, note that the minimal polynomial of $\zeta_{p^{a}}$ must divide

$$
\frac{X^{p^{a}}-1}{X^{p^{a-1}}-1}=\Phi_{p^{a}}(X)
$$

Then, use the Eisenstein's irreducibility criterion to $\Phi_{p^{a}}(X+1)$.
(3) Deduce that the conjugates of $\zeta_{p^{a}}$ are $\zeta_{p^{a}}^{k}, 1 \leq k \leq p^{a},(k, p)=1$, and that $\mathbb{Q}\left(\zeta_{p^{a}}\right) / \mathbb{Q}$ is Galois with

$$
\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p^{a}}\right) / \mathbb{Q}\right) \cong\left(\mathbb{Z} / p^{a} \mathbb{Z}\right)^{\times}
$$

In particular, $\mathbb{Q}\left(\zeta_{p^{a}}\right)$ does not depend on the choice of a primitive p^{a}-th root of unity.

Question 5. Let p be a prime number, and $a \geq 1$.
(1) Compute $D\left(1, \zeta_{p^{a}}, \cdots, \zeta_{p^{a}}^{p^{a-1}(p-1)-1}\right)$.
(2) Show that $N_{\mathbb{Q}\left(\zeta_{p^{a}}\right) / \mathbb{Q}}\left(1-\zeta_{p^{a}}\right)=p$. Deduce that, for any $k \in\left(\mathbb{Z} / p^{a} \mathbb{Z}\right)^{\times}$,

$$
\frac{1-\zeta_{p^{a}}^{k}}{1-\zeta_{p^{a}}} \in \mathcal{O}_{\mathbb{Q}\left(\zeta_{p^{a}}\right)}^{\times}
$$

This kind of a unit is called a cyclotomic unit.
(3) Let $p \geq 5$. Show that

$$
\frac{1-\zeta_{p^{a}}^{2}}{1-\zeta_{p^{a}}}=1+\zeta_{p^{a}} \in \mathcal{O}_{\mathbb{Q}\left(\zeta_{p^{a}}\right)}^{\times},
$$

is of infinite order. This shows that the multiplicative group of units $\mathcal{O}_{\mathbb{Q}\left(\zeta_{p^{a}}\right)}^{\times}$as an abelian group is infinite.

Hint. We have a freedom to choose $\zeta_{p^{a}}$. Choose $\zeta_{p^{a}}=e^{\frac{2 \pi i}{p^{a}}}$, and show that $\left|1+e^{\frac{2 \pi i}{p^{a}}}\right|>1$ (the absolute value as a complex number).

