HW \#3

ALGEBRAIC NUMBER THEORY, GU4043; INSTRUCTOR: GYUJIN OH

Due Tuesday, February 6 by 11:59pm on Gradescope.
Question 1. Let p be an odd prime. In HW2, we proved that $\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}$ is Galois with Galois group $(\mathbb{Z} / p \mathbb{Z})^{\times}$. As this Galois group is a cyclic group of even order, there is a unique nontrivial group homomorphism $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}\right) \rightarrow \mathbb{Z} / 2 \mathbb{Z}$. By Galois theory, there is a corresponding subfield $K \subset \mathbb{Q}\left(\zeta_{p}\right)$, which is the unique quadratic subfield. Show that

$$
K= \begin{cases}\mathbb{Q}(\sqrt{p}) & \text { if } p \equiv 1(\bmod 4) \\ \mathbb{Q}(\sqrt{-p}) & \text { if } p \equiv 3(\bmod 4)\end{cases}
$$

Hint. Use $\operatorname{disc}(K) \mid \operatorname{disc}\left(\mathbb{Q}\left(\zeta_{p}\right)\right)$.

Question 2. Let $K=\mathbb{Q}(\alpha)$ be a number field of degree n with $\alpha \in \mathcal{O}_{K}$, such that the minimal polynomial $p_{\alpha}(X)$ of α over \mathbb{Q} satisfies the Eisenstein's irreducibility criterion with a prime number p (we say that $p_{\alpha}(X)$ is Eisenstein at p in short).
(1) If $a_{0}, \cdots, a_{n-1} \in \mathbb{Z}$ are integers such that

$$
a_{0}+a_{1} \alpha+\cdots+a_{n-1} \alpha^{n-1} \in p \mathcal{O}_{K},
$$

then show that $a_{0}, a_{1}, \cdots, a_{n-1} \in p \mathbb{Z}$.
Hint. First, multiply the expression by α^{n-1} to show that $a_{0} \in p \mathbb{Z}$. Then, inductively show that $a_{1} \in p \mathbb{Z}, a_{2} \in p \mathbb{Z}, \cdots$.
(2) If $x \in \mathcal{O}_{K}$ has an expression

$$
x=b_{0}+b_{1} \alpha+\cdots+b_{n-1} \alpha^{n-1}, \quad b_{0}, \cdots, b_{n-1} \in \mathbb{Q}
$$

show that each $b_{i} \in \mathbb{Q}$ has no p in its denominator.
(3) Prove that $\left(p,\left[\mathcal{O}_{K}: \mathbb{Z}[\alpha]\right]\right)=1$ by showing that there is no element of order p in the finite abelian group $\mathcal{O}_{K} / \mathbb{Z}[\alpha]$.
(4) Show that $\mathcal{O}_{\mathbb{Q}(\sqrt[5]{2})}=\mathbb{Z}[\sqrt[5]{2}]$ as follows.

- Note that $\left[\mathcal{O}_{\mathbb{Q}(\sqrt[5]{2})}: \mathbb{Z}[\sqrt[5]{2}]\right]$ divides $\operatorname{disc}\left(1, \sqrt[5]{2}, \cdots, \sqrt[5]{2^{4}}\right)$, which has only 2 and 5 as prime factors (compute it).
- 2 does not divide $\left[\mathcal{O}_{\mathbb{Q}(\sqrt[5]{2})}: \mathbb{Z}[\sqrt[5]{2}]\right]$ as the minimal polynomial of $\sqrt[5]{2}$ over $\mathbb{Q}, X^{5}-2$, is Eisenstein at 2.
- 5 does not divide $\left[\mathcal{O}_{\mathbb{Q}(\sqrt[5]{2})}: \mathbb{Z}[\sqrt[5]{2}]\right]$ as the minimal polynomial of $\sqrt[5]{2}-2$ over \mathbb{Q}, $(X+2)^{5}-2$, is Eisenstein at 5 .

Question 3. In this exercise, we will prove the following
Theorem. For a Noetherian ring A, any finitely generated A-module is Noetherian.
(1) Let B be any commutative ring with 1 and M be a B-module. Let $N \subset M$ be a B submodule, and let $M_{1}, M_{2} \subset M$ be two B-submodules of M. Show that $M_{1}=M_{2}$ if and only if $M_{1} \cap N=M_{2} \cap N$ and $\frac{M_{1}}{M_{1} \cap N}=\frac{M_{2}}{M_{2} \cap N}$ as B-submodules of $\frac{M}{M_{1} \cap N}$.
(2) For any commutative ring B with 1 , show that a B-module generated by a single element is of the form B / I for an ideal $I \subset B$.
(3) Prove the Theorem by induction on the number of generators of the module.

Question 4. In this exercise, we will prove the following
Theorem. Let F be a field, and A be a commutative F-algebra which is finitely generated as an F-module. Then, A is an integral domain if and only if A is a field.
As fields are integral domains, we only need to prove one direction. Suppose that A is an integral domain.
(1) Choose $a \in A$ nonzero. Show that the multiplication-by- a map $m_{a}: A \rightarrow A$ (i.e. $m_{a}(x)=$ $a x$) is an injective F-linear map.
(2) Show that A as an F-vector space is of finite dimension. Deduce that m_{a} is surjective.
(3) Deduce that A is a field.

