HW #4

ALGEBRAIC NUMBER THEORY, GU4043; INSTRUCTOR: GYUJIN OH

Due Tuesday, February 13 by 11:59pm on Gradescope.

Question 1. Let A be a Dedekind domain, and let $I, J \subset A$ be two nonzero ideals with the prime ideal factorization

$$I = \prod_{i=1}^{n} \mathfrak{p}_i^{e_i}, \quad J = \prod_{i=1}^{n} \mathfrak{p}_i^{f_i},$$

with $e_i, f_i \ge 0$ and $\mathfrak{p}_1, \mathfrak{p}_2, \cdots, \mathfrak{p}_n$ mutually distinct maximal ideals of A. Show that

$$gcd(I,J) := I + J = \prod_{i=1}^{n} \mathfrak{p}_i^{\min(e_i,f_i)}, \quad lcm(I,J) := I \cap J = \prod_{i=1}^{n} \mathfrak{p}_i^{\max(e_i,f_i)}.$$

Question 2. Let *A* be a Dedekind domain.

(1) Prove the weak approximation theorem:

Theorem. Let $\mathfrak{p}_1, \dots, \mathfrak{p}_n$ be mutually distinct maximal ideals of A, and let $e_1, \dots, e_n \in \mathbb{Z}$. Then, there exists a nonzero $b \in \operatorname{Frac}(A)$ such that the prime ideal factorization of the principal ideal (b) has \mathfrak{p}_i appearing with multiplicity exactly e_i .

Hint. It is sufficient to prove the theorem for $e_1, \dots, e_n \ge 0$ with the extra requirement that $b \in A$. Show first that $\mathfrak{p}_i^{e_i}/\mathfrak{p}_i^{e_i+1} \subset A/\mathfrak{p}_i^{e_i+1}$ is nonzero. After that, one can use (a variant of) the Chinese Remainder Theorem, that $A \to \prod_{i=1}^n A/\mathfrak{p}_i^{e_i+1}$ is surjective.

(2) Prove the strong approximation theorem:

Theorem. Let $\mathfrak{p}_1, \dots, \mathfrak{p}_n$ be mutually distinct maximal ideals of A, and let $e_1, \dots, e_n \in \mathbb{Z}$. Then, there exists a nonzero $b \in \operatorname{Frac}(A)$ such that the prime ideal factorization of the principal ideal (b) has \mathfrak{p}_i appearing with multiplicity exactly e_i , and also such that all the other prime ideal factors of (b) have nonnegative multiplicities.

Hint. Use the version of the weak approximation for $e_1, \dots, e_n \ge 0$ and $b \in A$ to first find a denominator, and then to find an appropriate numerator.

Question 3. Let $K = \mathbb{Q}(\sqrt{5})$ and $A = \mathbb{Z}[\sqrt{5}] \neq \mathcal{O}_K$. We already know that A is not normal, so not Dedekind. This exercise shows that the unique factorization of ideals fails to hold in A.

(1) Show that the ideal $\mathfrak{p} = (2, 1 + \sqrt{5}) \subset A$ is a maximal ideal, by showing that $A/\mathfrak{p} \cong \mathbb{F}_2$.

- (2) Show that $(2) \subsetneq \mathfrak{p}$ are different ideals.
- (3) Show that $\mathfrak{p}^2 = 2\mathfrak{p}$. Deduce that the unique factorization of ideals does not hold in *A*.

Question 4. Let $K = \mathbb{Q}(\sqrt{-26})$, and consider the two factorizations of 27 in $\mathcal{O}_K = \mathbb{Z}[\sqrt{-26}]$:

$$27 = 3 \cdot 3 \cdot 3 = (1 + \sqrt{-26})(1 - \sqrt{-26}).$$

(1) Show that these two factorizations of 27 are factorizations into irreducibles, i.e. that 3, $1 + \sqrt{-26}$, $1 - \sqrt{-26}$ are all irreducible elements in $\mathbb{Z}[\sqrt{-26}]$. Thus, $\mathbb{Z}[\sqrt{-26}]$ is not a UFD.

Hint. Show that no element in $\mathbb{Z}[\sqrt{-26}]$ has norm 3.

(2) Find a prime ideal factorization of the ideal (27), and explain the two different prime factorizations of 27 in terms of the prime ideal factorization of the ideals (3), $(1 + \sqrt{-26})$ and $(1 - \sqrt{-26})$.

Question 5. In this exercise, we will describe the prime ideal factorization of $(p) \subset \mathcal{O}_K$, K = $\mathbb{Q}(\sqrt{d})$, in the case of $d \equiv 1 \pmod{4}$ squarefree.

(1) Show that the minimal polynomial of $\frac{1+\sqrt{d}}{2} \in \mathcal{O}_K$ over \mathbb{Q} is

$$f(X) = X^2 - X + \frac{1-d}{4} \in \mathbb{Z}[X].$$

Deduce that $\mathcal{O}_K / p\mathcal{O}_K = \mathbb{F}_p[X] / (f(X)).$

- (2) If p = 2, then show that f(X) is irreducible in $\mathbb{F}_p[X]$ if and only if $\frac{1-d}{4} \equiv 1 \pmod{2}$.
- (3) If p is an odd prime, show that f(X) is irreducible in $\mathbb{F}_p[X]$ if and only if d is not a square $\mod p$.

Hint. $f(X) = (X - \frac{1}{2})^2 - \frac{d}{4}$. (4) Give a complete description of the prime ideal factorization of $(p) \subset \mathcal{O}_{\mathbb{Q}(\sqrt{d})}$ in the case of $d \equiv 1 \pmod{4}$ squarefree.