Due Tuesday, February 13 by 11:59pm on Gradescope.
Question 1. Let A be a Dedekind domain, and let $I, J \subset A$ be two nonzero ideals with the prime ideal factorization

$$
I=\prod_{i=1}^{n} \mathfrak{p}_{i}^{e_{i}}, \quad J=\prod_{i=1}^{n} \mathfrak{p}_{i}^{f_{i}},
$$

with $e_{i}, f_{i} \geq 0$ and $\mathfrak{p}_{1}, \mathfrak{p}_{2}, \cdots, \mathfrak{p}_{n}$ mutually distinct maximal ideals of A. Show that

$$
\operatorname{gcd}(I, J):=I+J=\prod_{i=1}^{n} \mathfrak{p}_{i}^{\min \left(e_{i}, f_{i}\right)}, \quad \operatorname{lcm}(I, J):=I \cap J=\prod_{i=1}^{n} \mathfrak{p}_{i}^{\max \left(e_{i}, f_{i}\right)}
$$

Question 2. Let A be a Dedekind domain.
(1) Prove the weak approxmiation theorem:

Theorem. Let $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{n}$ be mutually distinct maximal ideals of A, and let $e_{1}, \cdots, e_{n} \in \mathbb{Z}$. Then, there exists a nonzero $b \in \operatorname{Frac}(A)$ such that the prime ideal factorization of the principal ideal (b) has \mathfrak{p}_{i} appearing with multiplicity exactly e_{i}.

Hint. It is sufficient to prove the theorem for $e_{1}, \cdots, e_{n} \geq 0$ with the extra requirement that $b \in A$. Show first that $\mathfrak{p}_{i}^{e_{i}} / \mathfrak{p}_{i}^{e_{i}+1} \subset A / \mathfrak{p}_{i}^{e_{i}+1}$ is nonzero. After that, one can use (a variant of) the Chinese Remainder Theorem, that $A \rightarrow \prod_{i=1}^{n} A / \mathfrak{p}_{i}^{e_{i}+1}$ is surjective.
(2) Prove the strong approximation theorem:

Theorem. Let $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{n}$ be mutually distinct maximal ideals of A, and let $e_{1}, \cdots, e_{n} \in \mathbb{Z}$.
Then, there exists a nonzero $b \in \operatorname{Frac}(A)$ such that the prime ideal factorization of the principal ideal (b) has \mathfrak{p}_{i} appearing with multiplicity exactly e_{i}, and also such that all the other prime ideal factors of (b) have nonnegative multiplicities.

Hint. Use the version of the weak approximation for $e_{1}, \cdots, e_{n} \geq 0$ and $b \in A$ to first find a denominator, and then to find an appropriate numerator.

Question 3. Let $K=\mathbb{Q}(\sqrt{5})$ and $A=\mathbb{Z}[\sqrt{5}] \neq \mathcal{O}_{K}$. We already know that A is not normal, so not Dedekind. This exercise shows that the unique factorization of ideals fails to hold in A.
(1) Show that the ideal $\mathfrak{p}=(2,1+\sqrt{5}) \subset A$ is a maximal ideal, by showing that $A / \mathfrak{p} \cong \mathbb{F}_{2}$.
(2) Show that $(2) \subsetneq \mathfrak{p}$ are different ideals.
(3) Show that $\mathfrak{p}^{2}=2 \mathfrak{p}$. Deduce that the unique factorization of ideals does not hold in A.

Question 4. Let $K=\mathbb{Q}(\sqrt{-26})$, and consider the two factorizations of 27 in $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{-26}]$:

$$
27=3 \cdot 3 \cdot 3=(1+\sqrt{-26})(1-\sqrt{-26}) .
$$

(1) Show that these two factorizations of 27 are factorizations into irreducibles, i.e. that 3, $1+\sqrt{-26}, 1-\sqrt{-26}$ are all irreducible elements in $\mathbb{Z}[\sqrt{-26}]$. Thus, $\mathbb{Z}[\sqrt{-26}]$ is not a UFD.
Hint. Show that no element in $\mathbb{Z}[\sqrt{-26}]$ has norm 3 .
(2) Find a prime ideal factorization of the ideal (27), and explain the two different prime factorizations of 27 in terms of the prime ideal factorization of the ideals (3), ($1+\sqrt{-26}$) and $(1-\sqrt{-26})$.

Question 5. In this exercise, we will describe the prime ideal factorization of $(p) \subset \mathcal{O}_{K}, K=$ $\mathbb{Q}(\sqrt{d})$, in the case of $d \equiv 1(\bmod 4)$ squarefree.
(1) Show that the minimal polynomial of $\frac{1+\sqrt{d}}{2} \in \mathcal{O}_{K}$ over \mathbb{Q} is

$$
f(X)=X^{2}-X+\frac{1-d}{4} \in \mathbb{Z}[X]
$$

Deduce that $\mathcal{O}_{K} / p \mathcal{O}_{K}=\mathbb{F}_{p}[X] /(f(X))$.
(2) If $p=2$, then show that $f(X)$ is irreducible in $\mathbb{F}_{p}[X]$ if and only if $\frac{1-d}{4} \equiv 1(\bmod 2)$.
(3) If p is an odd prime, show that $f(X)$ is irreducible in $\mathbb{F}_{p}[X]$ if and only if d is not a square $\bmod p$.
Hint. $f(X)=\left(X-\frac{1}{2}\right)^{2}-\frac{d}{4}$.
(4) Give a complete description of the prime ideal factorization of $(p) \subset \mathcal{O}_{\mathbb{Q}(\sqrt{d})}$ in the case of $d \equiv 1(\bmod 4)$ squarefree.

