HW #5

ALGEBRAIC NUMBER THEORY, GU4043

Due Tuesday, February 20 by 11:59pm on Gradescope.

Question 1. Let $K/L/\mathbb{Q}$ be a tower of number fields (not necessarily Galois). Let $p \in \mathbb{Z}$ be a rational prime.

- (1) If p is unramified in the bigger field K, show that p is also unramified in the smaller field L.
- (2) If p splits completely in the bigger field K, show that p also splits completely in the smaller field L.

Question 2. Using HW4, check that even in the case of $d \equiv 1 \pmod{4}$ a square-free integer, for $(p, \operatorname{disc}(\mathbb{Q}(\sqrt{d}))) = 1$ and p odd,

$$\operatorname{Fr}_p = \left(\frac{d}{p}\right) \in \{\pm 1\} = \operatorname{Gal}(\mathbb{Q}(\sqrt{d})/\mathbb{Q}).$$

Question 3. Let K/\mathbb{Q} be a Galois extension. Suppose that there is a rational prime p which is inert in K. Show that $Gal(K/\mathbb{Q})$ is a cyclic group.

Question 4. Consider $K = \mathbb{Q}(\sqrt[3]{28})$. Let $\alpha = \sqrt[3]{28}$, so that the minimal polynomial of α over \mathbb{Q} is $f(X) = X^3 - 28$.

- (1) Compute $D(1, \alpha, \alpha^2)$. Deduce that if $p \neq 2, 3, 7$ is a rational prime, then $(p, [\mathcal{O}_K : \mathbb{Z}[\alpha]]) = 1$.
- (2) Use the Dedekind's criterion with α to compute the prime ideal factorization of (5) in \mathcal{O}_K .
- (3) Let

$$\beta = \frac{-\alpha^2 + 2\alpha + 2}{6} \in K.$$

Show that $\beta \in \mathcal{O}_K$ by showing that the minimal polynomial of β over \mathbb{Q} is $g(X) = X^3 - X^2 + 5X + 1$.

(4) Compute $D(1, \beta, \beta^2)$. Deduce that $(3, [\mathcal{O}_K : \mathbb{Z}[\beta]]) = 1$.

Hint. Use that $D(1, \beta, \beta^2) = [\mathcal{O}_K : \mathbb{Z}[\beta]]^2 \operatorname{disc}(K)$.

(5) Use the Dedekind's criterion with β to compute the prime ideal factorization of (3) in \mathcal{O}_K . What will happen if you mindlessly used the Dedekind's criterion with α to compute a factorization of (3)?

Question 5. Let $K = \mathbb{Q}(\alpha)$ with $\alpha \in \mathcal{O}_K$. Let $f(X) \in \mathbb{Z}[X]$ be the minimal polynomial of α over \mathbb{Q} . Suppose that p is a rational prime such that $f(X) \mod p$ factors into a product

$$f(X) = f_1(X) \cdots f_r(X) \pmod{p},$$

such that $f_1(X), \dots, f_r(X) \in \mathbb{F}_p[X]$ are mutually distinct monic irreducible polynomials in $\mathbb{F}_p[X]$.

Our goal is to show that, under these assumptions, $(p, [\mathcal{O}_K : \mathbb{Z}[\alpha]]) = 1$.

(1) Suppose on the contrary that p divides $[\mathcal{O}_K : \mathbb{Z}[\alpha]]$. Then, it divides $D(1, \alpha, \dots, \alpha^{n-1})$, where $n = \deg f$. Recall that

$$D(1, \alpha, \cdots, \alpha^{n-1}) = \prod_{i < j} (\alpha_i - \alpha_j)^2,$$

where $\alpha_1, \dots, \alpha_n$ are the roots of f(X) in the Galois closure L of K/\mathbb{Q} . Deduce that, if p divides $D(1, \alpha, \dots, \alpha^{n-1})$, then there are $i \neq j$ such that $\alpha_i - \alpha_j \in \mathfrak{p}$ for some prime ideal $\mathfrak{p} \subset \mathcal{O}_L$ lying over p.

- (2) Show that f(X), as an element of $(\mathcal{O}_L/\mathfrak{p})[X]$, has repeated roots.
- (3) Using that O_L/p is also a finite field, and that (O_L/p)/𝔽_p is a separable extension, show that, if f(X) has repeated roots in O_L/p, then its factorization into monic irreducible polynomials in 𝔽_p[X] must have some multiplicities. This gives rise to a contradiction.
- (4) Deduce that p is unramified in K.