HW \#6

ALGEBRAIC NUMBER THEORY, GU4043; INSTRUCTOR: GYUJIN OH

Due Tuesday, February 27 by 11:59pm on Gradescope.
Question 1. Let $K=\mathbb{Q}\left(\zeta_{n}\right)$ with $n>2$.
(1) Show that there is no real embedding of K.
(2) Show that $K^{+}=\mathbb{Q}\left(\zeta_{n}+\zeta_{n}^{-1}\right)=\mathbb{Q}\left(\cos \left(\frac{2 \pi}{n}\right)\right)$ is a subfield of K with $\left[K: K^{+}\right]=2$.
(3) Show that every embedding $\iota: K^{+} \hookrightarrow \mathbb{C}$ is a real embedding.
(4) Show that $\mathcal{O}_{K^{+}}=\mathbb{Z}\left[\zeta_{n}+\zeta_{n}^{-1}\right]$.

Question 2. Let $K=\mathbb{Q}(\sqrt{6})$, so that $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{6}]$. We would like to show that $h_{K}=1$, i.e. $\mathbb{Z}[\sqrt{6}]$ is a principal ideal domain.
(1) Use the Minkowski's bound to show that any ideal class has an integral ideal representative \mathfrak{a} with $N(\mathfrak{a}) \leq 2$.
(2) Show that there is a unique prime ideal $\mathfrak{p} \subset \mathcal{O}_{K}$ ideal lying over (2).
(3) Show that \mathfrak{p} is principal by showing that $\mathfrak{p}=(2+\sqrt{6})$. Conclude that $h_{K}=1$.

Question 3. Let $K=\mathbb{Q}(\sqrt{10})$, so that $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{10}]$. We would like to show that $h_{K}=2$.
(1) Use the Minkowski's bound to show that any ideal class has an integral ideal representative \mathfrak{a} with $N(\mathfrak{a}) \leq 3$.
(2) Show that there is a unique prime ideal $\mathfrak{p}_{2} \subset \mathcal{O}_{K}$ lying over (2), with $N\left(\mathfrak{p}_{2}\right)=2$.
(3) Show that there is no element $\alpha \in \mathcal{O}_{K}$ with norm ± 2. Conclude that \mathfrak{p}_{2} is not a principal ideal, and its ideal class in $\mathrm{Cl}(K)$ is a nontrivial order 2 element.

Hint. Use that $\left(\frac{ \pm 2}{5}\right)=-1$.
(4) Show that (3) splits completely in K, with $(3)=\mathfrak{p}_{3} \mathfrak{p}_{3}^{\prime}$, so that $N\left(\mathfrak{p}_{3}\right)=N\left(\mathfrak{p}_{3}^{\prime}\right)=3$.
(5) Using that $N_{K / \mathbb{Q}}(4+\sqrt{10})=6$, deduce that the ideal classes of \mathfrak{p}_{3} and $\mathfrak{p}_{3}^{\prime}$ are both the same as the ideal class of \mathfrak{p}_{2}. Conclude that $h_{K}=2$.
Hint. After possibly switching \mathfrak{p}_{3} and $\mathfrak{p}_{3}^{\prime}, \mathfrak{p}_{2} \mathfrak{p}_{3}=(4+\sqrt{10})$, so $\left[\mathfrak{p}_{2}\right]^{-1}=\left[\mathfrak{p}_{3}\right]$ in $\mathrm{Cl}(K)$.

Question 4. Let $K=\mathbb{Q}(\sqrt{2}, \sqrt{5})$. We would like to show that $h_{K}=1$.
(1) Using the Minkowski's bound to show that any ideal class has an integral ideal representative \mathfrak{a} with $N(\mathfrak{a}) \leq 3$.
Hint. Use $K=\mathbb{Q}(\sqrt{2}) \mathbb{Q}(\sqrt{5})$ to compute $\operatorname{disc}(K)$.
(2) Using how (2) factorizes in $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{5})$, show that the prime ideal factorization of (2) in K is

$$
(2)=\mathfrak{p}_{2}^{2},
$$

for a unique prime ideal $\mathfrak{p}_{2} \subset \mathcal{O}_{K}$ lying over 2 . Deduce that $N\left(\mathfrak{p}_{2}\right)=4$.
(3) Using how (3) factorizes in $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{5})$, show that 3 does not split completely in K. Deduce that there is no integral prime ideal of \mathcal{O}_{K} with norm exactly equal to 3 . Deduce that $h_{K}=1$.
(4) We saw in Question 3 that $h_{\mathbb{Q}(\sqrt{10})}=2$. In fact, $\mathbb{Q}(\sqrt{2}, \sqrt{5})$ is the Hilbert class field of $\mathbb{Q}(\sqrt{10})$; the Hilbert class field of a number field F is the extension H_{F} / F of degree h_{F} satisfying very nice properties, which we will learn in the section on Artin reciprocity law. One particularly pleasing property is that every non-principal ideal $\mathfrak{a} \subset \mathcal{O}_{F}$ becomes a principal ideal in the Hilbert class field H_{F} of F (i.e., $\mathfrak{a} \mathcal{O}_{H_{F}}$ is a principal ideal).

We saw in Question $3(3)$ that the unique prime ideal of $\mathbb{Q}(\sqrt{10})$ lying over 2 is not a principal ideal. Show that this ideal generates a principal ideal over $\mathbb{Q}(\sqrt{2}, \sqrt{5})$.

