HW #7

ALGEBRAIC NUMBER THEORY, GU4043; INSTRUCTOR: GYUJIN OH

Due Tuesday, March 5 by 11:59pm on Gradescope.

Question 1. Recall that, in the notes, it is proved that $h_{\mathbb{Q}(\sqrt{-14})} = 4$. Using this, we would like to know when a prime $p \neq 2, 7$ is of the form $p = x^2 + 14y^2$ for some integers $x, y \in \mathbb{Z}$.

Let $p \neq 2, 7$ be a rational prime number.

- (1) Using the binary quadratic forms technique, show that p is properly represented by either $X^2 + 14Y^2$, $2X^2 + 7Y^2$, $3X^2 + 2XY + 5Y^2$, or $3X^2 2XY + 5Y^2$, if and only if -14 is a square modulo p.
- (2) Show that if either $p = X^2 + 14Y^2$ or $p = 2X^2 + 7Y^2$, then $p \equiv 1 \text{ or } 7 \pmod{8}$.

Hint. $n^2 \equiv 0, 1, 4 \pmod{8}$.

- (3) Show that p = 3X² ± 2XY + 5Y² for some X, Y ∈ Z if and only if 3p = Z² + 14W² for some Z, W ∈ Z. Deduce that, if p = 3X² ± 2XY + 5Y², then p ≡ 3 or 5 (mod 8).
- (4) Show that $p = 2X^2 + 7Y^2$ for some $X, Y \in \mathbb{Z}$ if and only if $2p = Z^2 + 14W^2$ for some $Z, W \in \mathbb{Z}$.
- (5) Combining the above, show that, for $p \neq 2, 7$,

Either p or $2p = X^2 + 14Y^2 \Leftrightarrow p \equiv 1, 7 \pmod{8}$ and $p \equiv 1, 2, 4 \pmod{7}$.

(6) Show that the two cases in the left side of (5) are mutually exclusive, namely that there is no $p \neq 2, 7$ such that $X^2 + 14Y^2$ represents both p and 2p.

Question 2. We will prove the following

Claim. If $p = 4q^2n^2 + 1$ is a prime, with q prime and n > 1, then $h_{\mathbb{Q}(\sqrt{p})} > 1$.

- (1) Suppose that $h_{\mathbb{Q}(\sqrt{p})} = 1$. Using the splitting of (q) in $\mathbb{Q}(\sqrt{p})$, show that $q = \left|\frac{u^2 pv^2}{4}\right|$ for some $u, v \in \mathbb{Z}$.
- (2) We thus have an element $\alpha = u v\sqrt{p} \in \mathbb{Z}[\sqrt{p}]$ such that $N(\alpha) = \pm 4q$. Take $\beta = x y\sqrt{p} \in \mathbb{Z}[\sqrt{p}]$, with $x \ge 0, y > 0$, such that $N(\beta) = \pm 4q$ with the smallest possible y. Use that $N(2qn + \sqrt{p}) = -1$ and the minimality of y to show that $|x 2qny| \ge y$.
- (3) Deduce a contradiction from the conditions we have so far, $x \ge 0$, y > 0, $\pm 4q = x^2 (4q^2n^2 + 1)y^2$, n > 1, and $|x 2qny| \ge y$.

Question 3. Let K be an imaginary quadratic field with disc(K) = -d < 0. Recall that, in the notes, we have established

$$\operatorname{Cl}(K) = \left\{ z = \frac{-b + \sqrt{di}}{2a} \in \mathbb{H}, \ a, b, c \in \mathbb{Z}, \ -d = b^2 - 4ac \right\} / (z \sim \gamma \cdot z, \ \gamma \in \operatorname{SL}_2(\mathbb{Z}))$$

$$= \left\{ a, b, c \in \mathbb{Z}, \ a, c > 0, \ d = 4ac - b^2, \ -a < b \le a, \ c \ge a, \ \text{and if} \ b < 0, \ c > a \right\}.$$

For $z = \frac{-b+\sqrt{di}}{2a} \in \mathbb{H}$ with $a, b, c \in \mathbb{Z}$ and $-d = b^2 - 4ac$, let $[z] \in \operatorname{Cl}(K)$ be its corresponding ideal class. For $a, b, c \in \mathbb{Z}$ with $a, c > 0, d = 4ac - b^2, -a < b \le a, c \ge a$, and if b < 0, c > a, let $[a, b, c] \in \operatorname{Cl}(K)$ be its corresponding ideal class.

(1) For $z = \frac{-b+\sqrt{d}i}{2a} \in \mathbb{H}$ with $a, b, c \in \mathbb{Z}$ and $-d = b^2 - 4ac$, show that $[-\overline{z}] = [z]^{-1}$ in Cl(K).

Hint. For $\mathfrak{a} \subset \mathcal{O}_K$, show that $\mathfrak{a}\overline{\mathfrak{a}}$ is a principal ideal, where $\overline{(\cdot)}$ is the nontrivial Galois conjugation of K/\mathbb{Q} .

- (2) For $a, b, c \in \mathbb{Z}$ with a, c > 0, $d = 4ac b^2$, $-a < b \le a$, $c \ge a$, and if b < 0, c > a, show that $[a, b, c]^2 = 1$ in Cl(K) if and only if either b = 0, b = a or c = a.
- (3) Show that h_K is an odd number if and only if either $K = \mathbb{Q}(\sqrt{-1})$, $K = \mathbb{Q}(\sqrt{-2})$, or $K = \mathbb{Q}(\sqrt{-p})$ with p a rational prime $\equiv 3 \pmod{4}$.

Hint. Divide into the cases where $K = \mathbb{Q}(\sqrt{m})$ with $m \equiv 1 \pmod{4}$ and where $K = \mathbb{Q}(\sqrt{m})$ with $m \equiv 2, 3 \pmod{4}$.