HW #8

ALGEBRAIC NUMBER THEORY, GU4043; INSTRUCTOR: GYUJIN OH

Due Tuesday, March 19 by 11:59pm on Gradescope.

Question 1. For a rational prime $p \in \mathbb{Z}$, let $v_p : \mathbb{Q} \to \mathbb{Z} \cup \{\infty\}$ be the map defined as follows.

- For $n \in \mathbb{Z}$, $v_p(n) \ge 0$ is such that $p^{v_p(n)} \mid n$ but $p^{v_p(n)+1} \not\mid n$.

- For
$$\frac{n}{m} \in \mathbb{Q}$$
, $n, m \in \mathbb{Z}$, define $v_p\left(\frac{n}{m}\right) = v_p(n) - v_p(m)$.

- (1) Show that v_p is a normalized discrete valuation on \mathbb{Q} .
- (2) Show conversely that any normalized discrete valuation v on \mathbb{Q} is equal to v_p for some rational prime p.

Hint. Show that v(1) = 0, and $v(n) \ge 0$ for all $n \in \mathbb{Z}$. Then, show that $I = \{n \in \mathbb{Z} \mid v(n) > 0\}$ is a prime ideal of \mathbb{Z} .

Question 2. Let A be an integral domain, and let $S \subset A - \{0\}$ be a multiplicative set. Let B be a commutative ring, and let $f : A \to B$ be a ring homomorphism, such that f(s) is a unit in B for every $s \in S$. Show that there exists a **unique** ring homomorphism $g : S^{-1}A \to B$ where the composition of g with the natural map $A \to S^{-1}A$, $a \mapsto \frac{a}{1}$, recovers $f : A \to B$.¹

Question 3. Let \mathbb{Z}_p (the *p*-adic integers) be the set defined as follows.

$$\mathbb{Z}_p := \left\{ (a_1, a_2, \cdots) \mid a_n \in \mathbb{Z}/p^n \mathbb{Z}, \ a_{n+1} \pmod{p^n} = a_n \right\}.$$

Namely, \mathbb{Z}_p is the collection of compatible sequences of mod p^n congruence classes.

- (1) Endow \mathbb{Z}_p with a commutative ring structure, where the addition and the multiplication are defined entrywise (e.g. $(a_1, a_2, \cdots) + (b_1, b_2, \cdots) = (a_1 + b_1, a_2 + b_2, \cdots)$). Show that \mathbb{Z}_p is a discrete valuation ring.
- (2) Consider the natural ring homomorphism Z → Z_p, n ↦ [n] := (n, n, · · ·). Show that, for any n ∈ Z coprime to p, [n] is a unit in Z_p. Deduce that this gives rise to a natural injection Z_(p) ↔ Z_p.
- (3) Show that the natural injection $\mathbb{Z}_{(p)} \hookrightarrow \mathbb{Z}_p$ is not surjective. Deduce that $\mathbb{Q}_p := \operatorname{Frac}(\mathbb{Z}_p)$ is strictly bigger than \mathbb{Q} .

Hint. Show that \mathbb{Z}_p is uncountable.

¹In general, this kind of a statement is called the **universal property**.

Question 4. Let $p \neq q$ be two different rational primes such that $p, q \equiv 1 \pmod{4}$. Let $K = \mathbb{Q}(\sqrt{p}, \sqrt{q})$, and $L = \mathbb{Q}(\sqrt{pq})$, so that $L \subset K$. Show that **every prime ideal of** \mathcal{O}_L is unramified in K.²

Hint. One can see K as an extension of L in two different ways, $K = L(\sqrt{p}) = L(\sqrt{q})$.

Question 5.

(1) Let $f(X) \in \mathbb{Z}[X]$ be any nonconstant polynomial. Show that f(X) has a root mod p for infinitely many rational primes p.

Hint. If all prime factors of f(n) are less than N, then show that, for large enough M, $\frac{f(M!f(0))}{f(0)}$ must have a prime factor bigger than N.

- (2) Let K be a number field. Show that there are infinitely many prime ideals $\mathfrak{p} \subset \mathcal{O}_K$ such that the residue degree of \mathfrak{p} is 1.
- (3) Let K/L be an extension of number fields. Show that there are infinitely many prime ideals of L that split completely in K.

Hint. Apply (2) to the Galois closure of K over \mathbb{Q} .

²In this situation, we call that K/L is an **unramified extension**.