HW #9

ALGEBRAIC NUMBER THEORY, GU4043; INSTRUCTOR: GYUJIN OH

Due Tuesday, March 26 by 11:59pm on Gradescope.

Question 1. Let *K* be a valued field with a non-archimedean absolute value $|\cdot|$.

- (1) Let D(a, r) be the open disk of radius r > 0 centered at $a \in K$. For any $b \in D(a, r)$, show that D(a, r) = D(b, r) (i.e. any point in an open disk is its center).
- (2) Show that $|\cdot|: K \to \mathbb{R}_{>0}$ is continuous.
- (3) If $|\cdot|$ is discrete, show that any open disk is closed.
- (4) If K is furthermore complete, show that the infinite sum $\sum_{n=1}^{\infty} a_n$ converges if and only if $\lim_{n\to\infty} a_n = 0$.

Question 2.

(1) Find all integers $a \in \mathbb{Z}$ such that $5X^2 = a$ has a solution in $\mathbb{Z}_5 = \mathcal{O}_{\mathbb{Q}_5}$.

Hint. Use Hensel's lemma.

(2) Show that $f(X) = X^4 - 2X^3 - X^2 + 6$ is irreducible in $\mathbb{Q}[X]$.

Hint. Use the 2-adic Newton polygon and Gauss's lemma to deduce that, if f(X) is not irreducible, f(X) = g(X)h(X) for $g(X), h(X) \in \mathbb{Z}[X]$ of degree 2. You may want to use the information obtained from Hensel's lemma mod 2 and mod 3.

Question 3. Let p > 2 be a rational prime, and let v_p be the normalized discrete valuation on \mathbb{Q}_p (i.e. $v_p(p) = 1$; cf. HW8).

(1) Show that, for $n \ge 1$,

$$v_p(n!) = \sum_{k=1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor < \frac{n}{p-1}$$

(2) Let *K* be a finite extension of \mathbb{Q}_p , equipped with the extension of v_p . Let π be a uniformizer, and let $e = e_{K/\mathbb{Q}_p}$, so that $v_p(\pi) = \frac{1}{e}$. Show that, for $x \in \pi^r \mathcal{O}_K$ with $r > \frac{e}{p-1}$, the infinite sum

$$e^x := \sum_{n=0}^{\infty} \frac{x^n}{n!},$$

converges to an element in $1 + \pi^r \mathcal{O}_K$.

(3) Under the same setup as (2), show that the infinite sum

$$\log(1+x) := \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n},$$

converges to an element in $\pi^r \mathcal{O}_K$.

(4) Using (2) and (3), show that the multiplicative group $(1 + \pi^r \mathcal{O}_K, \times)$ and the additive group $(\pi^r \mathcal{O}_K, +)$ are isomorphic to each other.

Question 4. Let K/L be an extension of p-adic local fields of degree n. We say that K/L is **tamely ramified** if $(p, e_{K/L}) = 1$. Otherwise, i.e. if $p|e_{K/L}$, we say that K/L is **wildly ramified**. In this question, we want to show that totally ramified extensions that are tamely ramified (totally tamely ramified in short) has a simpler description.¹

- (1) Suppose (n, p) = 1, and let π_L be a uniformizer of L. Show that $K := L(\pi_L^{1/n})$ is a totally tamely ramified extension of L.
- (2) Suppose that K/L is totally tamely ramified (so that (n, p) = 1). Let π_K be a uniformizer of K. Show that any element $x \in 1 + \pi_K \mathcal{O}_K$ has an n-th root in K.

Hint. Use Hensel's lemma; $x \pmod{\pi_K} = 1$ has an obvious *n*-th root.

(3) In the setup of (2), show that there exists a unit $u \in \mathcal{O}_K^{\times}$ such that $\left(\frac{\pi_K}{u}\right)^n \in L$. Deduce that $K = L(\pi_L^{1/n})$ for some uniformizer π_L of L.

Hint. A priori, $\pi_K^n = u'\pi_L$ for a uniformizer π_L of L and a unit $u' \in \mathcal{O}_K^{\times}$. Show that one can choose a different uniformizer of L so that $u' \equiv 1 \pmod{\pi_K}$. Then, use (2).

Question 5.

- (1) Let p be an odd rational prime. Show that an element $x = p^n u \in \mathbb{Q}_p$, $n \in \mathbb{Z}$ and $u \in \mathbb{Z}_p^{\times}$, is a square in \mathbb{Q}_p , if and only if n is even and u is a square mod p.
- (2) Show that an element $x = 2^n u \in \mathbb{Q}_2$, $n \in \mathbb{Z}$ and $u \in \mathbb{Z}_2^{\times}$, is a square in \mathbb{Q}_2 , if and only if n is even and $u \equiv 1 \pmod{8}$.
- (3) Show that there are in total 7 isomorphism classes of quadratic extensions of \mathbb{Q}_2 and 3 isomorphism classes of quadratic extensions of \mathbb{Q}_p for p odd. How many are ramified?

Hint. For any field *K* of characteristic $\neq 2$, isomorphism classes of quadratic extensions of *K* are in bijection with non-trivial elements of $K^{\times}/(K^{\times})^2$.

¹This question tells us that the Eisenstein polynomial can be taken to be $X^n - \pi_L$ for a uniformizer π_L . A field extension obtained by adjoining an *n*-th root of an element downstairs is called a **Kummer extension**.