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I will introduce various objects that will play basic roles in the proof of global Langlands by
Vincent Lafforgue. For safety, I assume that every G we consider here is split. Global pertinent
definitions: F = Fq(X) is a function field of a smooth projective geometrically irreducible curve X
over Fq, and G is a (split) reductive group over F .

1. BunG and Automorphic Forms

1.1. Automorphic forms. Suppose for now G is a reductive group over Q. Recall that an auto-
morphic form in a classical sense is a function on G(Q)\G(A) such that

• f is smooth (or L2 mod center, whatever).
• f is right K-invariant for some compact open subgroup K ⊂ G(A) (“level”).
• f has “moderate growth” (the growth rate when f escapes to infinity, can be defined precisely
using Siegel sets).
• f is Z(g)-finite (e.g. forming a finite-dimensional representation via Laplacian for G = SL2).

We say an automorphic form is cuspidal if it “vanishes at cusps”, or more robustly∫
N(Q)\N(A)

f(ng)dn = 0

for almost every g ∈ G(A), for any unipotent radical N of a parabolic subgroup of G. We can
imagine ourselves applying the same condition in the function field setting, except two possible
ambiguities.

• What’s the moderate growth condition? (What’s “escaping to infinity”?)
• What’s Z(g)-finiteness? (What are “differential equations”?)
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Recall that cuspidality means “vanishing at cusps” so one can imagine there is no growth condition
needed in function field case. It turns out that it is indeed true because a cusp form is automatically
compactly supported mod center [Har].

For Z(g)-finiteness, recall this is just the admissibility condition at infinity (each K-type occurs
finitely many times). Thus one can imagine declaring one place to be infinity and use admissibility
(for td groups, recall admissible = any vector has open stabilizer + any compact open fixes finite-
dimensional subspace) at that place to be the Z(g)-finiteness. It turns out that this is indeed true
(i.e. independent of choice of place), and this is further equivalent to Z(A)-finiteness [BJ].

So in our case it is reasonable to define

Ccusp(G(F )\G(A)/KΞ,Q`),

the set of locally constant functions satisfying cuspidality condition, be the space of cusp forms of
level K where K is a compact open subgroup of G(A) and Ξ ⊂ Z(F )\Z(A) is a lattice of cofinite
volume. Given a level this is known to be finite [Har].

1.2. Moduli stack of G-torsors. On the other hand the domain of automorphic forms is very re-
lated to BunG, the moduli stack ofG-torsors onX. We define BunG as BunG(S) = {G-torsor on X×Fq
S}. Recall that a G-torsor is P → X such that P ×X P ∼= G×X P and has section locally (general
definition is with respect to fpqc topology, but here étale topology suffices, as a smooth morphism
has an étale local section). Recall we have the Weil uniformization

BunG(Fq) = G(F )\G(A)/G(O),

where the bijection realizes the discrepancies between the generic trivialization and the local trivi-
alization at each closed point of X. Similarly with a level structure

BunG,N (Fq) = G(F )\G(A)/KN ,

where BunG,N classifies G-torsors with level structure (i.e. isomorpism E|N ∼= GN ) and KN is the
congruence subgroup assiciated to N (more precisely if N =

∑
aixi then KN =

∏
x6=xi G(Ox) ×∏

x=xi
ker(G(Oxi)→ G(Oxi/mai

xi))).

Remark 1.1. It is actually not literally true that BunG(Fq) = G(F )\G(A)/G(O). Rather it is
just an identification of underlying class of objects as BunG(Fq) is not just a set but really a
groupoid. A more precise description would rather be

BunG(Fq) =
∐

E G-torsor/∼

[pt/Aut(E)].

However we are deliberately ignoring non-reducedness issues (after all we can take reduction to
everything we consider here), so it doesn’t really matter.

Remark 1.2. π0(BunG) ∼= π1(G) (= coweight lattice
coroot lattice ).

Remark 1.3. The cuspidality condition can be thought more geometrically as having vanishing
Jacquet functor for all Levis M of parabolics P ⊂ G. Indeed the Jacquet functor for M can be
geometrically defined as the cohomological correspondence ShtG,N,I ← ShtP,N,I → ShtM,N,I coming
from G←↩ P �M (the stack of P -shtukas is also defined in [Var]).

1.3. Hecke stack and Hecke correspondence. We now motivate the notion of Hecke stacks.
Think about the classical action of a (spherical) Hecke algebra; it is a convolution. To “unfold”

convolution we can think of the following identification

G(Ox)\G(Fx)/G(Ox) = G(Fx)\(G(Fx)/G(Ox)×G(Fx)/G(Ox)),

given by [g] 7→ (1, [g]). What is this? Note that if G = GLn, GLn(Fx)/GLn(Ox) is the set of
lattices, which means O⊕nx ⊂ F⊕nx . And the left-action of G(Fx) changes two lattices simultaneously,
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so G(Ox)\G(Fx)/G(Ox) is somehow the set of “relative positions” of two lattices. This can be made
precise, because by Cartan decomposition, literally G(Ox)\G(Fx)/G(Ox) = X∗(T )/W = X∗(T )+,
where X∗(T ) is the coweight lattice. We can then conversely define the relative position of two
lattices (or rather, two elements in affine Grassmannian) to be the dominant coweight corresponding
via this identification.

The action of f ∈ Cc(G(Ox)\G(Fx)/G(Ox)) on an automorphic form ϕ should be then interpreted
as

(f ∗ ϕ)(E) =
∑

E,E ′ G-torsors over X, identified outside x

f(E , E ′)ϕ(E ′),

where f(E , E ′) is the function induced from f of spherical Hecke algebra by just noticing relative

positions of Ex, E ′x. Thus, if we define Hx,λ = {(E
φ
99K E ′)} where φ means a modification at

x with relative position λ, the Hecke operator can then be understood that the cohomological
correspondence

Hx,λ
h→

%%

h←

yy
BunG(Fq) BunG(Fq)

where h←(E
φ
99K E ′) = E and h→(E

φ
99K E ′) = E ′; here pushforward (h→)∗ in this “cohomological

correspondence” means summing over the fiber. We will call this Tλ,x.

2. G-shtukas

2.1. G-shtukas, BunG and Hecke stacks. Recall that we have defined Drinfeld shtukas a few
talks ago as follows.

Definition 2.1 (Drinfeld shtukas). Let S be any scheme over X. A (left) Drinfeld shtuka over
S is ((xi)i=1,2, E0

φ1−→ E1
φ2−→ τE0) where x1, x2 ∈ X(S), E0, E1 rank n vector bundles on X ×Fq S,

τE0 := (id, τ)∗E0 with a diagram

E0 � p

φ1

  
E1

τE0

. � φ−1
2

>>

such that

• cokerφ1 is supported on Γx1 ⊂ X × S and it is a line bundle on support,
• cokerφ−1

2 is supported on Γx2 ⊂ X × S and it is a line bundle on support.

We can unfold this definition into the collection of:

• E0
φ1
99K E1

φ2
99K E2 such that φ1 is a modification at x1 of relative position (1, 0) (“St”) and

φ2 is a modification at x2 of relative position (0,−1) (“St∗”),
• τE0

∼= E2.
3



Thus one can imagine a diagram of form

Sht
{1}q{2}
GL2,{1,2},St�St∗(Fq)

(E0,E1,τE0)//

��

(E0
φ1
99K E1

φ2
99K E2)

(E0,E2)

��
BunG(Fq)

(id,Frob) // BunG(Fq)× BunG(Fq)

The top right corner looks very similar to our interpretation of Hecke correspondence. The phi-
losophy of Beilinson-Drinfeld affine Grassmannian and Beauville-Laszlo theorem says that, one can
define a global object by letting the point of modification to vary. Combining this, we can define
the notion of iterated Hecke stacks/iterated G-shtukas as follows.

Definition 2.2 (Iterated Hecke stack). The iterated Hecke stack HkαG,I,W is, given I a finite set,
W an I-tuple of dominant coweights of G (or equivalently a representation of (Ĝ)I), and a map
α : I → {1, · · · , n} (one should think of this as a partition), a functor such that, for an Fq-scheme
S, HkαG,I,W (S) is the set of

• (E0, · · · , En), all elements of BunG(S),
• (xi)i∈I , all points of X(S),
• E0

ϕ1
999K E1 · · · En−1

ϕn
999K En, where ϕr is a modification at ∪i∈α−1(r)Γxi such that the relative

position at xi is bounded above by the dominant coweight of Wi.

Note that it has obvious maps HkαG,I,W → XI and hi : HkαG,I,W → BunG.

Definition 2.3 (Iterated shtukas). The moduli of iterated shtukas ShtαG,I,W is defined by the carte-
sian square

ShtαG,I,W
//

��

HkαG,I,W

(h0,hn)

��
BunG

(id,Frob)// BunG×Fq BunG

This also has a morphism of legs pαG,I,W : ShtαG,I,W → XI .
Similarly we can define the iterated Beilinson-Drinfeld Grassmannian GrαG,I,W as the func-

tor parametrizing not only the data of HkαG,I,W but also the trivialization of En.
Some more super/subscripts to add:
• We can impose the level structure on everything by replacing the curve X with X\N . So
we now have ShtαG,N,I,W .
• We can truncate BunG and everything above via Harder-Narasimhan filtration, Bun≤µG
for µ a dominant coweight of Gad. I can spell out the general definition if you want but the
point is that it is some kind of filtration such that, for any µ, Bun≤µG is an open substack of
BunG, and if deg(N) is big enough, Bun≤µG,N is a countable disjoint union of quasi-projective
schemes. If you want, let BunνG be the connected component associated to ν ∈ π1(G), then
Bun≤µ,νG,N = Bun≤µG,N ∩BunνG is a quasi-projective scheme.
– Precise definition, at least when the derived group of G is simply connected: Bun≤µG,N (S)

is the collection of points E ∈ BunG,N (S) such that, for every geometric point s of
S, every dominant weight λ of T and for every B-torsor B on X × {s} such that
(B × G)/P ∼= E (“B-structure”), deg(Bλ) ≤ 〈λ, µ〉, where Bλ is the vector bundle
associated to B twisted by the algebraic representation of B with highest weight λ.
The general definition can be found in [Beh].
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We can then pullback this to everything, Hecke and Sht. So the ultimate decoration would
be

Shtα,≤µG,N,I,W .

Like Bun≤µG,N , the other two stacks, if truncated and modded out by Σ, become finite type
Deligne-Mumford stacks, and even schemes if deg(N) is large enough (depending on µ).
• On the other hand, we can abstractly think ShtαG,I as an ind-stack, which is just the data of
all ShtαG,I,W ’s. This is quite harmless because the interaction of Harder-Narasimhan filtration
with other operators turns out to be mild (changes filtration by a bounded amount).

We record a relevant proposition from V. Lafforgue’s paper.

Proposition 2.1 ([Laf, Proposition 2.6],[Var, Proposition 2.16]). The following are true.
• ShtαG,N,I,W is a locally finite type Deligne-Mumford stack over (X\N)I .
• If N is nonempty, Shtα,≤µG,N,I,W is the quotient of a quasiprojective (X\N)I-scheme by a finite
group. If N is empty, it is so if restricted to U I for any U a proper open subset of X.
• If J ⊂ I such that Wi = 0 for i ∈ I\J , ShtαG,N,I,W

∼= (X\N)I\J × Sht
α|J
G,N,J,W |J .

• ShtαG,N,I,W is nonempty if and only if [
∑

i∈IWi] = 0 as elements in π1(G) (We call it
admissible).

Example 2.1. Consider the moduli of shtukas with no legs. Then the corresponding Hecke stack is
just BunG,N , so ShtG,N,∅ = (BunG,N )Frob as stacks. On the other hand, for any locally finite type
Deligne-Mumford stack Y/Fq, Y Frob is a discrete constant stack of value Y (Fq). One can think of
this as a generalization of Katz’s theorem, which says

{unit root crystals (i.e. M ∼= Frob∗M)} = {Fq-étale local systems} ;

the identification from left to right is done by taking the equalizer of the given isomorphism and
the relative Frobenius. Thus, ShtG,N,∅ is the discrete constant stack of values in BunG,N (Fq) =
G(F )\G(A)/KN (after ignoring nilpotence, of course).

2.2. Sheaves on the moduli of shtukas. If one believes that the moduli spaces of shtukas are
true analogues of Shimura varieties, one should believe that the Langlands correspondence should
be realized in the intersection cohomology of those. Thus it is very natural to study

Hα,≤µG,N,I,W := (pα,≤µG,N,I,W )!(ICShtα,≤µG,N,I,W /Σ
),

where pushforward is taken in a derived sense. The above example then says that HG,N,∅|Fq :=

lim−→µ
H≤µG,N,∅|Fq is the space of automorphic forms. Once we equip Hecke correspondence on these

sheaves, this will truly become the Hecke module of automorphic forms.

2.3. Local models. A very useful fact, and the primary reason why we introduced partition of
indices, is that Hα,≤µG,N,I,W does not depend on the partition α. This is because the natural maps
HkαG,N,I,W → Hkcoll ◦α

G,N,I,W and the corresponding map for shtukas are (stratified) small (recall a
proper generically finite map π : X → Y is small if codimY {y ∈ Y | dim f−1(y) ≥ d} ≥ 2d for
all d), where coll : {1, · · · , n} → {1} amounts to gathering all partitions into one; recall that the
IC sheaf proper pushforwards to the IC sheaf through a small map. The smallness comes from the
smallness of Grα,≤µG,N,I,W → Grcoll ◦α,≤µ

G,N,I,W and the realization of Sht as a local model

ShtαG,I,W → GrαG,I,W /GΣ∞xi ,

where GΣ∞xi is the restriction of G on the formal neighborhood
∑
∞xi of Γx = ∪Γxi , viewed as an

S-group scheme (i.e. Weil restriction of scalars). What is this map? By Beauville-Laszlo, GrαG,I,W
can be thought as parametrizing G-torsors on the formal neighborhood Σ∞xi. So in particular
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any G-torsor is trivializable over this formal neighborhood. Now let G∑
nixi → XI be the smooth

group scheme such that G∑
nixi(S) = {(xi, gi) | (xi) ∈ XI(S), gi ∈ G(Γ∑

nixi)} where Γ∑
nixi is

the obvious thickening of Γxi ’s (or similarly G∑
nixi is the Weil restriction of scalar of G/Γ∑

nixi
to S). Then the freedom on the choice of trivialization is precisely a GΣ∞xi-torsor, so the map
is well-defined. This factors through a finite level, i.e. a GΣnixi-action for some finite ni’s, as
(E , (xi), ψ) ∈ GrI,W (S) if and only if for all dominant weight λ, ψ(Eλ) ⊂ Gλ(

∑
〈λ,Wi〉Γxi) (cf.

[Gai]). It turns out that by a similar reasoning we have an isomorphism (!)

HkαG,I,W
∼−→ (GrαG,I,W ×XI BunG,

∑
nixi)/G

∑
nixi

for large enough ni’s. One could then think of the local model of moduli of shtukas coming from
really this identification of the Hecke stack.

The smallness of a morphism of changing partitions then comes from that
• the local models morphism is smooth of relative dimension dimG∑

nixi (which in particular
does not depend on the partition),
• the convolution of usual (i.e. local) affine Grassmannian is semi-small (necessary in even
defining the convolution product?),
• and there is an extra dimension of base curve which makes sense via Beauville-Laszlo.

Example 2.2. Consider the map

Hk
{1}q{2}
GL2,{1,2},St� St∗ → Hk

{1,2}
GL2,{1,2},St�St∗ ,

which corresponds to the Drinfeld case. It is a map that sends (x1, x2, E0 ↪→ E1 ←↩ E2) to
(x1, x2, E0 99K E2) where the modification is at x1, x2.

We want to know the fibers of these. Over (x1, x2), if x1 6= x2, then E1 is uniquely determined by
E0, E2, because we can see this as finding a lattice that contains two lattices inside the vector space
at the generic fiber. If x1 = x2, morally determining a point in the fiber of partitioned shtukas
amounts to

(1) choosing E0,
(2) choosing E0 ⊂ E1 (=Gr(1, 2)∨ = P1),
(3) and choosing E1 ⊃ E2 (=Gr(1, 2) = P1).

So the fiber over a point of the diagonal inside X2 should be BunGL2 times a P1-bundle over P1

(note changing the whole sequence does not change relative position, so the BunG-contribution is
split).

On the other hand, in the moduli of unpartitioned shtukas, the choice of E1 is unique even when
E0 6= E2, by the same reason this time looking at two lattices at x1 = x2. But if E0

∼= E2, there is a
freedom of P1 for choosing E1. So the above map between Hecke stacks should be an isomorphism
outside x1 = x2, and BunG times a contraction of P1 in P1-bundle when over P1 over the diagonal.

Remark 2.1. Vaguely this is analogous to the notion of local model in the Shimura variety case,
which in an ideal situation should be about having a diagram of form

S̃h

~~ !!
Sh M loc

where, for a suitable (in particular flat) integral model of the given Shimura variety Sh of parahoric
level at p, there is an OE-scheme S̃h which is a torsor over Sh under the (base change of) Bruhat-
Tits group scheme G (some canonical group scheme for the parahoric group which is the level at
p for this Shimura variety), and S̃h → M loc is a smooth morphism of relative dimension dimG,
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where M loc should arise as the Zariski closure of some Schubert cell in the (mixed characteristic)
affine Grassmannian (cf. [RPS], [PZ]). In particular, one gets a smooth morphism Sh → [M loc/G]
of relative dimension dimG.

For example, in [dJ], this is realized (all over SpecZ, though) for GSp2g(Q) with Γ0(p)-level
structure, where

• Sh is the moduli space (finite type Deligne-Mumford stack over Spec(Z)) of principally
polarized abelian varieties with Γ0(p)-level structure (i.e. flag of subgroup schemes 0 ⊂
H1 ⊂ · · · ⊂ Hg ⊂ A[p] such that #Hi = pi and Hg is Lagrangian with respect to the Weil
pairing induced by the polarization),
• S̃h is the universal abelian variety over Sh,
• and M loc is realized as some Schubert cell inside the product of classical Grassmannians
(over Z) such that S̃h→M loc is just

(chain of p-isogenies of abelian varieties) 7→ (Fil1 of Dieudonné modules of abelian varieties in the chain).

2.4. Geometric Satake and more general sheaves on the moduli of shtukas. We want
to naturally extend the notion of HαG,N,I,W to any W ∈ Rep(ĜI) not necessarily irreducible.
For this purpose it is quite natural to try to use the geometric Satake, which is sort of a
general construction of a functor that extends W 7→ ICW (i.e. IC-sheaf of the Schubert cell).
More precisely, the geometric Satake functor is some nice (e.g. exact, faithful, ...) ⊗-functor
SatI : Rep(ĜI)→ Sat(GrXI ) ⊂ Perv(GrXI ). Here, the Satake category Sat(GrXI ) can be thought
as “L+G-equivariant perverse sheaves”, which should be made precise in the later lectures. In
particular, for irreducible W ∈ Rep(ĜI), this should give ICW as expected.

If we let GrG,N,I,W = ∪W⊂W irreducible GrG,N,I,W for general W ∈ Rep(ĜI), then SatI(W ) is
supported on GrG,N,I,W . Also letting ShtG,N,I,W = ∪W⊂W irr. ShtG,N,I,W , we still have a local
model diagram ε : ShtG,N,I,W → GrG,N,I,W /G∑

nixi for ni � 0, which is smooth of relative
dimension dimXI (G∑

nixi). Thus, up to appropriate twist and degree shift, we can obtain a perverse
sheaf FG,N,I,W = ε∗ SatI(W )[sth](sth). Now we can define Hα,≤WG,N,I,W to be the (derived) proper
pushforward of this sheaf via leg morphism. This is also independent of the partition α as we have
observed before.

As the geometric Satake is functorial, this sheaf also inherits nice functoriality. For example,
for any u : W → W ′ a morphism of ĜI -representations, we get the associated morphism H(u) :
HG,N,I,W → HG,N,I,W ′ . Moreover, as the geometric Satake respects fusion, HG,N,I,W respects it as
well. To be more precise, for any φ : I � J a surjective map between two finite sets, we have a
natural embedding ∆φ : XJ ↪→ XI , and the geometric Satake satisfies, for any W ∈ Rep(ĜI), that
∆∗φ SatI(W ) is canonically isomorphic to SatJ(W φ), where W φ is W seen as ĜJ -representation via
φ. From this, we get the coalescence isomorphism χφ : ∆∗φHG,N,I,W

∼−→ HG,N,I,Wφ .

2.5. Hecke correspondence and partial Frobenius. Now we want to define two extremely im-
portant operations on the cohomology of moduli of shtukas. The first is the Hecke correspondence.
Recall that the Hecke stack of BunG, which is the Hecke stack we defined above, classifies modifi-
cations between two G-torsors; thus, if there is a Hecke correspondence of shtukas that is realized
as a cohomological correspondence, this should parametrize modifications between two G-shtukas.

Definition 2.4 (Hecke correspondence for Sht
(I1,··· ,Ik)
G,N,I,W ). Let W ∈ X+

∗ (T )I be a collection of domi-
nant coweights, and let g ∈ G(A) be unramified at N . Let the collection of bad places be denoted as
S. Then we define ΓN (g) (which should correspond to the Hecke operator 1KNgKN ) be the
stack such that ΓN (g)(S) classifies

• legs (xi)i∈I , xi : S → (X\(|N | ∪ S)),
7



• the diagram

E0
φ1 //

κ

��

E1
φ2 // · · ·

φk−1 // Ek−1
φk // τE0

τκ
��

E ′0 φ′1

// E ′1 φ′2

// · · ·
φ′k−1

// E ′k−1 φ′k

// τE ′0

such that the two rows both belong in Sht
(I1,··· ,Ik)
G,N,I,W (S), and κ is a modification at good places

of relative position defined by g.

This is such a big chunk that, although it is a morally correct definition, it is not obvious that
this defines a cohomological correspondence. It does, but it is not clear at all. Hopefully later talks
will clarify that at least some Hecke operators (namely those denoted as “T (hV,v)” in [Laf]) are
well-defined.

Remark 2.2. There is another slick way of seeing Hecke correspondence. For simplicity we only
consider unpartitioned shtukas, and suppress W and consider everything as ind-stacks. Pick a good
place v, then the data at v of shtukas with legs away from v is just an isomorphism between a
formal G-torsor with its Frobenius twist. Thus this data is precisely [pt/G(Ov)] (again, similar to
the discussion regarding shtukas with no legs and local model diagram, extra choice of isomorphism
gives this quotient). This evaluation map fits into a cartesian diagram

ShtG,N∪∞v,I |(X−v)I
//

��

pt

��
ShtG,N,I |(X−v)I

evv // [pt/G(Ov)]

where∞v means either the union of nv for all n ≥ 0, or level structure over the formal neighborhood
of v. Changing level structure at v gives G(Ov)-action on ShtG,N∪∞v,I |(X−v)I , but this extends to
G(Fv)-action naturally, thanks also to Beauville-Laszlo; changing trivializations over punctured for-
mal disc is the desired G(Fv)-action. Then we can define ShtG,N∪∞v,I |(X−v)I ×G(Ov) G(Fv)/G(Ov)
and two natural maps to ShtG,N,I |(X−v)I , where h← is the first projection and h→ is the action of the
second factor on the first factor. Both are quite clearly ind-finite-étale, becauseG(Ov)\G(Fv)/G(Ov)
is finite. The corresponding cohomological correspondence is indeed the correct Hecke correspon-
dence. This is however defined only over the open curve (X − v)I , and that this extends to the
whole curve is seen only via S = T theorem of [Laf].

Another important construction is the partial Frobenius. The definition is simple, as the partial
Frobenius morphism exists as morphisms between the moduli spaces of shtukas. Namely, one can
think of

Frob
(I1,··· ,Ir)
I1

: Sht
(I1,··· ,Ir)
G,N,I,W → Sht

(I2,··· ,Ir,I1)
G,N,I,W

sending (E0 → · · · → Er ∼= τE0) to (E1 → · · · → Er → τE1
∼= τE1). This is a universal homeomor-

phism as successive composition of partial Frobenii in any cyclic order gives the usual Frobenius
which is a universal homeomorphism. Thus by proper base change (Frob

(I1,··· ,Ir)
I1

)∗F (I2,··· ,Ir,I1)
G,N,I,W

∼=
F (I1,··· ,Ir)
G,N,I,W and the same holds for HαG,N,I,W .

Remark 2.3. Both Hecke correspondence and partial Frobenius interact nontrivially with Harder-
Narasimhan filtration and in particular changes it. However it changes by a bounded amount, so
still deliberately ignoring finite-typeness issue can be justified (cf. [Laf, 0.6, 0.7]).
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2.6. Cusp forms = Hecke-finite automorphic forms. We now end with how to realize cusp
forms from Hecke action. Namely, it is generally expected that the cuspidal cohomology (i.e., the
common kernel of all Jacquet functors) is the same as the “Hecke-finite part” of the cohomology, the
part where the Hecke algebra generates finite type module over the ring of integers. One direction,
showing that cusp forms are Hecke-finite, is easy, as we know the space of cusp forms, or generally
HG,N,I,W , when truncated properly, is finite type. The other direction, conjectured in [Laf], is
proved in [Xue] for “rational Hecke-finite part”, i.e. those which are Hecke-finite modulo torsion.
However in the setting of actual automorphic forms, namely for the 0-th cohomology sheaf of moduli
of shtukas with no legs, it is proven in [Laf] that the two are the same, and from there loc. cit.
works solely with Hecke-finite cohomology, which is easier to deal with.

Proof that Hecke-finite automorphic forms are cusp forms ([Laf], [Xue]). Suppose that f is Hecke-
finite but not cuspidal. Then there is some proper Levi M ⊂ P such that the map fP (g) :=∫
U(F )\U(A) f(ug) is nonzero. The primary reason that BunG (and thus ShtG) fails to be finite-type
is because there may be infinitely many connected components, and the existence of nontrivial
center is the major reason behind this. Namely, one can define the “degree morphism” (coined as
so because this is literally the degree of line bundles when G = Gm)

BunG → BunGab → π0(BunGab)
∼−→ X∗(G

ab)→ X∗(G
ab)Q ∼= X∗(Z(G))Q,

where π0(BunGab)
∼−→ X∗(G

ab) is the canonical isomorphism induced by π0(BunGab)
χ−→ π0(BunGm)

deg−−→
Z for all χ ∈ X∗(Gab). We can consider the same thing for M . In particular, BunM inherits the ac-

tion of Ξ and the union of components in a fiber of BunM
degM−−−→ X∗(Z(M))Q → X∗(Z(M)/Z(G))Q

is Ξ-stable. Let BunνM be the fiber of ν ∈ X∗(Z(M)/Z(G))Q via this composition. Then it turns
out that, given dominant coweight µ of Gad, the locus of ν ∈ X∗(Z(M)/Z(G))Q where Bun≤µ,νM is
nonempty is supported in some cone. By choosing any good place v and g ∈ Z(M)(Fv) such that
g /∈ Z(M)(Ov)Z(G)(Fv), as it lands in a nonzero element in X∗(Z(M)/Z(G))Q, the Hecke action
T (g) should inevitably “shift” the cone into certain direction. In particular either g or g−1 shifts the
cone so that the new cone has some area that does not belong to the original cone. So, for the given
f , as it has some connected component of BunM /Ξ as a support (nonvanishing Jacquet functor!),
the Hecke action of a sufficiently high power of g or g−1 should give a new connected component
as a support, and this forever continues, so 〈T (g±nN )f〉n≥1, for some large enough N , generates
infinite type module. �
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