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We will sketch a proof of the Iwasawa Main Conjecture for Q, following Wiles’ approach [Wil2].
This note is largely based on [Ski].

1. Recap of the setting

We use the following notations.
• p is an odd prime, and Q∞ is the cyclotomic Zp-extension of Q.
• Qn is the unique Z/pnZ-extension of Q in Q∞.
• χ : GQ → Z×p is the cyclotomic character, and ω : GQ → Z×p is the Teichmuller character
(i.e. they are the same mod p).
• Frob will mean arithmetic Frobenius.
• Γ = Gal(Q∞/Q), γ ∈ Γ a topological generator, ∆ = Gal(Q(µp)/Q).
• Λ = Zp[[Γ]]

∼−→ Zp[[T ]] via identification γ 7→ 1 + T . Let W = (Spf Λ)rig, which is the rigid
analytic unit disk, in a sense thatW(L) = {x ∈ L | |x−1|p < 1} for any algebraic extension
L/Qp. This gives a universal family of characters Ψ : GQ � Γ ↪→ Λ×.
• For an integer k and a p-power root of unity ζ, we can associate an arithmetic point φk,ζ ∈
W(Qp[ζ]), which as a continuous homomorphism Λ → Qp[ζ] sends γ to ζχk(γ). Applying
this to Ψ, we get Ψk,ζ := φk,ζ ◦Ψ = ψζω

−kχk where ψζ : GQ → Γ→ Zp[ζ]× sends γ 7→ ζ.
• For a topological Zp-module M , let M∗ be the Pontryagin dual M∗ = Homcont(M,Qp/Zp).
This swaps compactness and discreteness.

The Iwasawa Main Conjecture for Q is about two objects built out of a Dirichlet character ψ, seen
as a character of GQ. Throughout the note we will assume that ψ is odd.

• Let the conductor of ψ be denoted as Nψ.
• Let Oψ = Zp[ψ], Fψ = Qp[ψ], Λψ = Λ ⊗Zp Oψ. Then ψΨ can be thought as a character
ψΨ : GQ → Λ×ψ .

Date: Nov 9, 2018.
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• (Analytic side) We have seen that there is a p-adic L-function Lψ ∈ Frac(Λψ), i.e. for
any nonnegative integer k and p-power root of unity ζ,

φk,ζ(Lψ) = L{p}(0, ψΨk,ζ) = L{p}(−k, ψψζω−k),

where L{p} is the L-function with the p-Euler factor removed. There exist gψ, hψ ∈ Λψ such
that

Lψ =
gψ
hψ
, hψ =

{
ξχ(γ)γ − 1 if ψ = ω−1ψξ for some p-power root of 1 ξ
1 otherwise

.

• (Algebraic side) Let

Sel∞(ψ) = H1
nr(Q,Λ∗ψ(ψΨ−1)), X∞(ψ) = Sel∞(ψ)∗,

Sel(ψχ−k) = H1
nr(Q, Fψ/Oψ(ψχ−k)), X(ψχ−k) = Sel(ψχ−k)∗.

Then, if p 6 |ϕ(Nψ), for any nonnegative integer k ≥ 0,

Sel(ψψ−1
ζ ωkχ−k)

∼−→ (Sel∞(ψ)⊗Oψ Oψ[ζ])[γ − ζχk(γ)],

(X∞(ψ)⊗Oψ Oψ[ζ])

(γ − ζχk(γ))(X∞(ψ)⊗Oψ Oψ[ζ])

∼−→ X(ψψ−1
ζ ωkχ−k),

unless k = 0 and ψ|GQp = ψζ |GQp ; the maps are just natural maps all induced fromOψ ↪→ Λψ.
If k = 0, ψψ−1

ζ |GQp = 1, then there are dual exact sequences

0→ Sel(ψψ−1
ζ )→ Sel∞(ψ)[γ − ζ]→ Fψ/Oψ → 0,

0→ Oψ →
X∞(ψ)

(γ − ζ)X∞(ψ)
→ X(ψψ−1

ζ )→ 0.

• Furthermore, we have seen that X∞(ψ) is a finitely generated torsion Λψ-module, which has
no finite order nontrivial Λψ-submodule if p 6 |ϕ(Nψ). Thus we can use structure theory of
finitely generated Λψ-modules.
• The Iwasawa Main Conjecture in this setting is then (gψ−1) = Ch(X∞(ψ)).

2. Reduction: one divisibility is enough

Although the IMC is about an equality of ideals, in this special case of GL1, one only needs to
prove that (gψ−1) divides Ch(X∞(ψ)) thanks to the following proposition.

Proposition 2.1. Let K = Q(µNψ). Then, two ΛO = Λ⊗Zp O-modules

I−alg(K) :=
∏

ψ∈ ̂Gal(K/Q),ψ odd

Ch(X∞(ψ)), I−an(K) :=

 ∏
ψ∈ ̂Gal(K/Q),ψ odd

gψ

 ,

have the same µ and λ-invariants, where O is the ring of integers of big enough finite extension of
Qp (e.g. containing all Zp[ψ]’s for ψ’s appearing in the product).

Remark 2.1. Beyond GL1, one really needs to show both sides of divisibilities.

Proof that this implies that one divisibility is enough. This is basically because λ, µ-invariants are
additive. We want to prove that for every height 1 prime p ⊂ Λψ, ordp(gψ−1) = ordp Ch(X∞(ψ))
(∵ associated primes of normal domains are height 1 primes, and primary decomposition). Note
that p is principal p = (fp), and for any f ∈ ΛO,

∑
p λ(fp) ordp(f) = λ(f) and similarly for µ.

As each X∞(ψ) is not pseudo-null (e.g. interpolation property) it has at least one nonvanishing µ
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or λ-invariant. So any ordp(gψ−1) < ordp Ch(X∞(ψ)) will be seen in one of strict inequalities of
λ, µ. �

Proof of Proposition 2.1. What are µ and λ-invariants? Recall we had

#M/
ωn
ωn0

M = pµ(M)fpn+λ(M)ef(n−n0)+O(1),

for e, f ramification degree/residue class degree of O/Zp. Eventually everything will follow from
analytic class formula and interpolation properties.
Step 1. Analytic side: analytic class number formula.
Let On = O[µpn ]. Then the polynomials Xpn − 1 split completely in On, so that, for any n ≥ n0,

ΛOn/(
ωn
ωn0

, I−an(K)) =
∏

ζpn=1,ζp
n0 6=1

ΛOn/(γ − ζ, I−an(K))

=
∏

ζpn=1,ζp
n0 6=1

∏
ψ∈ ̂Gal(K/Q),ψ odd

On/φ0,ζ(gψ),

where ωn = γp
n − 1 as before. Recall that the analytic class number formula says that, for any

cyclotomic field K ′, (h−K′) = (wK′
∏
ψ∈ ̂Gal(K′/Q),ψ odd

L(0, ψ)) as fractional Zp-ideals (i.e. ordp of
both sides are the same), where h− means the order of the minus part of the (p-part of, b/c we are
just interested in ordp) class group, and wK′ is the order of the unit group.

Also φ0,ζ(gψ) interpolates L(0, ψψζ) (up to an Euler factor). Let Kn = KQn = Q(µ
pnN

(p)
ψ

),

where Nψ = prN where N is the prime-to-p factor (we pick n and n0 large enough). Then {ψψζ |
ψ ∈ ̂Gal(K/Q), ψ odd, ζpn = 1, ζp

n0 6= 1} counted with multiplicity is consisted of pr copies of
{ψ | ψ ∈ ̂Gal(Kn/Q) which does not factor through Gal(Kn0/Q)}. The effects of Euler factors and
wK also cancel out so that we eventually get

ΛOn/(
ωn
ωn0

, I−an(K)) = On/((h−n /h−n0
)p
r
),

where h−n = h−Kn , so that

#ΛOn/(
ωn
ωn0

, I−an(K)) = (h−n /h
−
n0

)p
r[On:Zp],

or going back to O,
#ΛO/(

ωn
ωn0

, I−an(K)) = (h−n /h
−
n0

)p
r[O:Zp].

Step 2. Algebraic side: p-adic Selmer group and class group.
For the algebraic side, one could imagine I−alg(K) being the characteristic ideal of some ΛO-module,

most likely the Pontryagin dual of minus part of unramified Galois cohomology of Λ∗O(Ψ−1), and
this is really the case (I−alg(K) = Ch((H1

nr(K,Λ
∗
O(Ψ−1))−)∗)). To be more precise,∏

ψ∈ ̂Gal(K/Q)

O(ψ)→ HomO(O[Gal(K/Q)],O),

sending (aψ) 7→ (g 7→
∑
aψψ

−1(g)), is an injection with finite order cokernel, so∏
ψ∈ ̂Gal(K/Q)

H1
nr(Q,Λ∗O(ψ−1Ψ−1))→ H1

nr(Q,HomO(O[Gal(K/Q)],Λ∗O(Ψ−1))) ∼= H1
nr(K,Λ

∗
O(Ψ−1)),
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has finite order kernel/cokernel, where the last identification is Shapiro’s lemma. This is Gal(K/Q)-
equivariant, so restricting to the minus part and taking Pontryagin duals,

X∞(K)− := (H1
nr(K,Λ

∗
O(Ψ−1))−)∗

is pseudo isomorphic to
∏
ψ∈ ̂Gal(K/Q),ψ odd

X∞(ψ).
On the other hand, restricting cocycle in H1

nr(K,Λ
∗
O(Ψ−1)) to GK∞ gives a ΓK = Gal(K∞/K)-

homomorphism (ΓK acts by Gal(Q∞/Qr)) Gal(E∞/K∞)→ Λ∗O(Ψ−1), where E∞/K∞ is the max-
imal pro-p abelian unramified extension. This is in fact an isomorphism by inflation-restriction

H1
nr(K,Λ

∗
O(Ψ−1))

∼−→ HomΓK (Gal(E∞/K∞),Λ∗O(Ψ−1)),

and one can obviously take minus parts and take dual to get

Gal(E∞/K∞)−,ι ⊗Zp[[ΓK ]] ΛO
∼−→ X∞(K)−,

where ι means ΓK acts by inversion (i.e. g acts by g−1). Now one could “imagine”

• Gal(E∞/K∞)/ωn Gal(E∞/K∞) = Gal(En/Kn) = p-class group of Kn (because modding
out by ωn is something like picking up n-th level of the cyclotomic tower).
• So

#ΛO/(
ωn
ωn0

, I−alg(K)) = #(X∞(K)−/
ωn
ωn0

X∞(K)−) = (h−n /h
−
n0

)p
r[O:Zp]

(pr = Gal(Qr/Q)), so we have the same asymptotics for the both algebraic and analytic
side.

This is almost true. What you need to know is that there is a finite index (thus pseudo-isomorphic)
Zp[[ΓK ]]-submodule of Gal(E∞/K∞) that really picks up p-class group of Kn for n large enough.
(By Iwasawa. Reference: [Was, Lemma 13.10]) �

3. Something that should become a proof of the Iwasawa Main Conjecture for Q
(i.e. review of the proof of Converse to Herbrand)

Now one divisibility is enough, so we want to use the strategy of using Ribet’s lemma to produce
extensions. This will more or less go in the same way that we proved Converse to Herbrand. I will
sketch what is a morally correct proof. We change ψ−1 to ψ.

(1) We want to relate gψ, p-adic L-function, to something likeEisenstein series (or more generally
modular forms) with Λψ coefficients. This is the case (Hida families).

(2) There is somehow the notion of Galois representation over Λψ associated to such modular
forms, and we have similar control on the shape of ordinary such. This is also true.

(3) Order of vanishing r of gψ, after localizing at p, means there is a pr-congruence of Eisenstein
series and cusp forms. This is not exactly true in this case though. This will be made more
precise by introducing the Eisenstein ideal, which roughly measures the maximal possible
congruence between cusp form and Eisenstein series.

(4) Now by following the exactly same argument we produce an indecomposable, reducible yet
residually split extension

0→M2 →M →M1 → 0.

M2 is “1” whereas M1 is “ψΨ”. So M defines a class in H1(Q,M2(ψ−1Ψ−1)).
(5) Any Λψ-homomorphism φ : M2 → Λ∗ψ will give an unramified class in H1

nr(Q,Λ∗ψ(ψ−1Ψ−1)).
This association HomΛψ(M2,Λ

∗
ψ)→ H1

nr(Q,Λ∗ψ(ψ−1Ψ−1)) is injective.
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(6) Taking Pontryagin dual, we get a surjection Sel∞(ψ−1)→ M2. Now fitting ideal argument
gives

ordp(Ch∞(ψ−1)) = ordp(Sel∞(ψ−1))

≥ ordp(FittM2)

and FittM2 mod pr is zero becauseM2 comes from faithful Galois module by reduction mod
Eisenstein ideal.

4. Hida families

Now we explain Hida theory, which will explain up to (2). No proofs will be given, one could
consult [Hid1] or [Hid2].

The definition of modular forms with Λψ-coefficients will be just formal q-expansion with coeffi-
cients in Λψ such that its specialization at all arithmetic points φk,ζ , with sufficiently high weight
k and ζ sufficiently close to 1, give q-expansions of a modular form of appropriate weight, level and
Nebentype.

Definition 4.1 (I-adic modular form). Let I be a finite complete local integral Λψ-algebra. Then
an I-adic modular form is a formal q-expansion f =

∑
a(n)qn with a(n) ∈ I such that, for each

φ : I → Qp with φ|Λψ = φk,ζ , with k � 0, and ζ primitive pt-th root of unity with t � 0, the
specialization

fφ :=
∑

φ(a(n))qn,

is the q-expansion of a modular form in Mk+1(Npt+1, ψψζω
−k, φ(I)) (where the last term is coeffi-

cient ring).

There are too many I-adic modular forms. However, one maintains a good finiteness property one
restricts attention to ordinary I-adic forms (=Hida families), which just means fφ are ordinary

(recall ordinary means Up = [

(
1 0
0 p

)
] has eigenvalue a p-unit (p-valuation zero)). Some relevant

properties are following.
• For classical modular forms Mk(Γ1(Npr),O), there is an idempotent in the Hecke algebra
T ⊂ End(Mk(Γ1(Npr),O)) called ordinary projector eord that picks exactlyMord

k (Γ1(Npr),O).
It can be defined as limn→∞ U

n!
p (This is because Up preserves p-integrality.). The same ap-

plies to cusp forms.
• The Hecke operators and Up-operators on the level of q-expansions define an operator on
I-adic modular forms, and the same is true that e = limn→∞ U

n!
p exists as an idempotent

inside EndI(M(ψ, I)) which picks up exactly Mord(ψ, I). We can then define Tord(ψ, I) ⊂
EndI(Sord(ψ, I)) as I-algebra generated by T`’s, ` 6 |Np, and U`’s, `|Np. It is commutative,
so one could naturally define the notion of eigenform.
• Now Tord(ψ, I),Mord(ψ, I), Sord(ψ, I) have important finiteness properties.

(1) Mord(ψ, I) and Sord(ψ, I) are finite I-algebras. This can be translated into that for
classical modular forms, rankcoeffM

ord
k (lvl, char · ω−k, coeff) is independent of k for

k large enough (boundedness by Eichler-Shimura (relating to cohomology of modular curves) +
cohomological argument to get upper bdd eH1(X(lvl),Fp), so that if Mord is not finite, then it will
give blow-up of rank in classical modular forms).

(2) (Irrelevant) Every classical p-stabilized ordinary eigenform lives in a unique Hida family
up to Galois conjugacy and change of coefficient fields. Conversely, Mord(ψ, I) special-
ized at φ : I → Qp whose restriction to Λψ is arithmetic is really isomorphic to Mk+1

with appropriate level, Nebentype...
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(3) Tord(ψ, I) is a finite torsion-free reduced I-algebra. Torsion-free b/c of how it is
constructed, finite b/c Sord is finite, and reduced b/c our definition of I-adic modular
form f forces to be N -new (b/c ψ has primitive tame level N). In general the new
quotient will be the one that’s reduced.

• Obviously for the quotient J of Tord(ψ, I) by a minimal prime, the quotient map Tord(ψ, I)→
J will give an eigenvalue of ordinary J-adic eigenform fJ of character ψ.
• Now another important feature is that there should be an associated Galois representation.
This is summarized in the following theorem.

Theorem 4.1 (Hida, Wiles). Let f be a normalized cuspidal I-adic eigenform with character ψ.
Then, there is a Galois representation ρf : GQ → GL2(V) for a 2-dimensional Frac(I)-vector space
V such that

(1) ρf is continuous with respect to the mI-adic topology.
(2) ρf is irreducible.
(3) det ρf = ψΨ.
(4) ρf is unramified away from Np, and tr ρf(Frob`) = a(`) for ` 6 |Np.
(5) For ` | N , if a(`) 6= 0, then

ρf |GQ`
∼=
(
α−1
` ψΨ 0

0 α`

)
, α`|I` = 1, α`(Frob`) = a(`),

(6) If f is ordinary, then

ρf |GQp
∼=
(
α−1
p ψΨ ∗

0 αp

)
, αp|Ip = 1, αp(Frobp) = a(p).

This really uses pseudo-representations. References: [Hid1], [Wil1].
One could imagine that, by mimicking the construction of Eisenstein series for Converse to

Herbrand case,

Eψ =
1

2
gψ + hψ

∞∑
n=1

 ∑
d|n,(d,Np)=1

∏
`e‖d

ψΨ(Frobe`)

 qn,

is an ordinary Λψ-adic modular form which specializes to (denominator of p-adic L-function times)
ordinary Eisenstein series. Indeed, at arithmetic point φk,ζ ,

φk,ζ(Eψ) = φk,ζ(hψ)Eord
k+1,ψψζω−k

(z),

where

Eord
k+1,ψψζω−k

(z) =
1

2
L(−k, ψψζω−k) +

∞∑
n=1

∑
d|n,(d,Np)=1

ψψζω
−k(d)dkqn.

5. Constructing Eisenstein congruence

Now we start proving the Iwasawa Main Conjecture for Q. Pick a height 1 prime p ⊂ Λψ.
Following the blueprint, step (3) requires us to make an Eisenstein congruence. We make this in a
mathematical statement. For notational convenience, let Tψ = Tord(ψ,Λψ).

Definition 5.1 (Eisenstein ideal). The ideal Iψ = 〈{T` − 1 − ψΨ(Frob`)}`6|Np, {U` − 1}`|Np〉 ⊂ Tψ
is called the Eisenstein ideal.

As Tψ is generated by Hecke and Up-operators, the structure map Λψ → Tψ/Iψ is surjective. Let
the kernel be denoted as Jψ. Then what we want to prove is that

(5.1) ordp(Jψ) ≥ ordp(gψ).
6



Naively, if there is an ordinary cusp form congruent mod pordp(gψ) to Eψ, then

Tψ,p → Λψ,p/p
ordp(gψ)Λψ,p,

T` 7→ 1 + ψΨ(Frob`), U` 7→ 1,

will be a surjective Λψ,p-homomorphism whose kernel contains IψTψ,p, proving (5.1). But the
Converse to Herbrand case used that there is only 1 cusp in level 1, and this cannot be used here.
So we need something more.

• Step 0. Trivial cases and exceptional primes. Indeed if ψ = ω−1ψξ so that p-adic L-
function has a pole, then we know it is a simple pole, so gψ is a unit, so there is nothing
to prove. We can exclude this case. More generally we can assume that fp | gψ, where
p = (fp). Even after this we have to exclude certain primes, exceptional primes, namely
those p such that either p is in p or ψΨ|GQp ≡ 1(mod p). We will not say anything further
about exceptional primes; it is less relevant to the theme of the seminar. (For those containing
p one could use the vanishing of µ-invariant of Ferraro-Washington to deduce that ordp(gψ) = 0. For other
exceptional primes Grenberg and Ferraro proved that both sides are 1. For IMC for general totally real
fields, Wiles uses a different argument.)
• Step 1. Making a0 = 0. Note that by Weierstrass preparation theorem, every f ∈ Λψ has
a unique power series expansion in T := γ − 1 with coefficients in Oψ. In particular, for f a
Λψ-adic modular form, and g(T ) = ζ(1 + T )m − 1 for some p-power root of 1 ζ and m ≥ 0
integer, the formal q-expansion f(g(T )) is also an I-adic modular form for some appropriate
I (containing Λψ and ζ).

Now ζ = χ−(p−1)(γ) is some p-power root of unity. Then there certainly exists N � 0
such that fp 6 |gψ(ζN (1 + T )− 1). Then

Gψ := GN(p−1)Eψ(ζN (1 + T )− 1),

is a Λψ-adic modular form with a0(Gψ) = gψ(ζN (1 + T )− 1), and

G ′ψ := eordGψ,

is an ordinary Λψ-adic modular form, with a0(G ′ψ) = gψ(ζN (1 + T )− 1), a p-unit. Here Gk
is the usual constant term 1 classical modular form formed as a product of Eisenstein series,
i.e. Gk(z) = (240E4(z))a(−504E6(z))b for 4a+ 6b = k. Now one can use this to produce

Fψ := gψ(ζN (γ)(1 + T )− 1)Eψ − gψG ′ψ,

an ordinary Λψ-adic modular form with a0(F ) = 0! This is up to p-unit congruent to Eψ
mod pr. (Some explanation on the construction: you multiply with Gk0 because our definition of Hida
family asserts that specialization at weight k point gives weight k+ 1 modular form, so you have to recover
weight; you require multiples of (p − 1) so that there is no effect mod p to make sure that the ordinary
projector does not eliminate everything but constant term and/or F is not a constant.)
• Step 2. Producing an ordinary cusp form. Now how about vanishing at other cusps?
There is the following cute trick.

Lemma 5.1. Let g ∈Mord(ψ,Λψ) with a0(g) = 0. Then,

wg :=
∏
`|N

U`(U
ϕ(Nψ)
` −Ψ(Frob`)

ϕ(Nψ))g,

is a cusp form!

Proof. One checks this by specializing at each arithmetic point and see that all ordinary
Eisenstein series showing up in the space of ordinary modular forms vanish by this Hecke

7



operator. More specifically, if Eχ1,χ2 = 1 +
∑

n≥1

∑
d|n χ1(n/d)χ2(d)dkqn, with χ1χ2 =

ψψζω
−k, then

– p does not divide conductor of χ1 as Eχ1,χ2 has to be ordinary.
– ` 6= p does not divide both conductors of χ1, χ2, because you have U` in the operator

to make sure a` 6= 0.
– If ` 6= p divides the conductor of χ1 but not that of χ2, then U`Eχ1,χ2 = `kχ2(`)Eχ1,χ2 ,

whereas Ψk,ζ = ψζω
−kχk. Note χ(Frob`) = `, ψζ(Frob`) = χ2(`) and raising power to

ϕ(Nψ) eliminates ambiguity coming from both ω and ψ.
– If ` = 1, then this does not show up because we had a0 = 0 to start with.

�

• Step 3. Going back. Note that wFψ is not literally congruent to Eψ mod pordp(gψ). Mod-
ulo Jψ, it is congruent to

∏
`|N (1 − Ψ(Frob`)

ϕ(Nψ))gψ(ζN (γ)(1 + T ) − 1)Eψ. We know
gψ(ζN (γ)(1 + T ) − 1) is a p-unit so this not a problem. To make sure that we can invert∏
`|N (1 − Ψ(Frob`)

ϕ(Nψ)), assume 1 − Ψ(Frob`)
ϕ(Nψ) ∈ p. Then, Ψ(γ) mod p is a root of

unity ξ. Thus p | gψ implies, by interpolation, L{p}(0, ψψ−1
ξ ) = 0, which means ψψ−1

ξ = 1,
or ψΨ|GQp ≡ 1(mod p), which is a contradiction as we have already excluded exceptional
primes. So we can safely invert extra factors to get a desired congruence.

6. Use of Ribet’s lemma, finishing up the proof

Now we want to prove that for non-exceptional primes p,

ordp(CH∞(ψ)) ≥ ordp(Jψ).

This will be established by Ribet’s lemma argument as before. We can suppose t := ordp(Jψ) > 0.
• Step 1. Start with ordinary Galois representation. We start exactly as in the proof
of Converse to Herbrand. Let p′ ⊂ Tψ be the unique height one prime containing (Iψ, p) by
Going-Down (Tψ/Λψ is flat). Let q1, · · · , qm be the minimal prime ideals contained in p′.
Let Ji = Tψ/qi, and A = Tψ/ ∩mi=1 qi. Let K = Frac(A) = A ⊗Λψ Frac(Λψ) =

∏
Frac(Ji),

ρi = ρJi . As these specialize to newforms at primes away from p, these are all pairwise
non-isomorphic. Let V = ⊕VJi , ρ = ⊕ρJi . This is then a continuous free two-dimensional
K-representation of GQ on V . This is the ordinary Galois representation we will start with.
In particular, we have following properties.
(1) tr ρ is A-valued, because all tr ρ(Frob`) for ` 6 |Np is just T` ∈ A, so by continuity

everything is A-valued. In particular, tr ρ = 1 + ψΨ(mod IψA) (this is also because
T` = 1 + ψΨ(Frob`) for Frob`’s).

(2) As p is nonexceptional, we can pick σ0 ∈ GQp such that ψΨ(σ0)− 1 /∈ p.

(3) By ordinarity we start with a basis such that ρ|GQp =

(
α−1ψΨ ∗

0 α

)
, where α|Ip = 1,

α(Frobp) = Up. We do one further elementary row operation to diagonalize ρ(σ0) =(
α−1ψΨ(σ0) 0

0 α(σ0)

)
.

• Step 2. Construct a nonsplit extension over Ap first. Note that as α(σ0) ≡ 1(mod p)

and not literally a unit, we cannot simply invert as in the case of proof of Converse to
Herbrand. Rather we have to allow inverting something not in p, namely work over Ap, as

r := α−1ψΨ(σ0)− α(σ0) /∈ p(∵ α ≡ 1(mod p)).

Writing ρ(σ) =

(
aσ bσ
cσ dσ

)
∈M2(K), σ ∈ K[GQ], we can argue similarly as before so that
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(1) raσ, rdσ, r2bσcτ ∈ A for all σ, τ ∈ A[GQ], and

raσ ≡ ψΨ(σ0σ),−rdσ ≡ 1(σ0σ), r2bσcτ ≡ 0(mod IψA).

This is because if we let

δ1 = σ0 − α(σ0), δ2 = σ0 − α−1ψΨ(σ0) ∈ A[GQ],

then

raσ = Tr ρ(δ1σ) ≡ ψΨ(σ0σ),−rdσ = Tr ρ(δ2σ) ≡ 1(σ0σ)(mod IψA).

(2) C := {cσ | σ ∈ A[GQ]} is a finite faithful A-module. This is (a) finite because ρ is
continuous and GQ is compact, and (b) faithful because ρJi ’s are all irreducible and
distinct. Namely, letM := Apv1⊕CP v2 ⊂ V be a GQ-stable lattice. Then,M⊗Λψ,p Fψ
is a nonzeroK[GQ]-stable submodule of V , projecting onto each VJi , soM⊗Λψ,pFψ = V ,
implying Cp ⊗Λψ,p Fψ = K.

(3) cσ = 0 for σ ∈ Ip. This is becauseM1 := Apv1 is Ip-stable.
Before manipulating we note

Ap/IψAp = Ap′/IψAp′

= Tψ,p′/IψTψ,p′(∵ Ap′ = Tψ,p′)
= Λψ,p/JψΛψ,p.

Now lettingM2 := Cpv2, then

0→M2 →M→M1 → 0,

is a nonsplit extension of Ap/IψAp[GQ] = Λψ,p/JψΛψ,p[GQ]-modules. This makes sense
because
– for c ∈ Cp, ρ(σ)cv2 = bσcv1 ⊕ dσcv2 ∈ cv2 + IψM, making M2 = M2/IψM2 an
Ap[GQ]-direct summand ofM =M/IψM on which GQ acts trivially,

– and the quotient M1, which M1 surjects onto, is a rank 1 Ap/IψAp-module acted by
GQ via ψΨ.

Thus what we get is nonsplit (asM is generated by v1)

0→M2 →M→ Λψ,p/JψΛψ,p(ψΨ)→ 0.

This is split
– Over p becauseM1 is Ip-stable.
– Over ` | N because of property (5) of associated Galois representation, so that I`-action

factors through its image in Gal(Q(µNψ)/Q).
– Over all other primes as for those primes ρi’s are unramified.

• Step 3. Make it over A. Now just take A[GQ]-submodule M generated by v1 ofM and
transfer things. This is a finite Λψ-module, and restricting the whole picture to M, we
get 0 6= [M] ∈ H1(Q,M2(ψ−1Ψ−1)); it is nonzero because it is nonsplit when localized to
p. Note here M2 = M ∩ M2, and here again GQ acts trivially. We are not quite sure
if [M] is an unramified class, but we know it is unramified almost everywhere, and r1[M]
becomes unramified everywhere for some r1 ∈ Λψ − p. Now we apply the same idea; for
φ ∈ HomΛψ(M2,Λ

∗
ψ), we send this class via H1(Q,M(ψ−1Ψ−1)) → H1(Q,Λ∗ψ(ψ−1Ψ−1)).

This gives a map

θ : HomΛψ(M2,Λ
∗
ψ)→ H1(Q,Λ∗ψ(ψ−1Ψ−1)).

What we have realized above is that θ localized at p is sent to the Selmer group. Thus
to apply the Fitting ideal argument, we would only need to show that θp is injective (or
equivalently θ∗p is surjective).
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Let K = ker θ, M′2 = ∩φ∈K kerφ. For a finite set S ⊂ K, we define MS = ∩φ∈S kerφ,
which is of finite index in M2. Let HS = H1(Q,M2/MS(ψ−1Ψ−1)). Note that there is a
natural inclusion M2/MS ↪→

∏
φ∈S Λ∗ψ given by m 7→ (φ(m))m∈S . As φ ∈ ker θ, the class

[M], sent to HS , is in the kernel of HS →
∏
φ∈S H

1(Q,Λ∗ψ(ψ−1Ψ−1)). Now the long exact
sequence

0→ H0(Q,M2/MS(ψ−1Ψ−1))→ H0(Q,
∏
φ∈S

Λ∗ψ(ψ−1Ψ−1))→ H0(Q,
∏
φ∈S

Λ∗ψ/(M2/MS)(ψ−1Ψ−1))

→ H1(Q,M2/MS(ψ−1Ψ−1))→ H1(Q,
∏
φ∈S

Λ∗ψ(ψ−1Ψ−1)),

shows that [M] ∈ HS is in the quotient of
∏
φ∈S Λ∗ψ(ψ−1Ψ−1))GQ . On the other hand, each

Λ∗(ψ−1Ψ−1)GQ is annihilated by r2 := ψΨ(σ0) − 1 /∈ p. Thus, r2[M] = 0 in HS . Taking
inverse limit, we get r2[M] = 0 as elements in H1(Q,M2/M

′
2(ψ−1Ψ−1)). This implies that

M2,p = M′2,p, so θp is injective.
• Step 4. Fitting ideal time. Now we have the same argument left. Namely,

ordp(Ch∞(ψ−1)) = ordp(Ch∞(ψ−1)p)

= ordp(FittΛψ,p Λψ,p/Ch∞(ψ−1)p)

≥ ordp(FittΛψ,p M2,p)

= ordp(FittΛψ,pM2),

and

FittΛψ,pM2(mod JψΛψ,p) = FittΛψ,p/JψΛψ,pM2

= FittAp/IψAp
M2

= FittApM2(mod IψAp)

= FittApM2(mod IψAp) = 0,

which is becauseM2 is a faithful Ap-module. This finishes the proof.

Remark 6.1. Unlike M1, we do not know if M2 is free of rank 1 over Λψ,p/JψΛψ,p (or similarly
M2), because we do not know if Cp is free. This is closely related to determining structure of the
Selmer group. Note that the only actual source of attaching Galois representation to automorphic
forms is the cohomology of Shimura varieties, so in some sense we can find a natural lattice inside
the given Galois representation, namely the cohomology with integral coefficients. On the other
hand, one may get different lattices when one tries to look into Shimura varieties of different levels.

In the setting of Converse to Herbrand with ψ = ωi where the corresponding Selmer group is
some part of class group, what Sharifi’s conjectures basically say is that the group structure of
the Selmer group is more or less C/IψC, with respect to the lattice given by the cohomology of
Γ1(M)-modular curves. The cyclicity of it is Vandiver’s conjecture.
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