
CUP PRODUCTS AND L-VALUES OF CUSP FORMS

GYUJIN OH

Warning: daggered parts of the notes (not covered in the actual talk) are left unedited.
• ∆ = Gal(F/Q)
• S = {1− ζp} a singleton consisted of the unique prime above p
• ω is the Teichmuller character.
• H, h in general denote modular Hecke algebra and cuspidal Hecke algebra with coefficients
in Zp, respectively.
• AF = A is the p-part of Cl(F ).
• Weight k levelN modular symbolsMk(N,Z) is defined as the sub-Z-module of Symk−2 Z2⊗Z[Γ1(N)]

H1(H∗,P1(Q),Z), where H∗ = H∪P1(Q), and Γ1(N) acts on Z2 via standard representation
of GL2, generated by elements of form P ⊗ {α → β}, where P (X,Y ) is a degree (k − 2)
homogeneous polynomial in variables X,Y , and {α→ β} is a (geodesic) path from α to β,
for α, β ∈ P1(Q). Cuspidal symbols Sk(N,Z) are those that die under the boundary map
∂ : H1(H∗,P1(Q), bZ)→ H0(P1(Q),Z).
– CanonicallyM2(N,Z) = H1(X1(N), C1(N),Z), S2(N,Z) = H1(X1(N),Z).
– (Eichler-Shimura isomorphism) The integration

〈, 〉 :Mk(N,C)× (Sk(N)⊕ Sk(N))→ C,

defined by

〈P (X,Y ){0→∞}, (f, g)〉 =

∫ β

α
f(z)P (z, 1)dz +

∫ β

α
g(z)P (z, 1)dz,

is perfect upon restricting the first factor to Sk(N,C).
• Generalized Bernoulli number Bk,χ, for χ Dirichlet character of conductor f , is defined as

f∑
a=1

χ(a)
teat

eft − 1
=

∞∑
k=0

Bk,χ
tk

k!
.

It satisfies L(1− k, χ) = −Bk,χ
k .

• Eisenstein series with nebentype χ:

Ek,χ(z) =
L(1− k, χ)

2
+

∞∑
n=1

∑
d|n

χ(d)dk−1qn.

1. L-values of cusp forms vs. cup product of cyclotomic units

I would like to first recap what has happened so far. In Eric’s talk, we saw (via an example of
∆ ≡ E12(mod 691)) the following phenomenon. Choose an irregular pair (p, k) (i.e. p|Bk, p odd),
and then there is a normalized cuspidal eigenform f of level 1 and weight k such that it satisfies a
congruence

f ≡ Ek(mod pf ),
1



where

Ek = −Bk
2k

+

∞∑
n=1

σk−1(n)qn,

and pf ⊂ Of is a fixed maximal ideal over p insideOf , the Z-algebra generated by Fourier coefficients
of f .

Remark 1.1. Note that this is always possible as
(1) the mod p Hecke eigenclass φ : Hk → Fp, φ(T`) = 1 + `k−1, factors through the cuspidal

Hecke algebra φ : hk → Fp, as every Hecke action computing the constant term vanishes,
(2) the Hecke algebra hk is finite flat over Zp (certainly p-torsion-free, if you think about it),

so that Zp ⊂ hk has Going-down property, so that one could find q ⊂ kerφ ⊂ hk lying over
0 ⊂ (p) ⊂ Zp,

(3) and then hk � hk/q gives a p-integral Hecke eigenclass (hk/q is a finite free Zp-algebra), i.e.
a normalized cuspidal eigenform.

Then the ratios between odd periods of f in the critical strip should match the ratios of cup
products of cyclotomic units. Recall that the group of cyclotomic p-units, denoted as C ⊂ Z[µp,

1
p ]×,

is the group generated by roots of unity and 1 − ζip, 1 ≤ i ≤ p − 1. Let C be its p-completion (i.e.
C ⊗Z Zp). It has a natural action by ∆ = (Z/pZ)×, and as |∆| is p-invertible, we can decompose C
into eigenspaces using idempotents

πi =
1

p− 1

∑
σ∈(Z/pZ)×

ω−i(σ)[σ] ∈ Zp[∆],

which projects to the ωi-eigenspace. We define, for odd 3 ≤ i ≤ k − 2, ηi = π1−i(1 − ζp) ∈ C(1−i).
Modulo p-th powers, this is the same as

ηi ≡
p−1∏
u=1

(1− ζup )u
i−1

(modO×pF,S).

Using the cup product pairing (, ) : O×F,S × O
×
F,S → AF ⊗ µp (justified in Leo’s talk), restricted to

C and extended to C by linearity, we can define

ei,k := (ηi, ηk−i) ∈ A⊗Z µp.

Note that by considering the ∆-action, ei,k ∈ (A⊗Z µp)
(2−k) = A(1−k) ⊗Z µp.

A “numerically verifiable” conjecture then was that the “ratios” of ei,k should match the ratios of
(normalized) L-values of cusp forms. A priori A(1−k)⊗Z µp is some random space, but we have seen
in Leo’s talk that under Vandiver’s conjecture,

• A =
⊕

3≤j≤p−2,k oddA
(j), i.e. A(even) = 0,

• A(j) is cyclic (thus ∼= Zp/L(0, ω−j)Zp = Zp/B1,ω−jZp by IMC) for j = 3, 5, · · · , p− 2 (proof
by Kummer reflection principle; see [Wa]).

Thus, under the Vandiver’s conjecture, A(1−k) ⊗Z µp ∼= Z/pZ(1 − k) (nonzero because irregular),
and we can really talk about ratios. We can for example formulate the conjecture in the following
way.

Conjecture 1.1 (Conjecture A, with Vandiver). Assume Vandiver’s conjecture. For 1 ≤ j ≤ k−1,
let rj(f) = (j−1)!

(−2πi)j
L(f, j) be the normalized L-value of f . For j = 3, 5, · · · , k−3, let pj =

rj(f)
r1(f) ∈ Kf

(seen in Eric’s talk). Then, the ratio [p3 : · · · : pk−3] modulo pf matches with [e3,k : · · · : ek−3,k].
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Here, the ratio [p3 : · · · : pk−3] is understood as a corresponding point in P(k−6)/2(Of ) with at
least one entry not contained in pf so that one can compare ratios mod pf . Indeed by the congruence
f ≡ Ek(mod pf ), Of/pf = Fp, so such comparison is valid.

Now if we do not assume Vandiver’s conjecture, we can formulate Conjecture A in the following
somewhat artificial way.

Conjecture 1.2 (Conjecture A, without Vandiver, [ShCup, Conjecture 3]). Let Hf be the Of -
submodule of Kf spanned by p3, · · · , pk−3. Then, for any Fp-linear functional ψ : Hf/pfHf → Fp,
there exists an Fp-linear functional φ : A

(1−k)
F ⊗ µp → Fp such that

(φ(e3,k), φ(e5,k), · · · , φ(ek−3,k)) =

(
ψ

(
r3(f)

r1(f)

)
, ψ

(
r5(f)

r1(f)

)
, · · · , ψ

(
rk−3(f)

r1(f)

))
,

inside Fk/2−2
p .

Note that, with a view towards cyclicity of A(1−k)
F ⊗ µp, McCallum-Sharifi in [McSh] conjectured

that ei,k’s generate A− ⊗ µp.

Conjecture 1.3 (McCallum-Sharifi, [ShAWS, Conjecture 5.1.12]). The elements for odd i and even

k generate A− ⊗Z µp. In other words, C ⊗Zp C
(,)−→ A− ⊗Z µp is surjective.

2. Modular symbols vs. cup product of cyclotomic units

We have also seen in Eric’s talk that special L-values of f in the critical strip can be encoded in
terms of modular symbols. We briefly recall the definition of it.

Weight k modular symbolsMk(Z) is defined as the torsion-free quotient of the Z-submodule of
Symk−2 Z2⊗Z[SL2(Z)]H1(H∗,P1(Q),Z), where H∗ = H∪P1(Q), and SL2(Z) acts on Z2 via standard
representation of GL2, generated by elements of form P ⊗ {α → β}, where P (X,Y ) is a degree
(k − 2) homogeneous polynomial in variables X,Y , and {α→ β} is a (geodesic) path from α to β,
for α, β ∈ P1(Q). In our case, any modular symbol can be written as P⊗0,∞} for P a homogeneous
degree (k − 2) polynomial in variables X,Y , coefficients in Z.

Cuspidal symbols Sk(N,Z) are those that die under the boundary map ∂ : H1(H∗,P1(Q), bZ)→
H0(P1(Q),Z) (we let Bk(Z) to be the same thing withH1(H∗,P1(Q),Z) replaced withH0(P1(Q),Z)).
LetMk(R) =Mk(Z)⊗Z R, and similarly define Sk(R).

Remark 2.1. The action of a matrix γ ∈ GL2(Z)+ on P{α → β} is given by (Pγ−1){γα → γβ}.
Through this we can define a hk-action on Sk(Zp) and Hk-action onMk(Zp).

Then, as Bk(R) (space of boundary symbols) can be shown to be generated by Xk−2{0,∞}, and
Sk(R) is generated by Xi−1Y k−1−i{0,∞} with 2 ≤ i ≤ k − 2.

We can talk about ±-parts of it under the invloution by

P (X,Y ){0,∞} 7→ P (−X,Y ){0,∞},
which corresponds to z 7→ −z in H∗. Then Sk(R)+ has a basis of Xi−1Y k−i−1{0,∞} for i =

3, 5, · · · , k− 3. Here we know the relation because γ · 0 =∞ means γ =

(
0 −1
1 0

)
so that we know

the only new thing introduced in Bk(R) is the flipping of X and Y (up to sign).
Recall also that the L-values of f are related to modular symbols, as follows. Recall that we had

a Hecke-equivariant pairing
〈, 〉 :Mk(C)× Sk(C)→ C,

〈P{0→∞}, g〉k =

∫ ∞
0

g(z)P (z, 1)dz.
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Remark 2.2. It is Hecke equivariant in a sense that the Hecke algebra action onMk(C) is actually
via the adjoint Hecke algebra. This is quite expected because modular symbols are “homology
classes,” whereas modular forms are “cohomology classes,” so really modular symbols are something
dual to modular forms (of course one can use a dual form of modular symbols to match with modular
forms; both approaches are common).

In particular,

rj(f) =
(j − 1)!

(−2πi)j
L(f, j) = ij−1

∫ ∞
0

f(iy)yj−1dz =

∫ i∞

0
f(z)zj−1dz = 〈Xj−1Y k−j−1{0→∞}, f〉.

Now we can formulate a variant of Conjecture A which fits better in a general picture of Sharifi’s
conjectures.

Conjecture 2.1 (Conjecture B, [ShCup, Conjecture 6]). Consider a map Πk : Sk(Zp)+ → A
(1−k)
F ⊗

µp defined by Πk(X
i−1Y k−i−1{0,∞}) = ei,k (which is well-defined as we know the basis). Then,

this factors through the Eisenstein quotient

Πk : Sk(Zp)+/mSk(Zp)+ ∼−→ A(1−k) ⊗ µp,

where m = (p, Ik) is the maximal ideal containing the Eisenstein ideal Ik = 〈T` − 1 − `k−1〉` ⊂ hk,
and this is moreover an isomorphism.

This seems much more similar to Sharifi’s other forms of conjectures. Conjecture A indeed looks
like a shadow of Conjecture B. We will in fact later show that Conjecture A is implied by Conjecture
B.

3. Examples

We briefly recall the example of ∆ ≡ E12(mod 691) seen in Eric’s talk. After exploiting the
symmetry rj(f) = (−1)j+1rk−j(f), we saw that p3(∆) = − 691

22×34×5
and p5 = 691

23×32×5×7
, so that

[p3 : p5] = [152 : 1](mod 691). On the other hand, a table that can be found in Sharifi’s webpage,
which computes the ratio [e1,k : e3,k : · · · : ep−2,k], says that for (p, k) = (691, 12), the list goes

[1 : 222 : 647 : 44 : 469 : · · · ],

where one checks that [222 : 647] = [152 : 1](mod 691).

Remark 3.1. Note that most of Sharifi’s table are conjectural, as we will see below how he might
have computed the table (although the case of (691, 12) is computed unconditionally using very
technical results in [McSh]).

Well, how does one calculate ei,k in general? We have seen in Leo’s talk that it is somewhat
gruesome to compute ei,k’s. I would like to say how one might write a program computing a cup
product pairing C × C → A(1−k) ⊗ µp assuming Vandiver’s conjecture and nonvanishing of cup
product pairing for irregular pairs (i.e. McCallum-Sharifi’s conjecture, Conjecture 1.3). It turns out
that a few formal relations that we know about the pairing are quite strong.

(1) We have seen also in Leo’s talk that, whenever a, 1− a ∈ O×F,S , (a, 1− a) = 0.
(2) Thus, (ζp, 1− ζip) = 1

i (ζ
i
p, 1− ζip) = 0.

(3) Also, (, ) is alternating (it is a cup product).
(4) We now abbreviate ui = 1− ζip and (i, j) = (ui, uj) for simplicity. Then we have things like

• (i, j) = −(j, i),
• (i, j) = (i, p− j), because up−j = −ζ−jp uj .
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(5) Now we have some funny relations. Namely, we have identities

1− xa

1− xa+b
+ xa

1− xb

1− xa+b
= 1,

and
(1− x2a)(1− xa+b)

(1− xa)(1− x2(a+b))
− xa (1− xb)(1− xa+b)

1− x2(a+b)
= 1.

(6) In terms of (i, j)’s, this translates into (a, b)− (a, a+ b)− (a+ b, b) = 0, and (2a, b)+(2a, a+
b)−(2a, 2(a+b))+(a+b, b)−(a+b, 2(a+b))−(a, b)−(a, a+b)+(a, 2(a+b))−(2(a+b), b)−
(2(a + b), a + b) = 0, whenever all entries are nonzero modulo p. In the latter expression,
(a+ b, 2(a+ b)) + (2(a+ b), a+ b) = 0, so that we have

(a, b) = (a, a+ b) + (a+ b, b),

(2a, b) + (2a, a+ b)− (2a, 2(a+ b)) + (a+ b, b)− (a, b)− (a, a+ b) + (a, 2(a+ b))− (2(a+ b), b) = 0.

In fact, McCallum-Sharifi computed in [McSh] that for p < 25000 and k forming irregular pair with p,
there is a unique (up to scalar) nontrivial antisymmetric Galois-equivariant pairing C×C → Fp(2−k)
satisfying just the longer relation of the above two.

For example, just using the two relations, we can show that any pairing for p = 7 must be zero
(which is a priori obvious, as 7 is a regular prime). Indeed, by symmetry we only need to take care
of (1, 2), (1, 3), (2, 3), and putting a = 1, b = 2 in the shorter relation we get

(1, 2) = (1, 3)− (2, 3).

Putting a = b = 1 in the longer relation, we have

−3(1, 2)− (2, 3) + 2(1, 3) = 0.

Combining two, we have (1, 3) = 2(2, 3) and (1, 2) = −(2, 3). Now putting a = 1, b = 2 in the longer
relation, we get

(1, 2) + (1, 3) = 0,

showing that all symbols are zero.

4. Tying up loose ends

4.1. Conjecture B implies Conjecture A. First we show that Conjecture B implies Conjecture
A (no Vandiver version).

Proof. Suppose we are given with ψ : Hf/pfHf → Fp. Then, define φ : Sk(Z)+ → Fp as

φ(P{0→∞}) = ψ

(
〈P{0→∞}, f〉

r1(f)

)
.

This surely extends to Sk(Zp)+, and it is obviously killed by phk. Also,

φ◦(T`−1−`k)(s) = ψ

(
〈(T` − 1− `k)s, f〉

r1(f)

)
= ψ

(
〈s, (T` − 1− `k)f〉

r1(f)

)
= ψ

p〈s, a`−1−`k
p f〉

r1(f)

 = 0.

Here we used that f is eigenform an 〈, 〉 pairs Hecke operator and its adjoint equivariantly. Thus,
φ factors through the Eisenstein component. We then see that φ ◦Π−1

k : A
(1−k)
F ⊗ µp → Fp satisfies

the desired condition. �
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4.2. † “Mod p multiplicity one” principle. We have the following interesting consequence of
Vandiver’s conjecture.

Proposition 4.1. If we assume Vandiver’s conjecture (plus some extra conditions to be precise,
“(Good Eisen)” of [BePo]), then normalized f satisfying f ≡ Ek(mod pf ) is unique for an irregular
pair (p, k).

Proof. (1) Kurihara [Ku] showed that A(1−k) is cyclic if and only if (hk)m is Gorenstein.
(2) One crucial property of Gorenstein-ness is that Hom((hk)m,Zp) is, as an (hk)m-module,

isomorphic to (hk)m.
(3) Ohta proved that Sk(Zp)+

m
∼= Hom((hk)m,Zp).

• First Sk(Zp) can be endowed with Galois action by considering it as (étale) parabolic
cohomology. Then, one could show that the decomposition of Sk(Zp)m using “ordi-
narity” (by Ohta), which splits it into free (hk)m-module and dualizing (hk)m-module,
matches with the ±-decomposition.

(4) ... See [BePo, Theorem 3.11].
�

Note that such mod p multiplicity one results are also related to Gorenstein-ness of localized
Hecke algebra for residually irreducible cases (which was known from the time of proof of modularity
lifting).

4.3. † Weight k level 1 vs. weight 2 level N . An analogous conjecture in the setting of weight
2, varying level (cf. [Sh2pL]) is that

(ηi, ηk−i)↔ Lp(g, ωi−1, 1),

where g is a level 2, level p, Nebentypus ωp−2 cuspidal eigenform congruent to g ≡ E2,ωk−2(mod p)
(which is just congruent mod p to Ek); note that E2,ωk−2 ≡ Ek(mod p). Now Birch’s lemma shows
that a character twist of a modular form can be written as a linear combination as

fχ(z) =
1

τ(x)

∑
a(modm)

χ(a)f(z +
a

m
),

where χ is a Dirichlet character of conductor m and

τ(x) =
∑

a(modm)

χ(a)e2πia/m,

is the Gauss sum. Thus, an L-value of L(g, ωi−1, 1) can be expressed as, some constant times a
pairing between g and a modular symbol

p−1∑
a=1

ω1−i(a){∞ → a

p
}.

Note that in Eric’s talk another form of part of Sharifi’s conjecture is that

Π◦N : S◦2 (N)+ → K2(Z[1/N, µN ])+,

[u : v]∗N 7→ {1− ζuN , 1− ζvN}+,
should factor through the Eisenstein quotient and the resulting map, when sent to infinity Npr,
r → ∞ by taking inverse limit with respect to norm maps, we should get an isomorphism. Thus
that these conjectures can be formulated in p-adic families means that an appropriate congruence
relations must hold, even on the formal level. For example as

1− ζup =
∏

ω1−i(u)ηi,

6



the congruence relation like

[u : v]∗p ≡
∑

i odd,1≤i≤p−2

p−1∑
a=1

u1−iv1−(k−i)ai−1{∞ → a

p
}(mod p),

must hold. Indeed by switching i and a, the RHS can be written as
p−1∑
a=1

(p−3)/2∑
i=0

v2−k(va/u)2i{∞ → a

p
},

and the summand is zero unless va/u = ±1, which means it reduces to

[u : v]∗p ≡
p− 1

2
v2−k

(
{∞ → u/v

p
}+ {∞ → −u/v

p
}
)

(mod p).

This looks promising as [u : v]∗p = 1
2wp([u : v]p+[−u : v]p), although to be honest I got confused when

I was trying to verify the relation by hand. The above relation as stated is wrong but something
almost like this must hold on the level of modular symbols.
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