KOSZUL DUALITY AND CATEGORICAL ARCHIMEDEAN LOCAL LANGLANDS

GYUJIN OH

Contents

1.	Kazhdan–Lusztig inversion formula as Koszul duality	1
2.	Koszul duality basics	2
3.	Archimedean local Langlands	4
4.	Vogan duality and Adams-Barbasch-Vogan	4
5.	Koszul duality and Soergel's conjecture	4
6.	Langlands parameter space as loop space	4
7.	Koszul duality: perverse vs. coherent	4
References		4

1. KAZHDAN-LUSZTIG INVERSION FORMULA AS KOSZUL DUALITY

Somehow the categorification of local Langlands correspondence started off as interpreting the Kazhdan–Lusztig inversion formula. We recall the setup. Namely, consider the block \mathcal{O}_0 of the category of representations of a complex semisimple Lie algebra \mathfrak{g} which contains the trivial representation. The simple objects are the simple highest weight modules M_w of highest weight $-w(\rho) - \rho$, for the half sum of positive roots ρ and $w \in W$. This is the irreducible quotient of the Verma module M_w of highest weight $-w(\rho) - \rho$ which is universal among highest weight modules. The Kazhdan–Lusztig polynomial $P_{y,w}(q) \in \mathbb{Z}[q]$ for $y, w \in W$ encodes the multiplicity of Verma module, in that

$$[M_w] = \sum_{y \le w} P_{w_0 w, w_0 y}(1) [L_y].$$

The Kazhdan–Lusztig inversion formula says that the inversion is also expressible in terms of K-L polynomials, namely

$$[L_w] = \sum_{y \le w} (-1)^{\ell(w) - \ell(y)} P_{y,w}(1) [M_y].$$

[BGS] found that the categorification of this is that

 $D^b(\mathcal{O}_0) \cong D^b_{(B^\vee)}(G^\vee/B^\vee) \qquad \text{(Categorification of local Langlands over } \mathbb{C}\text{)},$

where the right hand side is the bounded derived category of B^{\vee} -equivariant constructible sheaves on G^{\vee}/B^{\vee} , and this is an instance of **Koszul duality**. We will see what Koszul duality means shortly. Soergel then generalized this picture to real group representations, which we will also see. To at least superficially understand what this \cong is, we translate the left-hand side to a geometric picture using Beilinson–Bernstein localization;

$$D^b_{(B)}(G/B) \cong D^b(\mathcal{O}_0) \cong D^b_{(B^\vee)}(G^\vee/B^\vee).$$

Then L_w corresponds to the **IC sheaf**, which is a simple perverse sheaf corresponding to the Schubert cell associated with w, and M_w corresponds to the **standard object**. In terms of $i_w : BwB/B \hookrightarrow G/B$,

$$L_w = i_{w!*}k[\ell(w)], \quad M_w = i_{w!}k[\ell(w)].$$

Similar definition $N_w = i_{w*}k[\ell(w)]$ corresponds to the **dual Verma module** $N_w = M_w^{\vee}$. Now the "Koszul duality" $D^b_{(B)}(G/B) \cong D^b_{(B^{\vee})}(G^{\vee}/B^{\vee})$ is such that $L_w \mapsto N_{w^{-1}w_0}$, and

 $M_w \mapsto L_{w^{-1}w_0}$. Somehow you can now imagine that the roles of L and M are "flipped."

2. Koszul duality basics

So why is this called Koszul duality? Koszul duality is basically a generalization of

$$D^{b}(\operatorname{Mod}_{S(V)}) \cong D^{b}(\operatorname{Mod}_{\wedge^{*}(V^{\vee})}).$$

This is usually called the BGG correspondence. Let us briefly recall what this is. Let $M = \bigoplus M_d$ be a graded S(V)-module. Then, define R(M) to be the complex

$$\cdots \xrightarrow{\phi} \operatorname{Hom}_{K}(\wedge^{*}(V^{\vee}), M_{d}) \xrightarrow{\phi} \operatorname{Hom}_{K}(\wedge^{*}(V^{\vee}), M_{d+1}) \xrightarrow{\phi} \cdots,$$
$$\phi(\alpha)(e) = \sum_{i} v_{i}\alpha(\widetilde{v}_{i} \wedge e),$$

where v_i and \tilde{v}_i are dual bases of V and V^{\vee} . This being a complex is basically equivalent to that the induced morphisms $V \otimes M_d \to M_{d+1}$ satisfy commutativity and associativity so that it gives an S(V)-module structure on M. This gives an equivalence of categories between graded left S(V)-modules and certain category of **complexes of** \wedge^*V^{\vee} -**modules**. This can be upgraded to an equivalence between derived categories by taking the total complex of R.

So, Koszul duality is really a "derived" phenomenon that involves two different t-structures encoded in terms of two different "gradings." Let us develop a more general theory of Koszul duality.

Definition 2.1 ([BGS, Def. 1.1.2]). A Koszul ring is a positively graded ring $A = \bigoplus_{j \ge 0} A_j$ such that

- (1) A_0 is semisimple (the category of A-modules is semisimple, i.e. every short exact sequence splits),
- (2) A_0 admits a graded projective resolution of graded left A-modules

$$\cdots \to P^2 \to P^1 \to P^0 \twoheadrightarrow A_0,$$

such that P^i is generated by its degree *i* component, $P^i = AP_i^i$.

Example 2.2. The name of Koszul comes from the fact that the Koszul complex of a regular ring shows that a regular ring is Koszul. For example, for A = k[x, y] with usual grading,

$$0 \to xyA \xrightarrow{f \mapsto (f,-f)} (xA) \oplus (yA) \xrightarrow{(a,b) \mapsto a+b} A \twoheadrightarrow k \to 0,$$

shows that A is Koszul. More generally, a polynomial ring, or in other words a symmetric algebra is Koszul. Similarly, an exterior algebra is also Koszul.

Koszulity is something really close to semisimplicity.

Proposition 2.3. Let A be a Koszul k-algebra for semisimple k.

- (1) For any two pure modules M, N of weights m, n (namely, concentrated in one degree of grading), $\operatorname{Ext}_{A}^{i}(M, N) = 0$ unless i = m - n.
- (2) A is quadratic, namely A = T(V)/R for a k-vector space V and $R \subset V \otimes V$.

Definition 2.4. Let A = T(V)/R be a Koszul *k*-algebra. Then its **Koszul dual** $A^!$ is $T(V^*)/R^{\perp}$, where $R^{\perp} \subset V^* \otimes V^* = (V \otimes V)^*$ consists of those on which the elements of R vanish.

Now here is Koszul duality.

Proposition 2.5. Let A be Koszul.

- (1) $A^!$ is Koszul.
- (2) $A^{!!} = A$.
- (3) $\operatorname{Ext}_{A}^{*}(k,k) = (A^{!})^{\operatorname{op}}.$
- (4) There is a natural equivalence of categories between $D^+(A \text{mod})$ and $D^-(A^! \text{mod})$.

Proof. The way that $A^! = T(V^*)/R^{\perp}$ is realized gives a graded projective resolution of k as an A-module,

$$\dots \to \operatorname{Hom}_k(A_2^!, A) \to \operatorname{Hom}_k(A_1^!, A) \to A \to k \to 0$$
$$(df)(a) = \sum_i f(a\widehat{v}_i)v_i,$$

where $\{v_i\}$ is a basis of V and $\{\hat{v}_i\}$ is the dual basis of V^{*}. This complex ("Koszul complex") can be thought as $\operatorname{Hom}_A(A \otimes A^!, A)$ with the differential $a \otimes b \mapsto \sum_i av_i \otimes \hat{v}_i b$. In general, the equivalence of categories should be constructed as

$$M \in D^+(\mathrm{Mod}_A) \mapsto \mathrm{Hom}_A(A \otimes A^!, A) \in D^-(\mathrm{Mod}_{A^!}),$$
$$N \in D^-(\mathrm{Mod}_{A^!}) \mapsto A \otimes A^! \otimes_{A^!} N \in D^+(\mathrm{Mod}_A).$$

Remark 2.6. The duality does not given an equivalence of unbounded derived category. For example, let A = k[x] and $A^! = k[\epsilon]/\epsilon^2$. Then, $A \in Mod_A$ is sent to $0 \to k[x] \xrightarrow{x} k[x] \to 0 \cong$ $k\langle 1\rangle[-1]$. Note that A is compact in $D(Mod_A)$, but k is not compact in $D(Mod_{A'})$. Indeed, k is resolved in $D(Mod_{A^{!}})$ (here we use unboundedness in the wrong direction) as

$$\cdots \to k[\epsilon]\langle 2 \rangle \xrightarrow{\epsilon} k[\epsilon]\langle 1 \rangle \xrightarrow{\epsilon} k[\epsilon],$$

so $\operatorname{Hom}_{D(\operatorname{Mod}_{k[\epsilon]})}(k, k[\epsilon]\langle n\rangle[n]) = 0$, whereas $\operatorname{Hom}_{D(\operatorname{Mod}_{k[\epsilon]})}(k, \bigoplus_{n\geq 1} k[\epsilon]\langle n\rangle[n])$ is k.

Now the real reason why Kazhdan–Lusztig inversion formula gives rise to Koszul duality is via the following.

Proposition 2.7 (Numerical Koszulity criterion). If k is a semisimple F-algebra for a field F such that $k = \bigoplus_{x \in W} F1_x$ for pairwise orthogonal idempotents indexed by a finite set W, then for a positively graded ring A which is an F-algebra with $A_0 = k$, the Hilbert polynomial of A is a $|W| \times |W|$ -matrix

$$P(A,t)_{x,y} = \sum_{i\geq 0} t^i \dim(1_x A_i 1_y).$$

Then, for a noetherian A, A is Koszul iff $P(A, t)P(A^!, -t)^T = 1$.

Proof. We just prove one side. If A is Koszul, because of Koszul complex, for any n > 0,

$$\sum_{i=0}^{n} (-1)^{i} \dim(1_{x} \operatorname{Hom}_{k}(A_{n-i}^{!}, A_{i})1_{y}) = 0$$

(Euler characteristic).

We will see that a similar pattern holds for local Langlands for real reductive groups.

3. Archimedean local Langlands

We review what archimedean local Langlands is. This is a consequence of two theories, Langlands classification and Knapp–Zuckerman theory.

Theorem 3.1 (Langlands classification). Every irreducible (\mathfrak{g}, K) -module is the unique irreducible quotient of the parabolic induction of a tempered representation. This gives a parametrization of irreducible (\mathfrak{g}, K) -modules.

Theorem 3.2 (Knapp–Zuckerman). Every tempered irreducible (\mathfrak{g}, K) -module is **basic**, meaning that it is a constituent of the parabolic induction of a (limit of) discrete series. This gives a parametrization; you know exactly how parabolic induction reduces, etc.

Now limits of discrete series are classified by the weight and a Weyl chamber (with fixed positive system of roots for \mathfrak{k}). In contrast to *p*-adic case, real case is completely classified because

- one has simple classification of discrete series = supercuspidals,
- and one knows how principal series reduces.

4. VOGAN DUALITY AND ADAMS-BARBASCH-VOGAN

- 5. Koszul duality and Soergel's conjecture
- 6. LANGLANDS PARAMETER SPACE AS LOOP SPACE
 - 7. Koszul duality: perverse vs. coherent

References

- [ABV] J. Adams, D. Barbasch, D. Vogan, The Langlands classification and irreducible characters for real reductive groups.
- [BGS] A. Beilinson, V. Ginzburg, W. Soergel, Koszul duality patterns in representation theory.
- [BN1] D. Ben-Zvi, D. Nadler, Loop spaces and connections.
- [BN2] D. Ben-Zvi, D. Nadler, Loop spaces and representations.
- [BV] R. Bezrukavnikov, K. Vilonen,
- [He] E. Hellmann, On the derived category of the Iwahori-Hecke algebra.
- [So] W. Soergel, Langlands' philosophy and Koszul duality.
- [Vo1] D. Vogan, Irreducible characters of semisimple Lie groups. IV. Character-multiplicity duality.
- [Vo2] D. Vogan, The local Langlands conjecture.