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Abstract. The Hodge bundle ω over a modular curve satis�es the Kodaira–Spencer isomorphism,

which implies that ω is a square-root of the canonical bundle, or a theta characteristic. We prove

that, in most cases, any section of a theta characteristic ν di�erent from ω is a noncongruence
modular form. We investigate their relations to the arithmetic of modular curves, and their possible

relations to the theory of automorphic forms.
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1. Introduction

Motivation: Modular curves are not Brill–Noether general.

1.1. Acknowledgements. To be added.

1.2. Notations. Let Γ ≤ SL2(Z) be a congruence subgroup that satis�es the following condi-

tion
1

.

(∗) There exist integers N1, N2 such that (N1, N2) is odd, lcm(N1, N2) ≥ 5,

and Γ = Γ1(N1) ∩ Γ(N2).

For example, the standard congruence subgroups Γ1(N) and Γ(N) for any N ≥ 5 satisfy (∗).
Note that (∗) implies that Γ is torsion-free.

Let Y (Γ) = Γ\H be the (open) modular curve, regarded as a Riemann surface, and letX(Γ) be

the compacti�cation of Y (Γ). Thanks to (∗), there is a universal elliptic curve f : E → Y (Γ). Let

D = X(Γ)−Y (Γ) be the cuspidal divisor. We will add subscripts to these geometric objects (e.g.

1
We impose this condition just for simplicity, and we expect our results to be extended to more general torsion-free

congruence subgroups. On the other hand, the torsion-free-ness seems to be a more crucial assumption.
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Y (Γ)Q) if we need to specify the base ring. We denote the genus of X(Γ) as gΓ and the number

of cusps as nΓ, and we will omit the subscripts when there is no confusion. As Γ is torsion-free,

we have

gΓ = 1 +
[SL2(Z) : Γ]

24
− nΓ

2
.

The space of weight k modular forms (cusp forms, respectively) of level Γ is denoted as Mk(Γ)
(Sk(Γ), respectively).

Let Ag be the moduli space of principally polarized abelian varieties of dimension g, regarded

as a Deligne–Mumford stack over Q. More generally, for a level structure Γ, let Ag,Γ be the

corresponding moduli space with the Γ-level structure. Let Ag, Ag,Γ be the associated coarse

moduli schemes.

2. The Hodge bundle ω

De�nition 2.1. The Hodge bundle ω is a line bundle over Y (Γ) that is de�ned as

ω := f∗Ω
1
E/Y (Γ).

The Hodge bundle extends canonically (in the sense of Deligne) over X(Γ), and we will denote

the canonical extension as ωcan
, although we will oftentimes omit the superscript when there is

no confusion. One can, for example, de�ne ωcan
as the algebraization of the analytic sheaf of

sections of logarithmic growth of ω at in�nity over Y (Γ).

The following is well-known.

Theorem 2.2 (Kodaira–Spencer isomorphism). Over Y (Γ), one has a natural isomorphism

ω⊗2 ∼−→ Ω1
Y (Γ)/C.

Over X(Γ), one has a natural isomorphism

ω⊗2 ∼−→ Ω1
X(Γ)/C(D).

Proof. There is a natural morphism ω → ω−1 ⊗ Ω1
Y (Γ)/C which is the Higgs �eld corresponding

to the variation of Hodge structures coming from E/Y (Γ). Since the Gauss–Manin connection

has no singularities on Y (Γ), the natural morphism is nonvanishing everywhere, thus an isomor-

phism. The Kodaira–Spencer isomorphism over X(Γ) follows by taking the canonical extension

of both sides of the said isomorphism over Y (Γ). �

Corollary 2.3. The degree of ω is g − 1 + n
2
.

Because of the condition on the level, we have

Mk(Γ) = H0(X(Γ), ω⊗k), Sk(Γ) = H0(X(Γ), ω⊗k(−D)).

A simple application of Riemann–Roch yields the following

Proposition 2.4.
(1) If k ≥ 2, we have dimMk(Γ) = (k − 1)(g − 1) + nk

2
.

(2) If k ≥ 3, we have dimSk(Γ) = (k − 1)(g − 1) + n(k−2)
2

. We also have dimS2(Γ) = g.
(3) We have dimM1(Γ)− dimS1(Γ) = n

2
.

(4) If n > 2g − 2, we have dimM1(Γ) = n
2
and dimS1(Γ) = 0.
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Proof. Only dimM1(Γ)−dimS1(Γ) = n
2

requires an explanation. From the short exact sequence

0→ ω(−D)→ ω → ω|D → 0, we have the long exact sequence

0→ S1(Γ)→M1(Γ)→ H0(ω|D)→ H1(ω(−D))→ H1(ω)→ 0,

as ω|D is a skyscraper sheaf. On the other hand, by Serre duality,

ker(H1(ω(−D))→ H1(ω)) = ker(H0(ω)∗ → H0(ω(−D))∗)

=
(
coker(H0(ω(−D))→ H0(ω))

)∗
=

(
M1(Γ)

S1(Γ)

)∗
.

Thus, we have a short exact sequence

0→ M1(Γ)

S1(Γ)
→ H0(ω|D)→

(
M1(Γ)

S1(Γ)

)∗
→ 0.

Therefore, dimM1(Γ)− dimS1(Γ) is the half of dimH0(ω|D) = n. �

Remark 2.5. For a cusp form of weight 1 and level Γ to exist, the inequality n ≤ 2g − 2, or

equivalently 24n ≤ [SL2(Z) : Γ] must be satis�ed, which is true when Γ is su�ciently small. For

example, if Γ = Γ(N), the inequality is satis�ed if N ≥ 12.

Remark 2.6. It is expected that there is no simple formula that expresses dimS1(Γ). It is however

conjectured that S1(Γ) is mostly exhausted by dihedral forms. See for example the discussion in

[Duk95, §1].

3. Theta characteristics as uniformizing logarithmic Higgs bundles

In the previous section, the computation of degω and the dimension of the space of modular

forms only used the Kodaira–Spencer isomorphism. Thus, the same dimension formulae will

hold true for any line bundle ν such that ν⊗2 ∼= Ω1
X(Γ)/C(D).

De�nition 3.1. A line bundle ν over X(Γ) which satis�es

ν⊗2 ∼= Ω1
X(Γ)/C(D),

is called a (stable) theta characteristic.2

If ν is a theta characteristic, ν ⊗ ω−1
is a square-root of OX(Γ). Thus, there are in total 22g =

# Jac(X(Γ))[2](C) many theta characteristics. For a theta characteristic ν, the isomorphism

ν⊗2 ∼= Ω1
X(Γ)/C(D) induces an isomorphism ν ∼= ν−1 ⊗ Ω1

X(Γ)/C(D). This in turn deduces a

logarithmic Higgs �eld θν : E → E ⊗ Ω1
X(Γ)/C(D) on the vector bundle Eν := ν ⊕ ν−1

,

θν : ν ⊕ ν−1 → ν
∼−→ ν−1 ⊗ Ω1

X(Γ)/C(D)→ (ν ⊕ ν−1)⊗ Ω1
X(Γ)/C(D),

making (Eν , θν) a logarithmic Higgs bundle on X(Γ).

In view of the nonabelian Hodge correspondence, one may ask which local systems correspond

to the Higgs �elds constructed using theta characteristics. In the non-logarithmic setting, Simp-

son showed in [Sim88] that the Higgs �eld formed by a theta characteristic of a hyperbolic curve

2
A line bundle is called a theta characteristic if it is a square root of the canonical bundle Ω1

. A stable theta

characteristic is when a line bundle is a square root of the canonical bundle twisted by a speci�c divisor. As we will

only care about the square-roots of Ω1(D) in this article, most of the time we will just refer to such line bundles as

theta characteristics.
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is precisely a lift of the projective representation of the topological π1 of the curve given by the

complex uniformization.

De�nition 3.2. For the rest of the paper, we �x embeddings Q ↪→ C and Q ↪→ Qp and an

isomorphism C ∼= Qp compatible with the embeddings. We also �x a Q-point ∗ ∈ Y (Γ)(Q)

throughout the paper. The points induced from ∗ by the embeddings Q ↪→ C and Q ↪→ Qp are

again denoted ∗ by abuse of notation.

Using a tame regular analogue of the nonabelian Hodge correspondence over a noncompact

Riemann surface, we are able to show that the theta characterstics in our sense are also character-

ized by the projective lifts of π1(Y (Γ), ∗) = PΓ. Before formulating the theorem, we introduce

some terminologies.

De�nition 3.3. Let PΓ be the projective image of Γ. Namely,

PΓ = im(Γ ↪→ SL2(R)→ PSL2(R)).

A projective lift of PΓ is a subgroup Γ′ ≤ SL2(R) such that PΓ′ = PΓ. A projective lift is honest
if the natural map Γ′ → PΓ′ = PΓ is injective (thus bijective).

As Y (Γ) ∼= Sg,n, we could choose a set of generators a1, b1, · · · , ag, bg, c1, · · · , cn ∈ PΓ such

that the only relation between the generators is

[a1, b1] · · · [ag, bg]c1 · · · cn = 1.

Let A1, B1, · · · , Ag, Bg, C1, · · · , Cn ∈ Γ be the corresponding elements in Γ. A hyperbolic pro-
jective lift is an honest projective lift of the form

〈ε11A1, ε12B1, · · · , εg1Ag, εg2Bg, C1, · · · , Cn〉 ⊂ SL2(R),

where εij ∈ {±1} for 1 ≤ i ≤ g, 1 ≤ j ≤ 2.

Lemma 3.4.
(1) The notion of the hyperbolic projective lifts does not depend on the choice of a presentation

of PΓ as a topological fundamental group of a surface.
(2) Given a hyperbolic projective lift Γ′ of PΓ, let ρΓ′ be the two-dimensional real representation

of PΓ given by PΓ
∼←− Γ′ ↪→ SL2(R) ⊂ GL2(R). Then, for two di�erent hyperbolic

projective lifts Γ′1 6= Γ′2, ρΓ′
1
6∼= ρΓ′

2
.

Proof.
(1) As n ≥ 1, Γ = PΓ is a free group with 2g + n− 1 generators. Thus, given a presentation

of PΓ as above, choosing an honest projective lift of PΓ is the same as choosing a sign

for each ofA1, B1, · · · , Ag, Bg, C1, · · · , Cn−1, or equivalently, choosing a homomorphism

PΓ→ (Z/2Z)2g+n−1
.

Note thatX(Γ) has the fundamental group, denoted PΓ, (with the same choice of base-

point as Y (Γ) via the inclusion Y (Γ) ↪→ X(Γ)) whose presentation can be given by

PΓ ∼= 〈a1, b1, · · · , ag, bg | [a1, b1] · · · [ag, bg] = 1〉,

and the natural homomorphism π1(Y (Γ), ∗)→ π1(X(Γ), ∗) is given by ai 7→ ai, bi 7→ bi,
ci 7→ 1. Thus, an honest projective lift is a hyperbolic projective lift if and only if the corre-

sponding homomorphismPΓ→ (Z/2Z)2g+n−1
factors through the morphismPΓ→ PΓ.

Since the latter condition does not refer to a speci�c presentation at all and only uses the
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natural map PΓ → PΓ, the notion of hyperbolic projective lifts is independent of the

choice of a presentation of PΓ.

(2) Choose a presentation of PΓ as above. Given Γ′1 6= Γ′2, there is some 1 ≤ i ≤ g such that

either ai or bi is lifted to matrices with the opposite signs. Let d ∈ {ai, bi} be such element.

Then, tr ρΓ′
1
(d) = − tr ρΓ′

2
(d). SinceAi andBi are hyperbolic matrices, trAi and trBi are

both nonzero. Thus, tr ρΓ′
1
(d) 6= tr ρΓ′

2
(d), which means that as abstract representations

ρΓ′
1

and ρΓ′
2

are non-isomorphic.

�

The above lemma shows that we can refer to the hyperbolic projective lifts of PΓ as being

certain two-dimensional real representations of PΓ, or, after conjugation, two-dimensional rep-

resentations of PΓ valued in SU(1, 1).

We are now able to state the main theorem of this section.

Theorem 3.5 (Theta characteristics are hyperbolic projective lifts). There is a unique one-to-one
correspondence between the theta characteristics and the hyperbolic projective lifts of PΓ, charac-
terized as follows.

• For a theta characteristic ν, ρΓν is the 2-dimensional local system on Y (Γ) corresponding
to the logarithmic Higgs bundle (Eν , θν) via the tame nonabelian Hodge correspondence.
Furthermore, there is a natural isomorphism H0(X(Γ), ν) ∼= M1(Γν).
• Γω = Γ.

Proof. We would like to use the tame regular version of nonabelian Hodge correspondence over

a noncompact curve as in [Sim90]: for the de�nitions of the terms, see [Sim90, Synopsis].

Theorem3.6 (Tame nonabelian Hodge correspondence over non-compact curves, [Sim90, p.718]).
Over a smooth algebraic noncompact curve, there is a natural one-to-one correspondence between sta-
ble �ltered regular Higgs bundles of degree zero, and stable �ltered local systems of degree zero. The
correspondence preserves the rank on both sides.

On the other hand, a special case of this correspondence is proved in [Sim88, Theorem 4]: tak-

ing the graded piece gives an equivalence of categories from the category of complex variations

of Hodge structures on Y (Γ) to the category of Hodge bundles on Y (Γ). Here, geometric objects

on Y (Γ) are extended to X(Γ) as “canonical extensions” (namely, the �ltration is given by the

growth behavior at the punctures).

We equip the Higgs bundle (Eν , θν) with a left-continuous decreasing �ltration

Eν,α = Eν(−dαeD), α ∈ R.

This is by de�nition a �ltered regular Higgs bundle of degree zero. Moreover, it is stable as the

only proper nonzero θ-stable subbundle of Eν is ν−1
, whose �ltered degree is negative. This is

the same as the “canonical extension” of (Eν , θν)|Y (Γ).

By the tame nonabelian Hodge correspondence, from (Eν , {Eν,α}, θν), we obtain a 2-dimensional

stable �ltered local system Lν of degree zero. The correspondence of the statement of the Theo-

rem is then

ν 7→ the underlying local system of Lν .

The inverse of the correspondence can be given as follows. Let Γ′ be a hyperbolic projective lift

of PΓ. Then, the universal variation of Hodge structures on H descend to a variation of Hodge
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structure on Y (Γ′) = Y (Γ) whose underlying local system is the same as the local system corre-

sponding to Γ′. Since the local system has unipotent local monodromies around the punctures,

the Hodge �ltration extends canonically (in the sense of Deligne) toX(Γ) as a �ltration of vector

bundles. Let F 1
be the canonical extension of F 1

; namely, it is the sheaf of sections of F 1
with

at worst logarithmic growth at the punctures. Then the inverse correspondence is

Γ′ 7→ F 1.

This is certainly a restriction of the inverse of the tame nonabelian Hodge correspondence as

above by [Sim88, Theorem 4]. It sends hyperbolic projective lifts of PΓ to theta characteristics.

Since the two sets, the set of hyperbolic projective lifts of PΓ and the set of theta characteristics,

are �nite sets with the same cardinality 2g, it gives rise to a one-to-one correspondence. From

the description of the inverse correspondence, the rest of the Theorem follows immediately. �

Note that, for a theta characteristic ν, there is a 2-torsion line bundle L on X(Γ) such that

ν = ω ⊗ L. It is well-known that (e.g. [DP22, 1.1.1]) there is a one-to-one correspondence

between 2-torsion line bundles and étale double covers. Thus, this gives another geometric way

to compute Γν .

Proposition 3.7. For a 2-torsion line bundle L on X(Γ), there is a unique étale double cover

α : X̃L → X(Γ),

such that α∗OX̃ = OX(Γ) ⊕ L. If we de�ne the representation ρL of PΓ = π1(Y (Γ), ∗) to be the
composition

π1(Y (Γ), ∗)→ π1(X(Γ), ∗) � Gal(X̃L/X(Γ)) = {±1},
the local system ρΓν satis�es ρΓν = ρΓω ⊗ ρL. In particular,

Γν = 〈ε11A1, ε12B1, · · · , εg1Ag, εg2Bg, C1, · · · , Cn〉,
where εi1 = ρL(ai) and εi2 = ρL(bi).

Proof. The desired étale double cover X̃L can be constructed as a relative Spec over X(Γ),

X̃L = SpecOX(Γ)

(
OX(Γ) ⊕ L

)
,

whereOX(Γ)⊕L is theOX(Γ)-algebra where the only nontrivial multiplication structure is given

by the morphism L⊗OX(Γ)
L
∼−→ OX(Γ).

As �rst noted by Deligne, the nonabelian Hodge correspondence is compatible with tensor

products (see [Sim92, p. 8]). Thus, we only need to show that ρL : π1(X(Γ), ∗)→ {±1} and the

Higgs bundle (L, 0) onX(Γ) correspond to each other via the nonabelian Hodge correspondence

on X(Γ).

Let c ∈ Gal(X̃L/X(Γ)) be the nontrivial Galois element, which gives rise to an automorphism

c ∈ AutX(Γ)(X̃L). Consider H 0
dR(X̃L/X(Γ)), which is a variation of Hodge structures on X(Γ)

of rank 2 and weight 0. It is isomorphic to

H 0
dR(X̃L/X(Γ)) ∼= (OX(Γ), d)⊕ (L, d),

where (OX(Γ), d) denotes the canonical di�erential d : OX(Γ) → Ω1
X(Γ)/C, and (L, d) = L ⊗

(OX(Γ), d) (this is still a vector bundle with an integrable connection as L⊗2 = O, so the tran-

sition functions for a su�ciently �ne atlas can be taken to be constant functions, namely ±1).
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Furthermore, c gives rise to an endomorphism of H 0
dR(X̃L/X(Γ)), where(

H 0
dR(X̃L/X(Γ))

)c=1

= (OX(Γ), d),
(
H 0

dR(X̃L/X(Γ))
)c=−1

= (L, d).

Thus, ρL (considered as a character) is a local system that underlies a variation of Hodge structure,

and its associated Hodge bundle is (L, 0) which implies that ρL and (L, 0) correspond to each

other via the nonabelian Hodge correspondence. �

We will see in §5 that without much di�culty the same construction works motivically.

4. ω is the uniqe congruence theta characteristic

By Theorem 3.5, for each theta characteristic ν, H0(X(Γ), ν) is a space of weight one modular

forms of level Γν . The main result of this section is the following.

Theorem 4.1. For a theta characteristic ν, Γν ≤ SL2(Z) is a congruence subgroup if and only if
ν = ω.

For simplicity, we will call ν a congruence theta characteristic if Γν is a congruence subgroup.

Therefore, the above Theorem is that ω is the only congruence theta characteristic. A quick

corollary is that the Hecke operators are zero on H0(X(Γ), ν) when ν 6= ω.

Corollary 4.2. For (p,N) = 1, de�ne the Hecke operator Tp onH0(X(Γ), ν) = M1(Γν) as follows:
let

α =

(
p 0
0 1

)
,

and let ΓναΓν = ∪iΓνααi. Then, for f ∈M1(Γν),

Tpf =
∑
i

f |ααi .

If ν 6= ω, we always have Tpf = 0.

Proof. By [Ber94], we know that Tp factors through the trace map to the congruence closure. In

our case, if ν 6= ω, by Theorem 4.1, the congruence closure of Γν is 〈±1,Γ〉. Since there is no

nonzero odd-weight modular form of level 〈±1,Γ〉, the desired statement follows. �

Remark 4.3. The above Hecke operator can be geometrically interpreted as the correspondence

X(Γν ∩ α−1Γνα ∩ Γ0(p))

uu

∼ // X(αΓνα
−1 ∩ Γν ∩ Γ0(p))

))
X(Γν) X(Γν)

where Γ0(p) = {( a bc d ) ≡ ( ∗ 0
∗ ∗ ) (mod p)}. As Γν is an index 2 subgroup of a congruence subgroup

of level prime to p, it is not in general true that α normalizes Γν , but rather sends Γν to a possibly

di�erent index 2 subgroup of 〈±1,Γ〉.

The proof of Theorem 4.1 will be a slight generalization of the proofs in [Kim14, §2], and we

will use the technical condition (∗). As in loc. cit., we will use V2(G) := Gab/(Gab)2 = Gab⊗Z F2

for a groupG. Note that V2 is a functor that sends �nitely generated groups to �nite-dimensional

F2-vector spaces. We record the following easy

7



Lemma 4.4.
(1) V2 is a right-exact functor.3

(2) V2(G1 ×G2) ∼= V2(G1)× V2(G2).

Proof. The functor V2 is the composition of the abelianization functor with (−)⊗Z F2, and both

are right exact. �

Proof of Theorem 4.1. As Γω = Γ, Γω is a congruence subgroup, which proves one direction. Con-

versely, suppose that Γν is a congruence subgroup. As per Theorem 3.5, we need to prove that

there is no hyperbolic projective lift of PΓ that is di�erent from Γ. Suppose that Γ is of level N ;

namely, N is the minimal number such that Γ(N) ≤ Γ. By the result of Wohlfahrt and Kiming–

Schütt–Verrill (see [Woh64, Theorem 2], [KSV11, Proposition 3]), Γ is of general level eitherN or

N
2

. Recall that the general level of a Fuchsian group is the least common multiple of the widths of

the cusps. The general level only depends on the projective image of the Fuchsian group, so Γν is

of general levelN . By loc. cit., Γν ≥ Γ(2N). Thus, 〈±1,Γ〉 ≥ Γν ≥ Γ(2N). Thus, Γν corresponds

to a subgroup of 〈±1,Γ〉/Γ(2N) ∼= 〈±1〉 × Γ/Γ(2N) such that {±1} and Γν together generate

the whole subgroup 〈±1,Γ〉/Γ(2N). As in [Kim14, Proposition 1], projective lifts of PΓ that are

also congruence subgroups are in one-to-one corresopndence with a sub-F2-vector space U of

V2(〈±1,Γ〉/Γ(2N)) ∼= 〈±1〉×V2(Γ/Γ(2N)) such that U and−1 together span the whole vector

space. Such projective lift is honest if U is a proper subspace, and−1 /∈ U . Thus, the composition

U ↪→ V2(〈±1,Γ〉/Γ(2N)) = 〈±1〉×V2(Γ/Γ(2N)) � V2(Γ/Γ(2N)) is injective, thus bijective (as

the target and the source have the same F2-dimensions). Thus, choosing an honest congruence

projective lift is the same as choosing the signs for the lifts of basis elements of V2(Γ/Γ(2N)).

By the assumption (∗), N = lcm(N1, N2), and Γ(N) ≤ Γ ≤ Γ1(N). Let N = 2spt11 · · · ptrr ,

where pi’s are odd primes. Note also that

SL2(Z)/Γ(2N) ∼= SL2(Z/2NZ) ∼= SL2(Z/2s+1Z)×
r∏
i=1

SL2(Z/ptii Z),

so Γ1(N)/Γ(2N) injects into Γ1(2s)/Γ(2s+1) ×
∏r

i=1 Γ1(ptii )/Γ(ptii ), which is a bijection as the

two groups are �nite groups of the same order; for 1 ≤ a ≤ b, #Γ1(pa)/Γ(pb) = p3b−2a
. Under

this isomorphism, we have

Γ/Γ(2N) ∼= A×
r∏
i=1

Bi,

where Bi ≤ Γ1(ptii )/Γ(ptii ) is a subgroup, and

A =


SL2(Z)/Γ(2) if s = 0,

Γ1(2s)/Γ(2s+1) if 2|N1,

Γ(2s)/Γ(2s+1) if 2|N2.

Note that Γ1(ptii )/Γ(ptii ) is of odd order, so B is of odd order as well. Thus, the natural projection

map Γ/Γ(2N) � A induces an isomorphism V2(Γ/Γ(2N))
∼−→ V2(A).

By the right-exactness of V2, we have a surjective natural map V2(Γ) � V2(Γ/Γ(2N)). Since

a hyperbolic projective lift �xes the signs of the lifts of the loops around the cusps, to prove

Theorem 4.1, it su�ces to prove that V2(Γ/Γ(2N)) is spanned by the images of shearing trans-

formations along the cusps. We prove that this is true by dividing into cases.

3
Even though the category of groups is not an abelian category, the notion of exact sequences makes sense.
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(Case 1) If s = 0, then A = SL2(F2) ∼= S3, and V2(A) ∼= (Z/2Z) is generated by ( 1 1
0 1 ). As

Γ = Γ1(N1) ∩ Γ(N2) with N1, N2 odd,

(
1 N2
0 1

)
∈ Γ is sent to ( 1 1

0 1 ) ∈ A via the natural

projection Γ � A. Since

(
1 N2
0 1

)
is a shearing transformation along the cusp∞ ∈ P1(Q),

there is no hyperbolic projective lift di�erent from Γ.

(Case 2) If s > 0 and 2|N2, then A = Γ(2s)/Γ(2s+1). As in the proof of [Kim14, Proposition 2],

one notes that A = V2(A) ∼= (Z/2Z)3
with a generator given by

α =

(
1 2s

0 1

)
, β =

(
1 + 2s −2s

2s 1− 2s

)
γ =

(
1 0
2s 1

)
.

Note that we took a slightly di�erent set of generators. Note that

α ≡
(

1 N2

0 1

)
(mod 2s+1), β ≡

(
1 +N1N2 −N1N2

N1N2 1−N1N2

)
(mod 2s+1), γ ≡

(
1 0

N1N2 1

)
(mod 2s+1),

and these matrices are genuine elements of Γ = Γ1(N1)∩Γ(N2). Also note that

(
1 N2
0 1

)
is

a shearing transformation along the cusp∞ ∈ P1(Q),

(
1 0

N1N2 1

)
is a shearing transforma-

tion along the cusp 0 ∈ P1(Q), and

(
1+N1N2 −N1N2
N1N2 1−N1N2

)
is a shearing transformation along

the cusp 1 ∈ P1(Q), since(
1 +N1N2 −N1N2

N1N2 1−N1N2

)
=

(
1 1
0 1

)(
1 0

N1N2

)(
1 −1
0 1

)
.

Therefore, there is no hyperbolic projective lift di�erent from Γ.

(Case 3) If s > 0 and 2|N1, then A = Γ1(2s)/Γ(2s+1). As per loc. cit., V2(A) ∼= (Z/2Z)2
with a

basis given by

τ =

(
1 1
0 1

)
, γ =

(
1 0
2s 1

)
.

Since N2 is odd, 2s+1
is invertible modulo N2, which implies that there exists k ∈ Z such

that k2s+1 ≡ −1(modN2). Now note that

τ ≡
(

1 1 + k2s+1

0 1

)
(mod 2s+1), γ ≡

(
1 0

N1N2 1

)
(mod 2s+1),

and these matrices are genuine elements of Γ = Γ1(N1) ∩ Γ(N2). It is clear that these

matrices are also shearing transformations along the cusps ∞, 0 ∈ P1(Q), respectively,

so there is no hyperbolic projective lift di�erent from Γ.

�

5. Hecke algebra of Γν

6. Twisted Kuga–Sato varieties

We now aim to show that the construction of Proposition 3.7 yields, for each ν, a geometric
étale local system over Y (Γ)K , over an appropriate number �eld K , that comes from geometry.

We will construct this from a geometric object that we will call the twisted Kuga–Sato variety.

De�nition 6.1. Let K/Q be a number �eld, and let α : X̃ → X(Γ)K be a �nite étale Galois

cover of degree r. The twisted Kuga–Sato variety u : W X̃ → X(Γ)K associated with X̃ is de�ned

as the Weil restriction of the pullback α∗EK ,

W X̃ := RX̃/X(Γ)K
(α∗EK).
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The open twisted Kuga–Sato variety u : WX̃ → Y (Γ)K is de�ned as the open subscheme of W X̃

lying over Y (Γ)K ⊂ X(Γ)K .

For the de�nition of scheme-theoretic Weil restriction of scalars, see [BLR90, §7.6].

Example 6.2. For a trivial étale r-cover X(Γ)
∐
· · ·
∐
X(Γ) → X(Γ) of r copies of X(Γ), the

corresponding twisted Kuga–Sato variety is the usual Kuga–Sato variety (before the canonical

desingularization), namely the r-fold �ber product of E over X(Γ).

Example 6.3. As in the case of the usual Kuga–Sato variety, the twisted Kuga–Sato variety W X̃

is in general singular, even though α∗EK itself is a smooth K-scheme. Also, the open twisted

Kuga–Sato variety WX̃ is smooth.

The open twisted Kuga–Sato variety WX̃ still turns out to be a family of principally polarized

abelian r-folds over Y (Γ)K .

Proposition 6.4. The open twisted Kuga–Sato variety u : WX̃ → Y (Γ)K is a family of principally
polarized abelian varieties of dimension r.

Proof. By [DN03, Proposition 2], the Weil restriction of a principal polarization is a principal

polarization. As an elliptic curve is principally polarized, WX̃ is a family of principally polarized

abelian varieties. �

We can thus think of classifying map to the moduli space of principally polarized abelian va-

rieties of dimension r,
πX̃ : Y (Γ)K → Ar,K ,

and this induces a classifying map to the corresponding coarse moduli scheme,

pX̃ : Y (Γ)K → Ar,K .

Proposition 6.5. Let πdiag : Y (Γ)K → Ar,K be the classifying map which corresponds to the
r-th self-product EK ×Y (Γ)K · · · ×Y (Γ)K EK over Y (Γ)K , and let pdiag : Y (Γ)K → Ar,K be the
corresponding map to the coarse moduli scheme. Then, πdiag 6= πX̃ , but pdiag = pX̃ .

Proof. By [CGP15, Proposition A.5.2], we have

WX̃ ×Y (Γ)K Ỹ = RỸ×Y (Γ)K
Ỹ /Ỹ (α∗EK ×Ỹ (Ỹ ×Y (Γ)K Ỹ )),

where Ỹ = α−1(Y (Γ)K). Since Ỹ ×Y (Γ)K Ỹ is isomorphic to the disjoint union of r copies of Ỹ ,

we have

WX̃ ×Y (Γ)K Ỹ
∼= RỸ

∐
···

∐
Ỹ /Ỹ

(
α∗EK

∐
· · ·
∐

α∗EK
)
∼= α∗EK ×Ỹ · · · ×Ỹ α

∗EK .

This implies that

WX̃ ×Y (Γ)K Ỹ
∼= (EK ×Y (Γ)K · · · ×Y (Γ)K EK)×Y (Γ)K Ỹ .

Furthermore, the two abelian schemes are isomorphic as Ỹ -schemes; even though Ỹ ×Y (Γ)K Ỹ
∼=

Ỹ
∐
· · ·
∐
Ỹ is most naturally thought as being indexed by the elements in Gal(Ỹ /Y (Γ)K), for

any σ ∈ Gal(Ỹ /Y (Γ)K), the Ỹ -scheme Ỹ
σ−→ Ỹ is isomorphic as a Ỹ -scheme to Ỹ

id−→ Ỹ . Thus,

πdiag ◦ α = πX̃ ◦ α, and pdiag ◦ α = pX̃ ◦ α. Since α is �at, surjective, and locally of �nite

presentation, by [Sta18, Tag 05VM], α is an epimorphism (i.e. surjective as a map of sheaves),

which implies that pdiag = pX̃ .
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The fact that πdiag 6= πX̃ is equivalent toWX̃ 6= EK×Y (Γ)K · · ·×Y (Γ)K EK . There are many ways

of seeing this – we will soon see that the monodromy representations of their relative H1
ét are

di�erent. A more elementary way of seeing the di�erence is to observe that the descent data for

the two schemes are di�erent for the étale covering α : Ỹ → Y (Γ)K . Let us �x an isomorphism

ι : Ỹ
∐
· · ·
∐

Ỹ ∼= Ỹ ×Y (Γ)K Ỹ ,

such that the two projection maps p1, p2 : Ỹ ×Y (Γ)K Ỹ → Ỹ are identi�ed with

p1 ◦ ι : Ỹ
∐
· · ·
∐

Ỹ
(id,··· ,id)−−−−−→ Ỹ ,

p2 ◦ ι : Ỹ
∐
· · ·
∐

Ỹ
(σ1,··· ,σr)−−−−−→ Ỹ ,

where Gal(Ỹ /Y (Γ)K) = {σ1 = id, σ2, · · · , σr}. Note that Gal(Ỹ /Y (Γ)K) ⊂ Sr where one can

identify σ ∈ Gal(Ỹ /Y (Γ)K) with the permutation of the components

Ỹ
∐
· · ·
∐

Ỹ
∼−→ Ỹ ×Y (Γ)K Ỹ

(σ,id)−−−→ Ỹ ×Y (Γ)K Ỹ
∼←− Ỹ

∐
· · ·
∐

Ỹ .

The descent datum for EK ×Y (Γ)K · · · ×Y (Γ)K EK for the covering Ỹ → Y (Γ)K is given by(
α∗EK ×Ỹ · · · ×Ỹ α

∗EK
)∐

· · ·
∐(

α∗EK ×Ỹ · · · ×Ỹ α
∗EK

)
(id,··· ,id)−−−−−→

(
α∗EK ×Ỹ · · · ×Ỹ α

∗EK
)∐

· · ·
∐(

α∗EK ×Ỹ · · · ×Ỹ α
∗EK

)
,

whereas the descent datum for WX̃ for the covering Ỹ → Y (Γ)K is given by(
α∗EK ×Ỹ · · · ×Ỹ α

∗EK
)∐

· · ·
∐(

α∗EK ×Ỹ · · · ×Ỹ α
∗EK

)
(f,··· ,f)−−−−→

(
α∗EK ×Ỹ · · · ×Ỹ α

∗EK
)∐

· · ·
∐(

α∗EK ×Ỹ · · · ×Ỹ α
∗EK

)
,

where

f : α∗EK ×Ỹ · · · ×Ỹ α
∗EK →

(
α∗EK ×Ỹ · · · ×Ỹ α

∗EK
)∐

· · ·
∐(

α∗EK ×Ỹ · · · ×Ỹ α
∗EK

)
,

is f = (σ1, · · ·σr), where σi is the natural map corresponding to the permutation that it repre-

sents. As there is no Ỹ -automorphism that intertwines the two descent data, the two descend to

two non-isomorphism Y (Γ)K-schemes, as desired. �

Proposition 6.6. The family of abelian varietiesWX̃ on Y (Γ)K has the following properties.
(1) Given a �eld L/K and a point x ∈ Y (Γ)(L), the �ber (WX̃)x is the abelian variety over L

given by
(WX̃)x = RX̃x/L

((Ex)X̃x),

where Ex is the elliptic curve corresponding to x, and X̃x is the étale L-algebra of degree r
given by the �ber of α : X̃ → X(Γ)K over x.

(2) The family u : WX̃ → Y (Γ)K is Gal(Ỹ /Y (Γ)K)-equivariant, where Gal(Ỹ /Y (Γ)K) acts
trivially on Y (Γ)K .
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Proof. (1) follows directly from the fact that the Weil restriction of schemes is compatible with

base-change. The action of Gal(Ỹ /Y (Γ)K) on Ỹ and on α∗EK gives, by functoriality of the

Weil restriction, the action of Gal(Ỹ /Y (Γ)K) on WX̃ , �xing Y (Γ)K on the base, from which (2)

follows. �

If the étale cover X̃/X(Γ)K is abelian, then Ỹ , when considered as a “relative motive over

Y (Γ)K”, can be further split into pieces. Here, a “relative motive” means merely a collection of

various local systems (“realizations”) that are compatible with each other.

De�nition 6.7. Suppose that α : X̃ → X(Γ)K is an abelian étale Galois cover, and that the

exponent of the abelian group Gal(X̃/X(Γ)K) is n. For a character χ : Gal(X̃/X(Γ)K) →
Z[ζn]×, the χ-isotypic part of the open twisted Kuga–Sato varietyWX̃ [χ] is the collection of local

systems

WX̃ [χ] := ({ρX̃,χ,σ,H}σ:K↪→C, {ρX̃,χ,p}(p,Nr)=1),

where

• for a complex embedding σ : K ↪→ C, ρX̃,χ,σ is a variation of polarized pure Z[ζn]-Hodge

structures of weight 1 and rank 2 on Y (Γ) (as a Riemann surface) de�ned as

ρX̃,χ,H := H 1
B (WX̃ ×K,σ C/Y (Γ),Z[ζn])[χ],

where H 1
B (WX̃ ×K,σ C/Y (Γ),Z[ζn]) is the relative �rst Betti cohomology, a Z[ζn]-local

system which gives rise to a variation of polarized pure Z[ζn]-Hodge structures of weight

1 and rank 2r via the Hodge-de Rham comparison isomorphism, and the χ-isotypic part

[χ] is the χ-isotypic part of the action of Gal(X̃/X(Γ)K) on H 1
B (WX̃ ×K,σC/Y (Γ)), and

• for (p,Nr) = 1, ρX̃,χ,p : π1,ét(Y (Γ)K , ∗)→ GL2(Zp[ζn]) is an étale Zp[ζn]-local system of

rank 2 over Y (Γ)K de�ned as

ρX̃,χ,p := R1uét,∗Zp[ζn][χ],

where u : WX̃ → Y (Γ)K , and the χ-isotypic part [χ] is the ι◦χ-isotypic part of the action

of Gal(X̃/X(Γ)K) on R1uét,∗Zp[ζn], where ι : Z[ζn] ↪→ Zp[ζn] is an embedding,

such that the Betti-étale comparison isomorphism holds: namely,

ρX̃,χ,p|π1,ét(Y (Γ)K×K,σC,∗)
∼= ̂ι ◦ ρX̃,χ,H : ̂π1(Y (Γ), ∗)→ GL2(Zp[ζn]).

Here, the left hand side is the restriction of the Zp[ζn]-étale local system ρX̃,χ,p to the geometric

fundamental group π1,ét(Y (Γ)K ×K,σ C, ∗), which is naturally isomorphic to the pro�nite com-

pletion of the topological fundamental group π1(Y (Γ), ∗), and the right hand side is the pro�nite

completion of the topological local system ι ◦ ρX̃,χ,H : π1(Y (Γ), ∗)→ GL2(Zp[ζn]).

Remark 6.8. Even though we have not tried, it is probably not very di�cult to de�ne the χ-

isotypic part as a Chow motive overK (with an appropriate coe�cient, say Q(ζr)) after naturally

desingularizing the boundary divisor of W X̃ , as in [Sch90].

As these étale local systems come from geometry, the following are also immediate.

Proposition 6.9. For (p,Nr) = 1, the étale local system ρX̃,χ,p extends to an étale local system
over an integral modelY overOK,S of Y (Γ)K for a �nite set of primes S ofK including the primes
above p. Furthermore, at every place p of K above p, ρX̃,χ,p|π1,ét(Y (Γ)Kp ,∗) is a de Rham local system
in the sense of [Sch13].
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7. Geometric local systems for theta characteristics

We apply the general theory of twisted Kuga–Sato varieties of §6 to the case of theta charac-

teristics. Let ν be a stable theta characteristic of X(Γ) that is di�erent from ω, so that ν = ω⊗L
for a 2-torsion line bundle L ∈ Jac(X(Γ))[2](Q). Let K ⊂ Q be a number �eld over which L

can be de�ned. Let α : X̃L → X(Γ)K be the étale double cover such that α∗OX̃L = OX(Γ)K ⊕L,

as constructed in Proposition 3.7.

Lemma 7.1. The étale double cover α : X̃L → X(Γ)K is Galois.

Proof. Using the explicit construction

X̃L = SpecOX(Γ)K

(
OX(Γ)K ⊕ L

)
,

we can construct a morphism c : X̃L → X̃L induced by the morphism of OX(Γ)K -algebras,

OX(Γ)K ⊕ L
(x,y)7→(x,−y)−−−−−−−→ OX(Γ)K ⊕ L.

This is a nontrivial element of AutX(Γ)K (X̃L), which implies that # AutX(Γ)K (X̃L) ≥ 2. Since

degα = 2, this implies that degα = # AutX(Γ)K (X̃L) = 2, so α is a Galois covering. �

Therefore, we can consider the −1-isotypic part of the open twisted Kuga–Sato variety,

WX̃L
[−1] = ({ρX̃L,−1,σ,H}σ:K↪→C, {ρX̃L,−1,p}(p,2N)=1),

which is a collection of variations of polarized pure Z-Hodge structures and étale Zp-local sys-

tems. For notational simplicity, we will use the notation

ρν,σ := ρX̃L,−1,σ,H , ρν,p := ρX̃L,−1,p.

We would like to show that this is the “relative motive” that is uniquely attached to the uni-

formizing logarithmic Higgs bundle (Eν , θν). This is analogous to the case of ν = ω, where

the associated “relative motive” is just (the various realizations of) the universal elliptic curve E .

More precisely, we will show the following.

Theorem 7.2. Let Eν := ν ⊕ ν−1 and θν : Eν → Eν ⊗Ω1
X(Γ)K/K

(DK) be the Higgs �eld induced
by the Kodaira–Spencer isomorphism.

(1) For a complex embedding σ : K ↪→ C, ρν,σ is the unique, up to the shift of indices, varia-
tion of Hodge structures over Y (Γ) where the associated graded of its canonical extension is
isomorphic to (Eν , θν)×K,σ C.

(2) For (p, 2N disc(K/Q)) = 1 and a prime v|p of K , de�ne ρν,v to be the restriction of ρν,p
to π1,ét(Y (Γ)Kv). Then, ρν,v is the crystalline Zp-local system associated to a unique �ltered
convergentF -isocrystal on Y (Γ)Kv whose associated graded is isomorhpic to (Eν , θν)×KKv.

In other words, we will show that the uniformizing logarithmic Higgs bundle (Eν , θν) corre-

sponds to various types of local systems via complex analytic/p-adic nonabelian Hodge corre-

spondence, and that the local systems underlie variations of Hodge structures/F -isocrystals in

an essentially unique way.

Remark 7.3. We assume p to be coprime to disc(K/Q) in Theorem 7.2(2) as we use the formalism

of [TT19], which works over an absolutely unrami�ed base �eld. We believe that this assumption

is unnecessary, so that p only needs to be coprime to 2N , if we use more modern treatment of

crystalline local systems, such as [DLMS22, Appendix A].
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7.1. Varitations of Hodge structures attached to (Eν , θν).

Proof of Theorem 7.2(1). Let us use the notation (−)σ for the shorthand of (−)×K,σC. In the proof

of Theorem 3.5, we have already seen that (Eν,σ, θν,σ) is a stable Higgs bundle. Furthermore, it is

clear that (Eν,σ, θν,σ) ∼= (Eν,σ, tθν,σ) for any t ∈ C×. Therefore, by [Sim92, Lemma 4.1], the local

system corresponding to (Eν,σ, θν,σ) comes from a complex variation of Hodge structures, which

is unique up to the shift of indices.

On the other hand, the variation of polarized pure Z-Hodge structures ρν,σ has the underlying

vector bundle Hν,σ := ρν,σ ⊗OY (Γ) isomorphic to the relative de Rham cohomology

Hν,σ
∼= H 1

dR(WX̃,σ/Y (Γ))[χX̃ ],

where χX̃ : Gal(X̃/X(Γ)K)→ {±1} ↪→ Z× is the nontrivial character. Note that the local sys-

tem underlying the variation of Hodge structures H 1
B (WX̃,σ/Y (Γ),Z) is, as the representation

of π1(Y (Γ), ∗), isomorphic to Ind
π1(Y (Γ),∗)
π1(Ỹ ,∗)

Res
π1(Ỹ ,∗)
π1(Y (Γ),∗) ρE , where ρE is the local system under-

lying the variation of Hodge structures H 1
B (E/Y (Γ),Z). The fact that H is the classifying space

of pure polarized Z-Hodge structures of weight 1 and rank 2 implies that, as Y (Γ) ∼= H/Γ, ρE is

isomorphic to the representation π1(Y (Γ), ∗) ∼= Γ ↪→ SL2(Z)→ GL2(Z).

It is a general fact that, if H ≤ G is a �nite index subgroup, given a representation ρ of G,

IndGH ResHG ρ
∼= ρ⊗ SG/H ,

where SG/H : G → GL[G:H](Z) is the left regular representation. Therefore, the local system

underlying the VHS H 1
B (WX̃,σ/Y (Γ),Z) is isomorphic to ρ ⊕ ρ ⊗ χX̃ . Thus, the local system

underlying ρν,σ is isomorphic to ρ⊗χX̃ . By Proposition 3.7, it follows that the canonical extension

of ρν,σ has the associated Hodge bundle equal to (Eν,σ, θν,σ). This proves Theorem 7.2(1). �

7.2. Crystalline local systems attached to (Eν , θν). We �rst introduce several concepts re-

garding the notion of crystalline local systems, following [TT19]. We will then use the notion

of periodic Higgs-de Rham �ow as in [LSZ19] and [LSYZ19] to prove Theorem 7.2(2). In the

following exposition, we will freely use the concepts appearing in [Sch13].

We �rst recall what it means for an étale Zp-local system to be crystalline. Let k be a �nite �eld

of characteristic p, and let X be a smooth W (k)[1/p]-scheme. Let X be a smooth W (k)-scheme

whose generic �ber is isomorphic to X . Let Xk be the mod p �ber of X . There is a crystalline

period sheaf OBcris, as constructed in [TT19, §2], which is a sheaf on Xproét equipped with a

decreasing �ltration and a Bcris-linear connection

∇ : OBcris → OBcris ⊗Our
X

Ω1,ur
X/W (k)[1/p],

that is integrable and satis�es the Gri�ths transversality. Here, Our
X and Ω1,ur

X/W (k)[1/p] are de�ned

as w−1OXét
[1/p] and w−1Ω1

Xét/W (k)[1/p], respecitvely, where w : X̃proét → X̃ét is the natural

morphism of topoi.

On the other hand, there is a well-accepted notion of convergent isocrystals on Xk/W (k) by

Ogus in [Ogu84]. It is classical that various types (e.g. crystalline, convergent, overconvergent)

of crystals (isocrystals, respectively) on a characteristic p scheme can be interpreted as coherent

sheaves with �at connection on an integral model (the generic �ber of an integral model, respec-

tively), where the connection satis�es certain conditions regarding its “radius of convergence”. A

convergent F -isocrystal is a convergent isocrystal equipped with a local horizontal isomorphism
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of itself with its Frobenius pullback (a lift of the Frobenius can be de�ned locally by Elkik’s the-

orem, and the de�nition is well-de�ned by the crystallinity). A �ltered convergent F -isocrystal is

a convergent F -isocrystal equipped with a �ltration that satis�es the Gri�ths transversality.

De�nition 7.4 (Crystalline local systems). An étale Zp-local system L on X , regarded as a lisse

Zp-sheaf on Xét, is crystalline if there is a �ltered convergent F -isocrystal E on Xk/W (k) such

that there is an isomorphism of OBcris-modules

w−1E ⊗Our
X
OBcris

∼= ν−1L⊗Ẑp OBcris,

compatible with connection, Frobenius and �ltration. Here, ν−1 : X̃ét → X̃proét is the nat-

ural morphism of topoi, and the �ltered convergent F -isocrystal E is regarded as a coherent

OX -module equipped with a �at connection, a horizontal Frobenius structure, and a �ltration

satisfying the Gri�ths transversality. In this case, we say that L and E are associated.

There is an equivalent de�nition resembling the analogous notion for Galois representations.

Namely, let

Dcris(L) := w∗(ν
−1L⊗Ẑp OBcris),

which is naturally equipped with a �at connection, Frobenius and �ltration. Then L is crystalline

if and only if Dcris(L) is a �ltered convergent F -isocrystal, and L and Dcris(L) are associated

[TT19, Proposition 3.13, Lemma 3.17].

Proof of Theorem 7.2(2). Note that, by [DR73], the universal generalized elliptic curve EK →
X(Γ)K has a natural model over OK,v, denoted as f : EOK,v → X(Γ)OK,v , which is smooth

over Y (Γ)OK,v . Furthermore, if we denote kv by the residue �eld of v, then X(Γ)kv is a smooth

curve.

The same de�nition of ω,

ω := f∗Ω
1
E/Y (Γ),

gives rise to a theta characteristic on Y (Γ)OK,v , as the Kodaira–Spencer isomorphism holds on

the integral level ([Kat73, A.1.3.17]). There is the unique canonical extension on the integral level,

ωcan = f ∗Ω
1
EOK,v/X(Γ)OK,v

(log∞f ) := f ∗

(
Ω1
EOK,v/OK,v

(f
−1

(D))/f
∗
(Ω1

X(Γ)OK,v/OK,v
(D))

)
,

which satis�es the Kodaira–Spencer isomorphism
4

(ωcan)⊗2 ∼−→ Ω1
X(Γ)/OK,v(D).

Moreover, the canonical extension ωcan
arises as the �rst Hodge �ltration of the log-de Rham co-

homology bundleR1f log dR,∗(EOK,v/X(Γ)OK,v), where the log-structures for EOK,v andX(Γ)OK,v
are given by f

−1
(D) and D, respectively. As before, we will omit the superscript

can
most of the

time as there is no source of confusion regarding this.

Over OK,v, we can formulate a logarithmic Higgs sheaf (Eω, θω) over X(Γ)OK,v by Eω :=
ω ⊕ ω−1

and θω : Eω → Eω ⊗ Ω1
X(Γ)OK,v/OK,v

(D) de�ned as

θω : Eω � ω
Kodaira–Spencer−−−−−−−−→ ω−1 ⊗ Ω1

X(Γ)OK,v/OK,v
(D) ↪→ Eω ⊗ Ω1

X(Γ)OK,v/OK,v
(D).

4
We were unable to locate a literature that states the log version of the Kodaira–Spencer isomorphism on the

integral modular curve. A much more general version of the log Kodaira–Spencer isomorphism on the integral level

is proved in [Lan12, Proposition 6.9], which contains the statements that we would like for the modular curves.
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Since Jac(X(Γ)OK,v)[2] is a �nite �at group scheme overOK,v, L ∈ Jac(X(Γ)OK,v)[2](Kv), the

base-change of L ∈ Jac(X(Γ))[2](K) to Kv, extends uniquely to L ∈ Jac(X(Γ)OK,v)[2](OK,v).

By applying the same construction, we obtain the Galois cover α : X̃OK,v → X(Γ)OK,v of degree

2. Accordingly, we obtain u : W X̃OK,v
→ X(Γ)OK,v . Using this integral model, one can also

extend a logarithmic Higgs sheaf (Eν,v, θν,v) to X(Γ)OK,v by (Eν,v, θν,v) := (Eω, θω)⊗ (L, 0).

Since u : WX̃OK,v
→ Y (Γ)OK,v is smooth and proper, [TT19, Proposition 5.4] implies that

the relative crystalline cohomology E := R1ucris,∗O gives rise to a convergent F -isocrystal on

Y (Γ)kv (which is in fact overconvergent). From the relative crystalline comparison theorem,

[TT19, Theorem 5.5], it follows that ρν,v is a crystalline Zp-local system, and is associated to E .

The fact that the associated graded of E is (Eν,v, θν,v) follows from the de Rham-crystalline com-

parison and from the fact that ωcan
is the �rst Hodge �ltration of R1f log dR,∗(EOK,v/X(Γ)OK,v).

�

Remark 7.5. Recall that Proposition 3.7 proved that the topological local systems underlying

ρν,σ is the local system corresponding to the Higgs sheaf (Eν,σ, θν,σ) via the nonabelian Hodge

correspondence. Under a reasonable theory of p-adic nonabelian Hodge correspondence (e.g.

[LSZ19], [LSYZ19]), one could also prove that ρν,v is the étale local system corresponding to the

Higgs sheaf (Eν,v, θν,v) via the p-adic nonabelian Hodge correspondence.

8. Twisted period map to a Siegel modular threefold

We retain the notation of the previous section. For this section only, we assume for simplicity
5

that Γ is either Γ1(N) or Γ(N). Recall that WX̃ → Y (Γ)K is a family of abelian surfaces that

is di�erent from the square of the universal elliptic curve, but they become isomorphic after an

étale base-change to Ỹ :

WX̃ 6∼= EK ×Y (Γ)K EK , α∗WX̃
∼= α∗EK ×Ỹ α

∗EK .

In this case, it turns out that, from the universal level structure on E/Y (Γ), one can construct a

certain natural level structure onWX̃/Y (Γ)K , which is a twisted version of the natural level struc-

ture on EK×Y (Γ)K EK . This implies that Y (Γ)K admits a twisted period map into the moduli space

of abelian surfaces with a level structure that is di�erent from the usual “diagonal embedding.”

We see this as a hint of possibly automorphic interpretations of the sections of a noncongruence

theta characteristic ν, which are a priori noncongruence modular forms.

To construct the twisted level structure, we �rst describeWX̃ as a variety over Ỹ with a descent

datum.

Proposition 8.1. Let σ : Ỹ → Ỹ be the nontrivial element of Gal(Ỹ /Y (Γ)K). Let λ : Ỹ ×Y (Γ)K

Ỹ
∼−→ Ỹ

∐
Ỹ be an isomorphism of Ỹ -schemes such that the following diagram commutes.

Ỹ ×Y (Γ)K Ỹ

pr2 $$

λ // Ỹ
∐
Ỹ

id
∐
σ}}

Ỹ

5
This is merely for the simplicity of the moduli problem that the corresponding level structure represents.

16



Let λ : WX̃ ×Y (Γ)K Ỹ
∼−→ α∗EK ×Ỹ α∗EK be the natural isomorphism obtained from λ : Ỹ ×Y (Γ)K

Ỹ
∼−→ Ỹ

∐
Ỹ . Then, the following diagram commutes.

WX̃ ×Y (Γ)K Ỹ
(id,σ)

//

λ

��

WX̃ ×Y (Γ)K Ỹ

λ

��
α∗EK ×Ỹ α∗EK (x,y)7→(σ(y),σ(x))

// α∗EK ×Ỹ α∗EK

Proof. Note that

Ỹ ×Y (Γ)K Ỹ
(id,σ)−−−→ Ỹ ×Y (Γ)K Ỹ ,

after conjugating by λ, is identi�ed with

Ỹ
∐

Ỹ
x
∐
y 7→y

∐
x−−−−−−−→ Ỹ

∐
Ỹ .

By [CGP15, Proposition A.5.2], the Weil restriction of schemes has a natural isomorphism

RS′/S(X ′)×S T ∼= RT ′/T (X ′ ×S′ T ′),

where S ′ is a �nite locally free S-scheme, X ′ is an S ′-scheme and T ′ = S ′ ×S T . Therefore, the

isomorphism

WX̃ ×Y (Γ)K Ỹ =
(

RỸ /Y (Γ)K
(α∗EK)

)
×Y (Γ)K Ỹ

∼= RỸ×Y (Γ)K
Ỹ /Ỹ (α∗EK ×Ỹ (Ỹ ×Y (Γ)K Ỹ )),

is natural, where in the rightmost expression, the morphism Ỹ ×Y (Γ)K Ỹ → Ỹ used in the

subscript is the second projection, while the morphism Ỹ ×Y (Γ)K Ỹ → Ỹ used in the expression

in the parenthesis is the �rst projection. Thus, after conjugating by λ : Ỹ ×Y (Γ)K Ỹ
∼−→ Ỹ

∐
Ỹ ,

this is identi�ed with

RỸ
∐
Ỹ /Ỹ (α∗EK ×Ỹ (Ỹ

∐
Ỹ )),

where id
∐
σ : Ỹ

∐
Ỹ → Ỹ (id

∐
id : Ỹ

∐
Ỹ → Ỹ , respectively) is used in the subscript (the

expression in the parenthesis, repsectively). Therefore, under this identi�cation, the morphism

(id, σ) : WX̃ ×Y (Γ)K Ỹ → WX̃ ×Y (Γ)K Ỹ ,

is identi�ed with the morphism

RỸ
∐
Ỹ /Ỹ (α∗EK ×Ỹ (Ỹ

∐
Ỹ ))→ RỸ

∐
Ỹ /Ỹ (α∗EK ×Ỹ (Ỹ

∐
Ỹ )),

where the subscripts are related by the diagram

Ỹ
∐
Ỹ

x
∐
y 7→y

∐
x

//

id
∐
σ
��

Ỹ
∐
Ỹ

id
∐
σ

��

Ỹ σ
// Ỹ
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and the expressions in the parentheses are related by the diagram

Ỹ
∐
Ỹ

x
∐
y 7→y

∐
x
//

id
∐

id ""

Ỹ
∐
Ỹ

id
∐

id||
Ỹ

From this, the statement easily follows. �

We consider the Γ-level structure on an elliptic scheme E/S. In the case of Γ = Γ(N), it is a

pair of sections P1, P2 : S → E that �berwise generates E[N ], and in the case of Γ = Γ1(N),

it is a section P : S → E[N ] that has exact order N . We take the Γ-level structure on the

universal elliptic curve EK/Y (Γ)K as either P ,Q : Y (Γ)K → EK [N ] (in the case of Γ(N)) or

P : Y (Γ)K → EK [N ] (in the case of Γ1(N)). Using the level structure on EK , we may de�ne a

twisted level structure on WX̃ as follows.

De�nition 8.2 (Γ(N)+
- and Γ1(N)+

-structures on an abelian surface). For a principally polar-

ized abelian surface (A/S, λ), a (naive) Γ(N)+
-structure is a collection of étale-local sections

P1, P2, P3, P4 of A[N ] such that they generate A[N ] �berwise, and two such collections

P1, P2, P3, P4, P ′1, P
′
2, P

′
3, P

′
4,

are equivalent if {P1, P2} = {P ′1, P ′2} and {P3, P4} = {P ′3, P ′4} (as unordered sets).

A (naive) Γ1(N)+
-structure is a collection of étale-local sections P1, P2 of A[N ] such that they

generate a totally isotropic subspace of A[N ], with respect to the Weil pairing induced by λ, and

two such collections

P1, P2, P ′1, P
′
2,

are equivalent if {P1, P2} = {P ′1, P ′2} (as unordered sets).

Remark 8.3. The moduli space of principally polarized abelian surfaces with Γ(N)+
- or Γ1(N)+

-

structures are identi�ed with the arithmetic quotient of the Siegel upper half space by a subgroup

of Sp4(Z). More precisely, if the symplectic form corresponds to the matrix

(
0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

)
, then

Γ(N)+ = Γ(N) ·

〈
0 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1


〉
, Γ1(N)+ = Γ1(N) ·

〈
0 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1


〉
,

where Γ(N) and Γ1(N) are the standard congruence subgroups of Sp4(Z),

Γ(N) = {M ∈ Sp4(Z) |M ≡ I4 (modN)},
Γ1(N) = {M ∈ Sp4(Z) |M (modN) is upper triangular unipotent}.

De�nition 8.4 (Twisted level structure on WX̃ ). Let Γ+
be Γ(N)+

(Γ1(N)+
, respectively) if

Γ = Γ(N) (Γ = Γ1(N), respectively). We de�ne the twisted level structure, a Γ+
-structure

on α∗WX̃
∼= α∗EK ×Ỹ α∗EK , as follows.

• If Γ = Γ(N), we consider the sections P̃1, P̃2, Q̃1, Q̃2 : Ỹ → (α∗EK ×Ỹ α∗EK)[N ], where

P̃1 := (α∗P , α∗e), P̃2 := (α∗e, α∗P), Q̃1 := (α∗Q, α∗e), Q̃2 := (α∗e, α∗Q).

The above étale-local sections de�ne a Γ(N)+
-structure on α∗WX̃ .
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• If Γ = Γ1(N), we consider the sections P̃1, P̃2 : Ỹ → (α∗EK ×Ỹ α∗EK)[N ], where

P̃1 := (α∗P , α∗e), P̃2 := (α∗e, α∗P).

The above étale-local sections de�ne a Γ1(N)+
-structure on α∗WX̃ .

Lemma 8.5. The twisted level structure on α∗WX̃ , as a Γ+-level structure, descends into a twisted
level structure, again as a Γ+-level structure, onWX̃ . Namely, the twisted level structure on α∗WX̃

is invariant under the automorphism induced by σ : Ỹ → Ỹ .

Proof. We already know what descent datum α∗WX̃
∼= α∗EK×Ỹ α∗EK has, thanks to Proposition

8.1. We only need to check that that the Γ+
-level structure is compatible with the descent datum,

which is clear as the level structure is indi�erent to the switch between P̃1 and P̃2 (and also the

switch between Q̃1 and Q̃2, if Γ = Γ(N)). �

Remark 8.6. The twisted period map πX̃ : Y (Γ)K → A2,Γ+ is di�erent from the usual “diago-

nal” period map πdiag : Y (Γ)K → A2,Γ+ , given by the diagonal morphism between the moduli

functors, E 7→ E2
. This is simply because the pullbacks of the universal abelian surface over

A2,Γ+ by the two period maps are di�erent.

It may �rst look strange to have a classifying map into a congruence quotient of a Shimura

variety even though the starting object is “noncongruence”. This phenomenon happens because

the double cover of congruence quotients A2,Γ → A2,Γ+ of a larger group somehow “absorbs”

the double cover Ỹ → Y (Γ)K . To be more precise, for the diagonal period map, there is a map

Y (Γ)K → A2,Γ that �lls in the diagram

Y (Γ)K
∐
Y (Γ)K //

��

A2,Γ

��
Y (Γ)K

77

// A2,Γ+

On the other hand, for the twisted period map πX̃ , the diagonal arrow cannot be �lled:

Ỹ //

��

A2,Γ

��
Y (Γ)K //

×××

;;

A2,Γ+

It is interesting to note that we had to use the stacky double cover A2,Γ → A2,Γ+ , which seems

necessary.

Appendix A. Examples of cusp forms in H0(X, ν(−D))

In this subsection, we specialize to the case of Γ = Γ1(N), whereN = p1 · · · pr is a square-free

odd integer. In this case, there are n = 2r−1(p1−1) · · · (pr−1) cusps, and for each decomposition

N = M1M2, there are
n
2r

cusps whose widths are M1. Let us index the cusps into

cM1,a,b :=
b

M2a
,
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where 1 ≤ a < M1, (a,M1) = 1, and (b,M2a) = 1. Note that cM1,a,b is of width M1 and

c1,1,1 =∞. The two cusps cM1,a,b, cM ′
1,a

′,b′ are equivalent if and only ifM1 = M ′
1, and there exists

ε ∈ {±1} such that a ≡ εa′ (modM1) and b ≡ εb′ (modM2), and these subsume the cusps of Γ.

De�nition A.1. Let σM1,a,b ∈ SL2(Z) be a matrix such that

σ−1
M1,a,b

ZcM1,a,b
(Γ)σM1,a,b ⊂

(
1 ∗
0 1

)
,

where ZcM1,a,b
(Γ) ⊂ Γ is the stabilizer of cM1,a,b in Γ.

By the de�nition of width, σ−1
M1,a,b

ZcM1,a,b
(Γ)σM1,a,b =

(
1 M1Z
0 1

)
.

De�nition A.2. For a theta characteristic ν and a cusp form f ∈ Sk(Γν), let

eM1,a,b(f)(q) =
∞∑
j=1

aM1,a,b,j(f)qj/M1 ∈ C[[q1/M1 ]],

be the Fourier expansion of fM1,a,b(z) := f(σM1,a,b(z)). We also de�ne

ordM1,a,b(f) := min{j | aM1,a,b,j 6= 0}.

Lemma A.3. The modular discriminant ∆, when seen as an element of S12(Γ) = S12(Γν), has

ordM1,a,b(∆) = M1.

Furthermore, ∆ does not vanish on Y (Γ).

Proof. The �rst statement follows from that ∆ is of level 1 and σM1,a,b ∈ SL2(Z). The second

statement is also well-known. �

Corollary A.4. Consider the multiplication-by-∆ map ×∆ : S1(Γν) ↪→ S13(Γν). Then,

im(×∆) = {f ∈ S13(Γν) | ordM1,a,b(f) ≥M1 + 1 for all cusps cM1,a,b}
=

⋂
cM1,a,b

cusp, 1≤j≤M1

ker aM1,a,b,j.

Thus, by knowing all the Fourier expansions of weight 13 modular forms, one can compute

dimC S1(Γν). This is bene�cial, since dimC S13(Γν) = dimC S13(Γ) by Riemann–Roch.

Lemma A.5. Let f ∈ Sk(N,χ). Then, ordM1,a,b(f) only depends onM1. In partcular,⋂
cM1,a,b

cusp, 1≤j≤M1

Kω
M1,a,b,j

=
⋂

N=M1M2, 1≤j≤M1

Kω
M1,1,1,j

.

Proof. This follows from that every widthM1 cusp ofX1(N) is an orbit under the diamond action,

and that f has nebentype. �

This already gives rise to many coincidences, which are not enjoyed by most other Γν ’s with

ν 6= ω. On the other hand, there are a few Γν ’s which have the similar property for ν 6= ω,

especially when ν is the pullback of a logarithmic theta characteristic of X0(N).

We show that there are a few more coincidences, using the results of [Asa76], which showed

how to compute the Fourier expansion at a cusp by using the Fourier expansion at∞.
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Proposition A.6 ([Asa76, Theorem 2]). Let f ∈ Snew
k (N,χ) be a Hecke eigenform such that, at

c1,1,1 =∞, f has the q-expansion

e1,1,1(f)(q) =
∞∑
n=1

anq
n, a1 = 1.

Let χ = χp1 · · ·χpr be the product such that χpi is a Dirichlet character mod pi (may or may not be
primitive). Then, for all cusps cM1,a,b,

eM1,a,b(f)(q) = χ
(
bcM1 +M2

2ad
) ∏
p|M1

(
p−

k
2χp

(
M1

p

)
apC(χp)

) ∞∑
n=1

a(M1)
n qn/M1 ,

where c, d ∈ Z such that cM1 + dM2 = 1,

C(χp) =

{∑
1≤h<p χp(h)e2πih/p if χp is primitive

−q if χp is trivial,

and a(M1)
n is

a(M1)
n =


χ(dnM2 + cM1)an if (n,M1) = 1

χ(cnM1 + dM2)an if (n,M2) = 1

a
(M1)
x a

(M1)
y if n = xy, (x, y) = 1.

This can be packaged more simply as follows.

Corollary A.7. Fix χ and a cusp cM1,a,b ∈ X1(N) of width M1. Then, there exist a constant
λ ∈ C that depends only onM1, a, b, and, for each n ≥ 1, a constant εn ∈ C that depends only on
M1, a, b, n, such that, for a normalized Hecke eigenform f ∈ Snew

k (N,χ) that has the q-expansion
e1,1,1(f)(q) =

∑∞
n=1 anq

n at∞,

aM1,a,b,n(f) =


(
λεn

∏
p|M1

ap

)
an if (n,M1) = 1(

λεn
∏

p|M1
ap

)
an if (n,M2) = 1

aM1,a,b,x
(f)aM1,a,b,y

(f)

λε1
∏
p|M1

ap
if n = xy, (x, y) = 1.

We also record the oldform analogue of the above result.

Proposition A.8. Let f ∈ Sk(N,χ) be of the form f(z) = f̃(Bz) for a Hecke eigenform f̃ ∈
Snew
k (A,χ) with A|N and B|N

A
. Suppose that f̃ has the q-expansion

e1,1,1(f̃)(q) =
∞∑
n=1

anq
n,

at ∞ ∈ X1(A). Let χ = χp1 · · ·χps be the product such that χpi is a Dirichlet character mod pi
(may or may not be primitive). Then, for all cusps cM1,a,b of X1(N),

eM1,a,b(f)(q) = eM ′
1,a

′,b′(f̃)(qB),

where
cM ′

1,a
′,b′ ∼ (M1, B)cM1,a,b,
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as the cusps of X1(A). More explcitly,

M ′
1 =

A

(M2, A)
, a′ ≡ M2

(M2, A)
a (modM ′

1) , b′ ≡ (M1, B)b

(
mod

A

M ′
1

)
.

Proof. Note that eM1,a,b(f)(q) is the Fourier expansion of

f (σM1,a,b(z)) = f̃

((
B 0
0 1

)
σM1,a,b(z)

)
.

It is easy to see that (
B 0
0 1

)
σM1,a,b

(
B−1 0

0 1

)
= σM1,a,(B,M1)b.

The statement follows. �

Similarly to Corollary A.7, we can package the above result as follows.

Corollary A.9. Fix χ, a cusp cM1,a,b ∈ X1(N) of width M1, A|N , and B|N
A
. Then, there exist a

constant λ ∈ C that depends only on M1, a, b, A,B, and, for each n ≥ 1, a constant εn ∈ C that
depends only onM1, a, b, A,B, n, such that, for f(z) = f̃(Bz) for a normalized Hecke eigenform
f̃ ∈ Snew

k (A,χ), with the q-expansion e1,1,1(f)(q) =
∑

n≥1, B|n anq
n at∞,

aM1,a,b,n(f) =



0 if B 6 | n(
λε n

B

∏
p|M ′

1
apB

)
an if B|n, (n,M ′

1) = 1(
λε n

B

∏
p|M ′

1
apB

)
an if B|n, (n,M ′

2) = 1
aM1,a,b,Bx

(f)aM1,a,b,By
(f)

λε1
∏
p|M′

1
apB

if B|n, n = Bxy, (x, y) = 1,

whereM ′
1 = A

(M2,A)
andM ′

2 = A
M ′

1
.

Namely, if there is a section f to ν(−D) for a logarithmic theta characteristic ν, then f 2
will

give rise to a weight 2 cusp form of level Γ1(N) that vanishes at each cusp of X1(N) up to order

≥ 2. We �rst prove the following useful lemma.

Lemma A.10. LetN ≥ 5 be a square-free integer, and let f ∈ S2(Γ1(N)) be a cusp form such that
it vanishes up to order ≥ 2 at each cusp of X1(N). Let f =

∑
χ fχ be the decomposition according

to S2(Γ1(N)) =
⊕

χ S2(N,χ), where χ runs over all mod N Dirichlet characters. Then, each fχ
vanishes up to order ≥ 2 at each cusp of X1(N).

Proof. Let N = p1 · · · pr. Then, there are 2r−1(p1 − 1) · · · (pr − 1) cusps of X1(N), and for each

M |N , there are
(p1−1)···(pr−1)

2
cusps of width M . The diamond operators 〈d〉, for 1 ≤ d ≤ bN

2
c,

(d,N) = 1, act faithfully and transitively on the cusps of the same width. For each M |N , choose

a cusp CM,1 of width M , and let CM,d be where the CM,1 is sent via the action of 〈d〉.
Let fχ have the q-expansion at CM,1 given by eM(fχ). Then, the vanishing at CM,1 implies

that the q-expansion

∑
χ eM(fχ) vanishes up to order ≥ 2. For 1 ≤ d ≤ bN

2
c, (d,N) = 1,

since fχ has the q-expansion at CM,d given by χ(d)eM(fχ), the vanishing at CM,d implies that

the q-expasnion

∑
χ χ(d)eM(fχ) vanishes up to order ≥ 2. Since χ(−1) = 1 for all χ, it follows

that

∑
χ χ(d)eM(fχ) vanishes up to order ≥ 2 for all (d,N) = 1. Since

̂(Z/NZ)× is (noncanon-

ically) isomorphic to (Z/NZ)×, it follows that each eM(fχ) vanishes up to order ≥ 2 for all χ.

Combining this for all M , we obtain the desired result. �
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