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Gyujin Oh There is no abelian scheme over Z

Introduction

In his 1962 ICM talk [Sh], Shafarevich suggested several conjectures regarding the finiteness
of isomorphism classes of arithmetic objects having good reduction almost everywhere. Such
problems can find their origins from basic finiteness theorems in algebraic number theory, es-
pecially the Hermite-Minkowski theorem: for any integer N > 0 and a number field K,
there are only finitely many number fields L such that the discriminant of L/K is at most N .
A more geometric re-statement of the theorem is as follows.

Theorem (Hermite-Minkowski). For any number field K, a finite set of primes S of K and an
integer N > 0, there are only finitely many isomorphism classes of zero-dimensional varieties
of degree at most N over K which possess a smooth model over Spec(OK,S), where OK,S is the
ring of S-integers in K.

In this regard, we can state the Shafarevich conjectures in the following form.

Conjecture (Shafarevich). Let K be a number field and S be a finite set of primes of K. Let
g ≥ 2 be an integer.

(a) (Shafarevich conjecture for curves) There are only finitely many isomorphism classes of
smooth curves over OK,S of genus g. Equivalently, there are only finitely many isomorphism
classes of curves over K of genus g having good reduction outside S.

(b) (Shafarevich conjecture for abelian varieties) There are only finitely many isomorphism
classes of abelian schemes over OK,S of dimension g. Equivalently, there are only finitely many
isomorphism classes of abelian varieties over K of dimension g having good reduction outside
S.

In particular, Faltings [Fa] proved the Shafarevich conjectures in conjunction with various
other finiteness results, including the finiteness of isogeny classes and the Mordell’s conjecture.

On the other hand, there are some special cases where one can suspect whether the set of
isomorphism classes of arithmetic object is actually empty. This can be motivated from the
classic theorem of Minkowski that there is no nontrivial unramified extension of Q. We can as
well geometrically re-interpret the statement as follows.

Theorem (Minkowski). The only connected zero-dimensional variety over Q admitting a smooth
model over Spec(Z) is Spec(Q).

From this theorem, Shafarevich further conjectured that the sets of isomorphism classes
considered in the Shafarevich conjectures are empty if K = Q and S = ∅. In other words,

Conjecture (Shafarevich). There is no nontrivial abelian scheme over Z. Equivalently, there
is no nontrivial abelian variety over Q with everywhere good reduction.

This conjecture is established independently by Fontaine [Fo1] and Abrashkin [Ab1], and
this is the direction we will mostly focus on amongst many Shafarevich conjectures.

The basic strategy behind the first proofs is to study ramification of finite flat group schemes
and p-divisible groups. Specifically, if there is an abelian scheme A over Z, then for a prime p,
the collection of pn-torsions {A[pn]}n≥1 forms an object called a p-divisible group over Z. By
studying the ramification bounds on such objects, just like the proof of Minkowski’s theorem,
the proofs show that, for a small prime p, a p-divisible group over Z is of very simple form, so
simple that it cannot arise as a p-divisible group from p-power torsions of an abelian variety.

Somehow in a different flavor, Fontaine [Fo2] and Abrashkin [Ab2] later revisited the nonex-
istence of abelian scheme over Z. Instead of analyzing the ramification behavior of p-divisible
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groups and torsion subgroups, which are objects only available to group schemes, they instead
analyzed the ramification of p-adic étale cohomology as a Galois representation. This strategy
became possible via the development of p-adic Hodge theory and its integral counterpart. This
strategy enabled them to generalize the nonexistence results to certain smooth proper schemes
with no group structure. In particular, they proved the following.

Theorem (Fontaine, [Fo2, Théorème 1], [Ab2, 7.6]). Let X be a smooth proper variety over Q

with everywhere good reduction. Then, H i(X,ΩjX) = 0 for i 6= j, i+ j ≤ 3.

In particular, this implies the nonexistence of abelian scheme over Z as corollary.
In this essay, we review the both approaches towards the proof of nonexistence of abelian

variety over Q with everywhere good reduction. The first chapter will focus on the analysis of
finite flat group schemes and p-divisible groups. In the chapter, we will go through the details of
Fontaine’s original proof. In the chapter, we will also review some extensions of the result using
the same kind of technique, most notably the one by Schoof [Sc1]; it gives the nonexistence
of abelian varieties over a small number field with semi-stable reduction at one small prime
and good reduction at everywhere else. We briefly examine the results due to Brumer-Kramer
[BK], who used a different approach more in conjunction with the Shafarevich conjecture (or,
Faltings’ Finiteness Theorem).

The second chapter will be aiming for p-adic Hodge theoretic proofs of nonexistence of
abelian schemes over Z. In particular, we will observe various classes of p-adic Galois represen-
tations, and examine how to classify those representations in a different way. In particular, we
will see p-adic Galois representations and their integral sublattices can be classified by mod-
ules with various (semi)linear structures attached. Such modules then will have a similar kind
of discriminant bound as p-divisible groups and finite flat group schemes have. In particu-
lar, using integral p-adic Hodge theoretic constructions, including Fontaine-Laffaille modules,
Breuil-Kisin modules and (ϕ, “G)-modules, we give discriminant bounds for torsion crystalline
and semi-stable representations. This generalization to semi-stable representations can yield
some other nonexistence results, and we in particular will review the result of Abrashkin [Ab4]
on the nonexistence of a smooth projective variety over Q with semi-stable reduction at 3 and
good reduction at everywhere else.

In the course, we will introduce the relevant preliminaries, including the theory of finite flat
group schemes, p-divisible groups, abelian varieties and their reduction types, étale cohomology
theory, p-adic Hodge theory and integral p-adic Hodge theory. A reader is assumed to have
good familiarity with homological algebra as in [La] (including spectral sequences), algebraic
geometry as in [Har] or [EGA] and algebraic number theory/class field theory as in [Se] and [CF].

Notations. GK will mean the absolute Galois group of K. K, Ks and Knr will mean the al-
gebraic closure, the separable closure and the maximal unramified extension of K, respectively.
OK , IK and kK will mean the ring of integers, the inertia group and the residue field, respec-
tively. For a p-adic field K, K0 will mean the maximal unramified (over Qp) sub-extension of
K, i.e. K0 = W (kK)[1/p]. The letters D and ∆ will be reserved for different and discriminant
ideals, respectively. χ will be the cyclotomic character, and both ϕ and σ will be used for
the Frobenius. ζn is the n-th root of unity. FracR is the field of fractions of R. A subscript
attached to a scheme usually means the base change to the subscript scheme. Γ usually means
the section functor. [n] is the multiplication-by-n map.

2



Chapter 1

Nonexistence of Certain Abelian

Varieties

1.1 Overview

The following theorem can be regarded as the main theorem of Fontaine’s first proof in [Fo1].

Theorem 1.1.1 [Fo1, Théorème 1]. Let K be a finite extension of Qp, and let e = vK(p) be
the absolute ramification index. For an integer n ≥ 1, suppose Γ is a finite flat commutative
group scheme over OK killed by pn. Let L = K(Γ(K)), and G = Gal(L/K). Then, G(u) = 1
for u > e

Ä
n+ 1

p−1

ä
, and v(DL/K) < e

Ä
n+ 1

p−1

ä
, where DL/K is the different of L/K.

In particular, if G is the restriction of some finite flat group scheme Γ/OK for a number field
K, then it turns out that K(Γ(K)) is unramified at primes outside p and is very mildly ramified
at p by the above theorem; this is the heart of nonexistence results in this vein. Combining with
the discriminant bounds of Odlyzko [Mar], one can then give an upper bound of [L : K]. Case
analysis for L/K will give a severe restriction on the structure of Γ as a finite flat group scheme.
In particular, the cases we will examine will only have a finite flat commutative group scheme
of p-power order as being an extension of a constant group scheme by a diagonalizable group
scheme. An abelian variety, however, cannot yield such group scheme, as such group scheme
has “too many points,” as we will see. The main nonexistence results are as follows.

Theorem 1.1.2 [Fo1, Corollaire 2]. For E = Q,Q(
√
−1),Q(

√
−3),Q(

√
5), there is no nontriv-

ial abelian variety over E with everywhere good reduction.

Theorem 1.1.3 [Sc1, Theorem 1.1]. For the primes ℓ = 2, 3, 5, 7, 13, there is no nontrivial
abelian variety over Q with good reduction outside ℓ and semi-stable reduction at ℓ.

1.2 Preliminaries

1.2.1 Finite Flat Group Schemes

1.2.1.1 Affine Group Schemes

Let S be a base scheme. A group scheme over S is an S-scheme G equipped with S-morphisms
m : G ×S G → G (multiplication), e : S → G (identity) and i : G → G (inverse) such that the
usual compatibility relations of groups are satisfied; namely, the associativity, identity, inverse
axioms are satisfied. One can define the same notion more cleanly via the functor of points
approach; a group scheme over S is a representable contravariant functor (Sch /S) → Grp

3
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from the category of S-schemes to the category of groups. In other words, an S-scheme G is
a group scheme when you can give compatible group structures on G(T )’s, for all S-schemes
T . In particular, one does not have to construct multiplication, inverse and identity by hand
because, for example, the multiplication m : G × G → G can be recovered as the addition of
two natural projections pr1, pr2 : G×G→ G using the group structure we have on G(G×G).
Also, a functor of points is determined by its restriction to affine schemes1, so we only need to
construct compatible group structures of G(T )’s for affine T ’s.

From now on, we will mostly focus on the case of affine base scheme S = SpecR and affine S-
group scheme G = SpecA. Then, induced from multiplication, identity and inverse morphisms
of G, the R-algebra A will have corresponding R-algebra maps with everything dualized, namely
‹m : A → A ⊗R A, ẽ : A → R and ĩ : A → A, called comultiplication, counit and coinverse,
respectively. An R-algebra with such extra structures is called a Hopf algebra.

Example 1.2.1. Let R be a ring.

1. The additive group Ga. Let Ga = Spec(R[t]). For an R-algebra T ,

Ga(T ) = HomR−alg(R[t], T ) = T,

and the additive group structure of T given on Ga(T ) makes Ga a group scheme.

2. The multiplicative group Gm. Let Gm = Spec(R[t, t−1]). For an R-algebra T ,

Gm(T ) = HomR−alg(R[t, t
−1], T ) = T×,

so the multiplicative group structure of T× given on Gm(T ) makes Gm a group scheme.

3. Roots of unity. For an integer n ≥ 2, let µn = SpecR[t]/(tn−1). Then, for an R-algebra
T ,

µn(T ) = HomR−alg(R[t]/(t
n − 1), T ) = {n− th roots of unity in T}.

So the multiplicative group structures make µn a group scheme.

4. Constant group schemes. For a finite group Γ, let RΓ be a direct product of |Γ| copies
of R. We call SpecRΓ the constant group scheme associated with Γ, denoted also as Γ
(or ΓR). For an R-algebra T , SpecT is divided into connected components, so T =

∏
i Ti

where the only idempotents in Ti are 0 and 1. So,

HomR−alg(R
Γ, T ) =

∏

i

HomR−alg(R
Γ, Ti),

and for each i, an R-algebra homomorphism RΓ → Ti is completely determined by choos-
ing which direct factor R embeds into T ; if one is chosen, the other factors should collapse
in T . Thus, HomR−alg(R

Γ, Ti) = Γ. The natural group structure on HomR−alg(R
Γ, T ) =∏

iHomR−alg(R
Γ, Ti) =

∏
i Γ is that induced from Γ.

5. Diagonalizable group schemes. For an abelian group Γ, let R[Γ] = ⊕γ∈ΓRγ be the
group algebra of Γ over R. We call SpecR[Γ] the diagonalizable group scheme associated
with Γ, denoted as D(Γ). Note that, for an R-algebra T ,

HomR−alg(R[Γ], T ) = Hom(Γ, T×),

the set of group homomorphisms from Γ to T×. The multiplicative group structure of
T× thus gives a natural group structure on (SpecR[Γ])(T ). Note that SpecR[Z] = Gm,
whereas SpecR[Z/nZ] = µn.

1This is just another way of saying that every scheme is built up from affine schemes, e.g. [EH, Proposition
VI-2].
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The notions of a subgroup scheme and a group scheme homomorphism can be defined neatly
in the same way by using the functor of points approach. Moreover, given a homomorphism

ϕ : G → G′ of S-group schemes, the functor H : T 7→ ker(G(T )
ϕ(T )−−−→ G′(T )) is representable,

as it can be also thought as a fiber product of ϕ : G → G′ and the identity section eG′ :
S → G′. This defines the kernel of a homomorphism of group schemes. On the other hand,
given a homomorphism ϕ : G → G′ of S-group schemes, the functor T 7→ coker(ϕ(T )) =
G′(T )/ϕ(G(T )) is in general not representable. The formation of quotient in certain cases will
be discussed later.

1.2.1.2 Finite Flat Group Schemes

Over a locally noetherian base scheme S, an S-scheme G is finite and flat over S if and only if
OX is locally free of finite rank as OS-module. For an affine noetherian base S = SpecR, a finite
flat R-scheme G is an affine scheme SpecA where A is locally free of finite rank as R-module.
A finite flat scheme is of rank n (or order n) if A is locally free of rank n as R-module. For a
general base, this can be also defined as the rank of OG as OS-module.

Remark 1.2.1. For a general base S, the category of finite flat group schemes over S is just
a pre-abelian category (i.e. an additive category with kernels and cokernels), not necessarily
an abelian category. This kind of problem is inherent in all kinds of categories of schemes;
recall that in a general category of schemes, there are no “quotient schemes.” On the other
hand, the whole yoga of topos says that you need to think an object as a representable sheaf
on a site. Thus, the “right way” to think of finite flat S-group schemes is to regard it as
a representable object in the category of sheaves over the (big) fppf (=finitely presented and
faithfully flat, “fidèlement plate de présentation finie”) site of S. Such category of sheaves is an
abelian category with enough injectives, so we can perform homological algebra in this larger
category. One way to go back to the category of finite flat S-group schemes is via faithful flat
descent, which basically says that a sheaf is representable if and only if it is locally representable.
The meaning of this remark will be a bit clearer as we will introduce the notion of sites in the
preliminaries section of the second chapter.

For a finite flat commutative group scheme G = SpecA over S = SpecR, let AD =
HomR(A,R). This is also an R-module. Then, by dualizing everything, AD becomes an R-
Hopf algebra, which is also finite and flat over R. The finite flat group scheme GD = SpecAD is
called the (Cartier) dual group scheme. It is the dual of G in the sense that, for any R-algebra
T ,

GD(T ) = HomT (GT ,Gm,T ),

where GT is the base change of G to T , and Gm,T is defined over T . This is called the Cartier
duality (cf. [Tat1, (3.8)]). The most basic examples are the duality between constant group
schemes and diagonalizable group schemes; if Γ is a commutative group, the Cartier dual of ΓS
is D(Γ)S , and vice versa.

The Cartier duality is crucial in proving that, for a finite flat commutative group scheme,
the order kills the group.

Theorem 1.2.1 (Deligne). If G = SpecA is a finite flat commutative group scheme over R of
rank n, then repeating the group law n times gives a zero map, i.e. the multiplication by n map2

[n] : G→ G factors through the identity map SpecR→ G.

2This is a group homomorphism as G is commutative. This map, especially its kernel, plays a crucial role.
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Proof. As A is flat over R, we can verify the annihilation over the localizations of R. Thus, we
can assume that R is local, so that A becomes free over R.

We can identify the subgroup G(R) = HomR−alg(A,R) ⊂ HomR−mod(A,R) = AD as the
group of group-like elements of AD, that is, the group of elements λ ∈ (AD)× such that the
comultiplication of AD (which is the dual of the multiplicative structure of A) sends λ to
λ ⊗ λ. Namely, an element λ ∈ AD is group-like if and only if it is invertible in AD and
the corresponding map λ : A → R is multiplicative. Note that the formation of dual Hopf
algebra and the identifiaction of group-like elements are compatible with base change. Thus it
is sufficient to show that λn = 1 for all λ ∈ G(R) ⊂ AD.

Let τλ : A→ A be the transpose of right multiplication by λ, which is an R-automorphism
of A. Let τ = idAD ⊗τλ : AD⊗RA→ AD⊗RA be an A-automorphism of AD⊗RA. As AD⊗A
is a free A-module, for an A-automorphism of AD ⊗R A, we can think of the determinant
det : AutA(A

D ⊗RA)→ A. As τλ is originally an R-automorphism of A, τ does not change the
determinant. Thus, det(idA) = det(τ(idA)). However, as τ(idA) = λ idA, we have det(idA) =
det(λ) det(idA) = λn det(idA). As det(idA) is invertible, λ

n = 1, as desired.

1.2.1.3 Kähler Differentials on Affine Group Schemes

For an affine R-group scheme G = SpecA, the kernel of the counit ẽ : A → R is called the
augmentation ideal. As the canonical map R → A splits the counit, we have A = R ⊕ I as an
R-module. Therefore, for f ∈ I, ‹m(f)− f ⊗ 1− 1⊗ f ∈ I ⊗ I.

In terms of the augmentation ideal, we can describe the module of Kähler differentials
and a universal derivation. Recall that, for an A-module M , a derivation is an R-linear map
D : A → M such that it satisfies the Leibniz rule, i.e. D(ab) = aD(b) + bD(a). The set of all
derivations A → M is denoted as DerR(A,M). Then, there exists a univeral object Ω1

A/R, the

module of Kähler differentials, such that DerR(A,M) ∼= HomA(Ω
1
A/R,M) for all A-modules M

[Mat, §26]. A universal derivation is a derivation A→ Ω1
A/R corresponding to the identity map

of Ω1
A/R. Note that, as A = R ⊕ I, we have a map A→ I/I2 which first kills R ⊂ A and then

mods out by I2.

Proposition 1.2.1 [Tat1, (2.11)]. Let M be an A-module, and ψ : M ⊗R A → M be the map
giving the action of A on M . The map λ 7→ ψ ◦ ((λ ◦ π) ⊗ idA) ◦ ‹m is an isomorphisim from
HomR−mod(I/I

2,M) to DerR(A,M). In particular, Ω1
A/R
∼= (I/I2) ⊗R A, and (π ◦ idA) ◦ ‹m :

A→ (I/I2)⊗R A is a universal R-linear derivation for A.

Proof. We will only prove the case when A is finitely generated. However, the same proof can be
justified to work for general A. Note that, if we denote J = ker(m : A⊗RA→ A), the kernel of
multiplication, then A⊗R (I/I2) ∼= J/J2 as A-modules. So it is sufficient to prove that Ω1

A/R
∼=

J/J2 as A-modules. Suppose A = R[x1, · · · , xn]/〈fi(x)〉i. Then, the multiplication map can
be seen as R[x1, · · · , xn, y1, · · · , yn]/〈fi(x), fi(y)〉i → R[t1, · · · , tn]/〈fi(t)〉i, sending xi, yi 7→ ti.
Thus, kerm is generated by ǫi := yi−xi’s. Then A⊗RA = k[x1, · · · , xn, ǫ1, · · · , ǫn]/〈fi(x), fi(x+
ǫ)〉i, so J/J2 = ⊕iAǫi/〈

∑
k
∂fj
∂xk

ǫk〉j , which is isomorphic to Ω1
A/R.

1.2.1.4 Finite Étale Group Schemes

A finite flat S-group scheme G is étale if the structure map G → S is étale. There are several
equivalent ways of defining étaleness for a finite flat S-group scheme G.

• G is étale if Ω1
G/S = 0.

6
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• G is étale if for each point s ∈ S, the fiber Gs is the spectrum of a finite product of
separable extensions of the residue field κ(s).

• G is étale if for each point s ∈ S, the fiber Gs is geometrically reduced.

It turns out that, at least over a connected noetherian affine base S = SpecR, the category of
finite étale R-group schemes is an abelian full subcategory of the category of finite flat R-group
schemes. This is achieved via the equivalence of categories

{finite étale R-group schemes} ∼−→ {finite groups with continuous π1,ét(S, s)-action}

([SGA1, Exposé V], [Dem, II.2]), where π1,ét(S, s) is the étale fundamental group of S for a
choice of a geometric point s ∈ S. Note that the category of finite flat R-group schemes is not
in general abelian as quotients may fail to exist.

Example 1.2.2. 1. Over a field k, a finite étale k-algebra is a finite product of finite sepa-
rable extensions of k.

2. Over a characteristic zero complete discrete valuation ring R with residue field k, it turns
out that the reduction to the special fiber X → Xk is an equivalence of categories from the
category of finite étale R-schemes to the category of finite étale k-schemes. A quasi-inverse
is constructed via Witt vectors.

It is worth noting that étaleness comes free over a field of characteristic zero:

Theorem 1.2.2 (Cartier). If G is a finite (flat) group scheme over a field k of characteristic
zero, then G is étale.

Proof. Let G = SpecA, and I be the augmentation ideal of A. Let x1, · · · , xn be a k-basis for
I/I2. Let J = ∩nIn. As a field is Artinian, A =

∏
iAi for local algebras Ai’s, and maximal

ideals mi’s are nilpotent. Thus, taking high powers of an ideal in each component will either
vanish or remain to be the unit ideal. Thus, J is a direct factor of A as an k-algebra, which
means that A/J is a direct factor of A, implying that Ω1

(A/J)/k is a direct factor of Ω1
A/k. As

Ω1
A/k
∼= A⊗k I/I2 ∼= ⊕Adxi, it follows that Ω1

(A/J)/k
∼= ⊕(A/J)dxi, as A/J is a direct factor of

A. Note however that we have A/J ∼= k[x1, · · · , xn]/(f1, · · · , fm), as A/J = lim←−A/I
n. Thus,

Ω1
(A/J)/k

∼= ⊕(A/J)dxi/(
∑
j(∂f1/∂xj)dxj , · · · ,

∑
j(∂fm/∂xj)dxj). This means that ∂fi

∂xj
= 0 for

all i, j. As char k = 0, this implies that fi’s are zero. Thus, A/J ∼= k[x1, · · · , xn]. As A/J
is finite over k, it follows that n = 0, or I/I2 = 0. This implies that Ω1

A/k = 0, or that A is
étale.

1.2.1.5 Quotients, Cokernels and Exact Sequences

A right group action of an S-group scheme G on an S-scheme X is a morphism a : X×SG→ X
which, as a functor of points, defines a group action of G(T ) on X(T ) for every S-scheme T .
With a right G-action on X, an S-morphism f : X → Y is called to be constant on orbits if
f ◦ a = f ◦ pr1, i.e. f(xg) = f(x) for all x ∈ X(T ), g ∈ G(T ) for all S-schemes T . We define the
quotient of X by G to be the initial object (if exists) of the category of S-morphisms X → Z
which are constant on orbits. We denote the quotient as u : X → X/H, if exists.

A group action is strictly free if the morphism

(id, a) : X ×S G→ X ×S X

is a closed immersion.

7
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Theorem 1.2.3 (Grothendieck, [Tat1, Theorem 3.4]). Suppose that S is a locally noetherian
base scheme, G is a finite flat group scheme over S and X is a finite type S-scheme with a
strictly free G-action. Suppose further that every G-orbit of a closed point is contained in an
affine open set. Then the quotient u : X → X/G exists, and has the following properties.

(i) u : X → X/G is finite flat, and its degree is the order of G.
(ii) For every S-scheme T , the map X(T )/G(T )→ (X/G)(T ) is injective.
(iii) If S = SpecR,G = SpecA,X = SpecB are affine, then X/G = SpecB0, where B0 is

the equalizer of the two homomorphisms p̃r1, ã : B → B ⊗R A.

Remark 1.2.2. The condition that every G-orbit is contained in an affine open set is satisfied
if, for example, S = Spec k is the spectrum of an infinite field and X is a quasiprojective variety.
This is because, for any finite set of closed points in Pnk , there is a hyperplane that does not
pass through any of them. This will later apply to the case when X is an abelian variety over
a local/global field k.

Remark 1.2.3. It is not the group action but rather the equivalence relation R ⊂ X×RX that
makes the quotient work. An equivalence relation is a subscheme of X ×R X which satisfies
the reflexivity, symmetry and transitivity conditions. A finite flat equivalence relation is an
equivalence relation R ⊂ X ×R X such that the projection maps pri : R → X are finite flat.
Then, what is rather proved in [SGA3-1, Exposé V] is that, for a noetherian ring R and an
affine finite type R-scheme X, if R is a finite flat equivalence relation, then the sheafification of
the presheaf T 7→ (X(T )×X(T ))/R(T ) on the fppf topology of R is representable. The heart
of the proof is the faithfully flat descent.

Now consider the case when S = SpecR is noetherian, G is an affine R-group scheme and H
is a finite flat closed normal R-subgroup scheme of G. Then, Theorem 1.2.3 tells us that G/H
exists as an affine R-group scheme, and G → G/H is finite and faithfully flat; if G is finite
(resp. finite flat) over R, then G/H is finite (resp. finite flat) over R3. In particular, using the
Cartier duality, we obtain the following.

Theorem 1.2.4 [Dem, II.6]. The category of finite flat commutative group schemes over a field
k is an abelian category.

Proof. Let ϕ : G → H be a group homomorphism of finite flat commutative group schemes
over k. As every k-module is flat, a closed subgroup of a finite flat group scheme over k
is automatically finite flat. Thus we know that kernels and cokernels of ϕ exist. Also, the
natural map coim(ϕ) → im(ϕ) is injective and surjective. Thus, it is sufficient to show that
a bijective homomorphism of finite flat commutative k-group schemes φ : SpecA → SpecB is
an isomorphism. As the order of SpecB is equal to the order of φ(SpecA), we have dimk B =
dimk φ

∗B. Thus φ∗ : B → A is injective. This means that the Cartier dual φD : SpecBD →
SpecAD is a closed immersion with a cokernel Q. Applying the Cartier duality again, the
composition QD → SpecA → SpecB is zero. Thus, QD → SpecA, thereby SpecAD → Q,
is zero. Thus, Q = 1, which means that φD∗ : AD → BD is injective. Thus, φ is a bijective
k-algebra homomorphism, thus an isomorphism.

Now that we have defined cokernels, we would like to define what it means to be an exact
sequence of group schemes. We define a complex of group schemes over a base to be exact if it
is exact as a complex of sheaves on the fppf topology of the base. Over a noetherian ring R, a

sequence 1→ G′ i−→ G
π−→ G′′ → 1 of affine R-group schemes is exact if and only if π is faithfully

3A morphism is faithfully flat if it is flat and surjective.
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flat and i : G′ → G is the kernel of π. It is also equivalent to that i is a closed immersion with
i(G′) a normal subgroup of G, and π : G→ G′′ is identified with the cokernel of i : G′ → G.

We end this discussion with the following proposition.

Proposition 1.2.2. Over a noetherian ring R, the Cartier dual of a short exact sequence of
finite flat commutative group schemes is again exact.

Proof. Let 1 → G′ i−→ G
π−→ G′′ → 1 be the short exact sequence of finite flat commutative

R-group schemes. Note that the short exact sequence remains exact after an arbitrary base
change. Thus, for each R-algebra T , the natural map

ker(GD → G′D)(T ) = ker(Hom(GT ,Gm)
i∗−→ Hom(G′

T ,Gm))
πD

−−→ (G′′
T ,Gm) = G′′D(T )

is an isomorphism because of the universal property of quotient. Therefore, the Cartier dual of
a cokernel is a kernel.

It is thus sufficient to show that iD : GD → G′D is the cokernel of πD : G′′D → GD. A priori
we know that there is a finite flat cokernel GD/G′′D, and the universal property of quotient
gives a map GD/G′′D → G′D. We have already observed that the Cartier dual of a cokernel is
a kernel. Thus, the map GD/G′′D → G′D is the Cartier dual of the map G′ → ker(G → G′′),
which is an isomorphism. Thus, GD/G′′D → G′D is an isomorphism, so iD is the cokernel of
πD, as desired.

1.2.1.6 Classification of Finite Flat Group Schemes

For a group scheme G, we define G0 be the open and closed subscheme of G corresponding to the
connected component of G containing the unit section. This in general may not be a subgroup
scheme of G. However, over a henselian local ring, i.e. a ring that satisfies Hensel’s lemma, G0

is indeed a subgroup scheme, and, even more, the quotient also has a nice description.

Proposition 1.2.3 [Tat1, (3.7)]. Let (R,m) be a henselian local ring (e.g. a field or a complete
discrete valuation ring). Let G be a finite flat R-group scheme. Then the following are true.

(i) G0 is the spectrum of a henselian local R-algebra with the same residue field as R, and
is a flat closed normal subgroup scheme of G.

(ii) The quotient Gét := G/G0 is a finite étale R-group scheme. The exact sequence

0→ G0 → G→ Gét → 0,

called the connected-étale sequence for G, is characterized by that every group homomorphism
ϕ : G→ H to a finite étale R-group scheme H factors uniquely through G→ Gét.

(iii) The functors G 7→ G0, G 7→ Gét on the category of finite flat R-group schemes are
exact.

(iv) If R is a perfect field, the composition Gred →֒ G → Gét is an isomorphism, so the
connected-étale sequence splits canonically.

Proof. Note that, if G = SpecA, then as R is henselian, A =
∏
i=1Ai with each Ai a local

henselian ring, and each SpecAi corresponds to a connected component of G. Without loss of
generality, suppose G0 = SpecA1. As it contains the image of the unit section, the residue field
of A1 must be k = R/m. Thus G0×R SpecAi is connected. This implies that the multiplication
and the inverse morphisms send G0 to G0. Also, each Ai is flat over R, so this implies (i).

As G is finite flat, the quotient Gét is automatically finite flat. Also, the image of the identity
section is SpecR = G0/G0, and this is open as G0 ⊂ G is open. Let Gét = SpecAét, and let I ét

be the augmentation ideal of Aét. Then, this means that the complement of Spec(Aét/I ét) is

9
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closed, which implies that I is a direct factor of A, or I ét = (I ét)2, so Gét is étale. As the identity
component of an étale R-group scheme is just SpecR, any homomorphism from a connected
R-group scheme to an étale R-group scheme is trivial. This finishes (ii).

For (iii), note that, given an exact sequence 1 → G′ i−→ G
π−→ G′′ → 1, the restriction

π|G0 : G0 → G′′0 is faithfully flat, as it is the pullback of faithfully flat π by G′′0 → G′′. Also,
it is evident that ker(π|G0) = G′0, as it is connected. Thus, G 7→ G0 is an exact functor. Fron
this, abstract nonsense gives the exactness of G 7→ Gét.

For (iv), as the residue fields are perfect, taking the reduced subscheme is compatible with
products. Note also that a scheme over a field is étale iff it is geometrically reduced. Thus,
Gred → Gét is an isomorphism after a base change to k, which implies that Gred → Gét is an
isomorphism, via faithfully flat descent.

Recall that a characteristic p > 0 scheme G has the relative Frobenius F : G→ G(p), where
G(p) is the pullback of G by the absolute Frobenius of the base scheme. Using Frobenius, we
can classify finite flat group schemes over a perfect field of characteristic p.

Theorem 1.2.5 (e.g. [Sc2]). If k is a perfect field of characteristic p > 0, and if G = SpecA
is a connected finite flat k-group scheme, then

A ∼= k[x1, · · · , xr]/(xp
e1

1 , · · · , xperr ),

for some r ∈ N and e1, · · · , er ∈ N. These are well-defined invariants of G up to permutation
of ei’s.

Proof sketch. Note that G has a finite Frobenius height, which means that the composition
G → G(p) → G(p2) → · · · → G(pn) of relative Forbenii is zero for some finite n > 0. We can
then use an induction on Frobenius heights. The base case n = 1 and the induction step both
proceed as the proof of Cartier’s theorem, with a bit more careful look at coefficients of formal
derivatives.

This has a number of consequences.

Proposition 1.2.4. (i) The order of a connected finite flat group scheme over a field of char-
acteristic p is a power of p.

(ii) A finite flat group scheme of order invertible in the base is étale.
(iii) Let (R,m) be a complete discrete valuation ring with a perfect residue field k of char-

acteristic p. Then a finite flat connected group scheme G = SpecA over R satisfies

A ∼= R[[x1, · · · , xn]]/(f1, · · · , fn),

so that for each 1 ≤ i ≤ n, there exists ei ∈ N such that fi − xp
ei

i ∈ mR[x1, · · · , xn] is a
polynomial of degree < pei with respect to xi.

Proof. (i) A connected group scheme over a field is geometrically connected via faithfully flat
descent, so it follows from Theorem 1.2.5.

(ii) As we can check étaleness fiber by fiber, we can assume that the base is a field. Cartier’s
theorem (Theorem 1.2.2) deals with the case when the base is of characteristic 0. If the base is
of characteristic p > 0, by (i), the order being invertible implies that the connected component
is actually trivial. By the connected-étale exact sequence, the group is étale.

(iii) As A is a complete local finite flat R-algebra, by Theorem 1.2.5,

A⊗R k = k[x1, · · · , xn]/(xp
e1

1 , · · · , xpenn ).

10



Gyujin Oh There is no abelian scheme over Z

By Nakayama, the lifts of xi’s will generate A as an R-algebra. Thus, A ∼= R[[x1, · · · , xn]]/J
for some ideal J . As A is R-free, we know that J is a direct factor of R[[x1, · · · , xn]]. Thus,
J ⊗R k = (xp

e1

1 , · · · , xpenn ) is a direct factor of k[[x1, · · · , xn]]. We can therefore lift xp
ei

i ’s to J
to get generators fi’s of J . As the monomials {xa11 · · ·xann }0≤ai<pei generate A as an R-module,

so we can pick fi’s so that fi − xp
ei

i ’s are polynomials of xi-degree less than pei .

We record some results about classifying finite flat group schemes over a Dedekind domain,
which is our main case of interest. In particular, these imply that we can see things locally.

Proposition 1.2.5. For a finite flat group scheme G over a Dedekind domain R, the corre-
spondence H 7→ HK is a one-to-one correspondence between the set of closed flat R-subgroup
schemes of G and the set of closed flat K-subgroup schemes of GK .

Proof. Let G = SpecA. The inverse is given as follows. Suppose we are given a closed flat
K-subgroup scheme of GK = SpecAK , which just corresponds to a flat Hopf ideal J ⊂ AK , i.e.
c(J) ⊂ AK⊗J+J⊗AK , where c is the comultiplication. Then the inverse of this correspondence
is given by SpecAK/J 7→ SpecA/(J ∩ A), using that A →֒ AK . This is a flat ideal as flatness
over R is the same as being torsion-free over R.

Theorem 1.2.6 [Sc2, §5]. Let R be a noetherian domain, and p ∈ R. Let “R be the completion
of R with respect to the p-adic topology. Then, a finite flat R-group scheme G is completely
determined by G

R̂
, GR[1/p] and the isomorphism of these after base change to “R[1/p]. To be

more precise, the functor
G 7→ (G

R̂
, GR[1/p], idG

R̂
[1/p])

is an equivalence of categories from the category of finite flat group schemes over R to the
category of triples (G1, G2, φ), where G1, G2 are finite flat group schemes over “R,R[1/p], re-
spectively, and φ : (G1)R̂[1/p]

∼−→ (G2)R̂[1/p]
.

Proof sketch. It follows from the fact that “R and R[1/p] are faithfully flat over R, and the
functor

M 7→ (M ⊗R “R,M ⊗R R[1/p], idM⊗R̂[1/p]
)

is an equivalence of categories from the category of finitely genreated R-modules to the category
of triples (M1,M2, φ), where M1,M2 are finitely generated “R,R[1/p]-module, respectively, and
φ :M1 ⊗R̂ “R[1/p] ∼=M2 ⊗R[1/p]

“R[1/p], which is an easy algebra.

We now know quite well what finite étale group schemes and finite flat connected group
schemes look like. We thus record some results about extensions of some finite flat group
scheme by another finite flat group scheme. This will be useful since, given a finite flat group
scheme, we proceed by first figuring out what simple objects in the given category are, and see
how Jordan-Hölder composition series comes up with to form the full group via repeated group
extensionos.

Proposition 1.2.6. Let R be a henselian local ring.
(i) An extension of a connected finite flat R-group scheme by a connected finite flat R-group

scheme is connected.
(ii) An extension of a finite étale R-group scheme by a finite étale R-group scheme is étale.
(iii) An extension of a connected finite flat R-group scheme by a finite étale R-group scheme

is a trivial extension, i.e. the extension is a product of the two groups.

11
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Proof. (i) is immediate by taking an exact functor G 7→ Gét to the connected-étale sequence
to observe that the étale component is trivial, so the given group is connected. (ii) is also
immediate by using G 7→ G0 instead. By the same reason, if G is an extension of a connected
H by an étale H ′, then H = G0, H ′ = Gét. Thus a splitting and a retraction are given by the
connected-étale sequence of G.

It will be very nice if we can classify extensions via an analogue of Ext functor in homological
algebra. Even though the category of finite flat group schemes is not very nice, we know that
it embeds into a very nice abelian category, the category of fppf sheaves. On that category, we
can certainly define the Exti(·, ·)fppf functor, but we do not know yet if the functor Ext1 really
parametrizes extensions as finite flat group schemes, not as fppf sheaves.

Proposition 1.2.7. In the category of fppf sheaves over a base scheme S, an extension of a
representable sheaf by a representable sheaf is representable.

Proof. We only need to show that the extension is locally representable [SGA1, Exposé VI]; it is
another way of describing faithfully flat descent. However, an extension is split locally, so locally
the extension is a product of the two representable sheaves, which is obviously representable.

Thus, Ext1S(G,H)fppf for finite flat S-group schemes G,H really parametrizes extensions
as finite flat S-group schemes. We can use the usual long exact sequences for Ext. We also
have a local-global compatibility exact sequence, which is an analogue of Mayer-Vietoris exact
sequence. From now on we drop the subscript fppf.

Theorem 1.2.7 (Mayer-Vietoris Exact Sequence, [Sc2, §5]). Let G,H be p-power order finite
flat group schemes over a noetherian ring R. Then,

0 → HomR(G,H)→ Hom
R̂
(G,H)×HomR[1/p](G,H)→ Hom

R̂[1/p]
(G,H)

δ−→ Ext1R(G,H)→ Ext1
R̂
(G,H)× Ext1R[1/p](G,H)→ Ext

R̂[1/p]
(G,H)

is exact, where δ is defined by

δα = ((G×H)
R̂
, (G×H)R[1/p], idH idG+α)

for α ∈ Hom
R̂[1/p]

(G,H).

1.2.1.7 Prolongations of Commutative p-Group Schemes

We are interested in how much the generic fiber of a finite flat group scheme determines the
original group. The results of Raynaud ([R], [Tat1, §4], [Fo1, 3.1]) give us some control when
the base ring is mildly ramified. Throughout this section, let R be a discrete valuation ring
of mixed characteristic, K be its fraction field, π a uniformizer, k the residue field, p the
residue characteristic, v the normalized valuation (so that v(π) = 1), and e = v(p) the absolute
ramification index.

Let G0 = Spec(A0) be a finite (flat) commutative K-group scheme. A finite flat R-group
scheme G whose generic fiber GK is isomorphic to G0 is called a prolongation of G0. In terms
of R-algebras, a prolongation G = SpecA comes from a finite R-subalgebra A of A0, which
contains R and spans A0 over K, such that the comultiplication c : A0 → A0 ⊗ A0 sends
c(A) ⊂ A⊗R A. By taking the Cartier dual, this is equivalent to that AD ⊃ ADAD.

For two prolongations G = SpecA and G′ = SpecA′ of G0, we write G ≥ G′ if A ⊃ A′.
Even though this is a partial order, any two prolongation has a least upper bound and a greatest
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lower bound [Tat1, Proposition 4.1.1]. This is because, for two prolongations G = SpecA and
G′ = SpecA′, SpecAA′ is also a prolongation, which is obviously a least upper bound, and a
greatest lower bound is achieved via Cartier duality. This means that, if G0 has a prolongation,
it has a maximal prolongation G+ and a minimal prolongation G−.

The maximal and minimal prolongations G+, G− are somewhat more understandable than
a general prolongation G. In particular, for certain cases, both will become Raynaud F -module
schemes, which can be completely classified. Recall that, given a finite field F , a Raynaud F -
module scheme is a finite flat F -module R-scheme4of the same order as F . We then specifically
have the following.

Proposition 1.2.8 [Tat1, Proposition 4.3.2]. Suppose that G0 is a simple commutative K-
group scheme of p-power order which admits a prolongation. Suppose further that R is strictly
henselian (i.e. a henselian ring with separably closed residue field). Then, End(G0) = End(G+) =
End(G−) =: F is a finite field, and G0, G

+, G− are Raynaud F -module schemes.

Proof sketch. As Gal(K/K) acts on G0(K) through an abelian quotient group [Tat1, Lemma
4.3.1], G0(K) is a 1-dimensional vector space over the residue field of Z[Gal(K/K)], which we
call F . This F has the same number of elements as G0(K), so it is necessarily finite, and
F = End(G0(K)) = End(G0). Thus G0 is a Raynaud F -module scheme. Note also that an
automorphism of G0 extends to G+ and G− as they are unique up to isomorphism. As we can
also construct the inverse by taking the generic fiber, we deduce that End(G0) = End(G+) =
End(G−). Thus, G+ and G− are F -module schemes over R. As the R-orders of G+ and G− are
equal to the K-order of G0, it follows that G

+, G− are also Raynaud F -module schemes.

If R has enough roots of unity, we can completely classify Raynaud F -module schemes over
R, see for example [Tat1, Theorem 4.4.1]. Using this, we can partially answer the question we
originally asked.

Theorem 1.2.8 ([R, 3.3], [Fo1, Théorème 2]). Let R be a discrete valuation ring of mixed
characteristic (0, p), and let K be its fraction field. Suppose that e < p− 1.

(i) A finite flat commutative K-group scheme killed by a power of p admits at most one
finite flat prolongation over R. In other words, for a finite flat commutative R-group scheme G
killed by a power of p, G is the unique prolongation of GK .

(ii) The generic fiber functor from the category of finite flat commutative R-groups killed
by a p-power to the category of finite flat commutative K-groups killed by a p-power is fully
faithful, and its image is stable under taking sub-objects and quotients.

For a proof, a reader is advised to consult with [Tat1, §4] and [R, Paragraphe 3].

1.2.2 p-divisible Groups

1.2.2.1 Basic Definitions and Properties

Motivated from the construction of Tate modules of abelian varieties, we define the notion of
p-divisible groups.

Definition 1.2.1 (p-divisible Group). For a prime p, an integer h ≥ 0 and a scheme S, a
p-divisible group of height h over S is a directed system G = {Gn} of finite flat commutative
group schemes over S such that each Gn is pn-torsion of order pnh, and each transition map
in : Gn → Gn+1 is the kernel of [pn] : Gn+1 → Gn+1, for all n ≥ 1.

4F -module R-schemes are similarly defined as group schemes, via functor of points approach, i.e. R-schemes
with compatible F -actions on functors of points.

13
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A homomorphism f : G → H of p-divisible groups is a compatible collection of S-group
scheme homomorphisms fn : Gn → Hn.

Example 1.2.3. 1. The simplest example is the constant group Qp/Zp = (Z/pnZ)n with
standard inclusions.

2. The next simplest example is the diagonalizable group µp∞ = (µpn)n with standard inclu-
sions. This can also be constructed by taking pn-torsions of the group scheme Gm; it is
therefore sometimes denoted as Gm(p).

3. A basic yet rich and important example is (A[pn])n≥1 for an abelian scheme A over S. This
is denoted as A(p). We will study this construction in detail with applications towards
the theory of abelian varieties/schemes in Section 1.2.3.7.

Even though many applications of theory of p-divisible groups are geared towards to the
theory of abelian varieties, we will only focus on algebraic preliminaries in this section. In
particular, some are immediate from the theory of finite flat group schemes.

• In particular, for a p-divisible group G = (Gn, in), the sequence

0→ Gn → Gn+m
[pn]−−→ Gn+m

is exact. This factors through the pm-torsion of Gn+m, which is Gm. Therefore, we have
a short exact sequence

0→ Gn → Gn+m
[pn]−−→ Gm → 0.

• Connected-Étale Sequence. Let R be a henselian local ring. Then the connected-
étale sequence of finite flat group scheme over R extends to p-divisible groups. Namely, if
G = (Gn, in) is a p-divisible group over R, then G0 := (G0

n, in) as well as G
ét := (Gét

n , in)
forms a p-divisible group over R so that we have an exact sequence

0→ G0 → G→ Gét → 0.

This is true as the functors Gn 7→ Gét
n and Gn 7→ G0

n are exact. Using this notation, we
say a p-divisible group G is connected (étale, resp.) if G = G0 (G = Gét, resp.).

• Cartier Duality. For a p-divisible group G = (Gn, in) over a noetherian ring R, we can
define the Cartier dual GD = (GDn , [p]

D). It is indeed a p-divisible group as

0→ GDn
[p]D−−→ GDn+1

[pn]D−−−→ GDn+1

is a dual of an exact sequence

Gn+1
[pn]−−→ Gn+1

[p]−→ Gn → 0.

• Relative Frobenius. As for the scheme case, given a p-divisible group G, there is a
relative Frobenius F : G → G(p) with a p-divisible group G(p). Note that [p] : G → G

factors through F via G
F−→ G(p) V−→ G, and V : G(p) → G is called the Verschiebung.

• Tate module. Inspired from the theory of abelian varieties, we can try to define the Tate
module of a p-divisible group over a field. Let G be a p-divisible group over a field K of

14
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characteristic different from p. Fix an algebraic closure K of K. The Tate module of G,
T (G), is a Gal(K/K)-module defined as

T (G) = lim←−
n

Gn(K),

where the limit is taken with respect to transition maps [p] : Gn+1 → Gn. As (Gn)K
is étale by Proposition 1.2.4(ii), T (G) is a Zp-module isomorphic to Zhp , where h is the
height of G.

More generally, over a connected base scheme S, with a choice of geometric point s ∈ S,
for a p-divisible group G over S, we can define the Tate module T (G) as

T (G) = lim←−
n

OGn,s,

where the sheaves are over the étale topology of S. The Tate module is a continuous
π1,ét(S, s)-module, and its definition agrees with the above one when S = SpecK. More-
over, if G is finite étale over S, then by the same reason T (G) is a finite free Zp-module,
with the rank equal to the height of G.

1.2.2.2 Formal Lie Groups

Let R be a complete noetherian local ring with residue field k of characteristic p > 0. We can
classify connected p-divisible groups over R in terms of formal Lie groups.

Definition 1.2.2 (Formal Lie Group). An n-dimensional formal Lie group Γ over R is a
homomorphism m : A → A “⊗RA , where A = R[[x1, · · · , xn]] and “⊗ is the completed tensor
product with respect to the obvious adic topology, making A a Hopf algebra. More concretely,
f satisfies the following axioms, for x, y, z ∈ A .

(i) x = f(x, 0) = f(0, x).
(ii) f(x, f(y, z)) = f(f(x, y), z).
(iii) f(x, y) = f(y, x).

We denote x∗y for f(x, y), and [p](x) = x∗ · · · ∗x, x multiplied with itself p times. A formal
Lie group Γ is said to be divisible if [p] : A → A is finite free.

For a divisible formal Lie group Γ, we can obtain a p-divisible group Γ(p) = (Γ[pm])m where
Γ[pm] is the kernel of [pm] : Γ→ Γ; more concretely,

Γ[pm] = SpecAm := SpecA /([pm]x1, · · · , [pm]xn),

and the transition maps are natural inclusions. Note that, as Am is local, Γ(p) is a connected
p-divisible group.

It turns out that this functor is an equivalence of categories.

Theorem 1.2.9 [Tat2, Proposition 1]. Let R be a complete noetherian local ring with perfect
residue field of characteristic p > 0. Then Γ 7→ Γ(p) is an equivalence of categories from the
category of divisible formal Lie groups over R to the category of connected p-divisible groups
over R.

Proof. Let mR be the maximal ideal of R, and let I = (x1, · · · , xn) be the augmentation ideal
of A = R[[x1, · · · , xn]]. Then the maximal ideal of A is M = mRA + I. Let [p] also denote
the corresponding R-algebra map A → A . Note that, as [p](xi) = pxi(mod I2), it follows that
[p](I) ⊂ pI + I2 ⊂MI, or [pn](I) ⊂MnI. As each ideal mn

RA + [p]n(I) is open, it follows that

15
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they form a fundamental system of neighborhoods of 0 in the M -adic topology of A . As A is
M -adically complete, A = lim←−A /[pn](I). Thus, a formal Lie group Γ can be recovered from
Γ(p), which means that the functor is fully faithful.

Let k be the residue field of R. Let Γ = (Γn = Spec(An)) be our connected p-divisible group.
As An’s form a projective system, letting A = lim←−An, the group laws of An’s induce a group

law on A, i.e. a homomorphisim A→ A“⊗RA. Thus, it remains to show that A is isomorphic to
R[[x1, · · · , xn]]. We will show that the general case will follow from the case of R = k. Assuming
the case R = k, we have a topological isomorphism A = lim←−An

∼= k[[x1, · · · , xm]]. Choose

liftings R[[x1, · · · , xm]]→ An of the quotients k[[x1, · · · , xm]] ։ An so that they are compatible
to each other. This is possible because An’s are finite free R-modules and transition maps
are surjective. Nakayama’s lemma implies that the maps R[[x1, · · · , xm]] → An is surjective.

Thus, the natural map R[[x1, · · · , xm]] f−→ A is surjective as well. This is also split as An’s
are finite free R-modules with surjective transition maps, A is also a free R-module. Thus,
ker(f) ⊗ k = ker(f ⊗ k) = 0, which by Nakayama again implies that ker(f) = 0. Therefore, A
is isomorphic to R[[x1, · · · , xm]].

Now it remains to prove the case R = k. Using the same notation as the above paragraph,

we have Hn = ker(Γ
Fn

−−→ Γ(pn)) = SpecBn, the kernel of n-th repeated applications of (relative)
Frobenius. It is a finite flat commutative group scheme over k with p-power torsion. Thus,
Hn ⊂ Γn, and Γn ⊂ Hlogp |Γn| by Deligne’s theorem, Theorem 1.2.1. Therefore, A = lim←−An =
lim←−Bn, and its maximal ideal is I = lim←− In, where In ⊂ Bn is the maximal ideal.

Let x1, · · · , xm be elements of I whose images form a k-basis of I1/I
2
1 . Note that as H1 =

ker(F : Hn → H
(p)
n ), we have In/I

2
n
∼= I1/I

2
1 . Thus, x1, · · · , xm will also form a k-basis of In/I

2
n

for all n ≥ 1. Consider the map

un : k[x1, · · · , xm]→ Bn,

sending xi to xi. This is surjective by Nakayama, and the kernel contains (xp
n

1 , · · · , xp
n

m ), as Fn

kills Hn = SpecBn. Thus, we get a surjective homomorphism

un : k[x1, · · · , xm]/(xp
n

1 , · · · , xp
n

m )→ Bn.

On the other hand, from the exact sequence

0→ H1 → Hn+1 → Hn → 0,

by induction, it follows that |Hn| = |H1|n, where |Hn| denotes the order of Hn over k. The
upshot is that H1 is a connected finite flat k-group scheme over a perfect field of characteristic
p > 0, with Frobenius height 1. Therefore, by Theorem 1.2.5, it follows that

B1
∼= k[x1, · · · , xm]/(xp1, · · · , xpm).

Therefore, by considering the k-dimensions, we deduce that un’s are isomorphisms. Passing to
the limit, we get an isomorphism k[[x1, · · · , xm]]→ A, as desired.

With this equivalence in hand, we can define the dimension of a p-divisible group G over
a complete noetherian local ring to be the dimension of the formal Lie group corresponding to
G0.

Proposition 1.2.9 [Tat2, Proposition 3]. Let G be a p-divisible group over a complete noethe-
rian local ring of height h. Then h = dimG+ dimGD.
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Proof. As [p] = V ◦ F , we have a short exact sequence

0→ kerF → ker[p]
F−→ kerV → 0.

Note that kerF ⊂ G0, so kerF coincides with the analogous map on a smooth formal group,
which is a map k[[x1, · · · , xdimG]]→ k[[x1, · · · , xdimG]] sending xi 7→ xpi . Thus, | kerF | = pdimG.

By Cartier duality, | kerV | = pdimGD
. Finally, we know | ker[p]| = ph. Thus, h = dimG +

dimGD.

1.2.2.3 Passage to Special Fibers, Generic Fibers and Tate Modules

Recall that the most important examples of p-divisible groups are those coming from abelian
varieties. Thus, one is naturally interested in a classification and deformation of p-divisible
groups. By the equivalence of categories we have seen in Section 1.2.1.4, we first note that étale
p-divisible groups are classified by their Tate modules.

Proposition 1.2.10. Over a connected scheme S, the functor G 7→ T (G) is an equivalence
of categories from the category of étale p-divisible groups over S to the category of finite free
Zp-modules with a continuous Zp-linear Galois action of π1,ét(S, s), where s is a fixed geometric
point of S. In particular, if p is invertible on S, then G 7→ T (G) is an equivalence of categories
from the category of p-divisible groups.

Proof. All finite flat group schemes with p-power torsion over a field of characteristic 6= p are
étale by Proposition 1.2.4(ii), and étaleness is checked fiberwise, so the second assertion follows
from the first assertion. The first statement is immediate via the equivalence of categories
between the category of étale K-group schemes and the category of finite continuous π1,ét(S, s)-
modules (Section 1.2.1.4).

This gives a nice connection to abelian varieties in terms of their p-divisible groups, which
are purely algebraic. They are crucial in the deformation theory of abelian varieties and p-
divisible groups. For example, a theorem of Serre-Tate [I, Corollaire A.1.3] says that liftings
of abelian schemes over a nilpotent thickening are completely classified by the liftings of the
corresponding p-divisible groups.

Also, this itself is a very useful tool in studying p-divisible groups algebraically, which is
often complemented with the connected-étale sequence and the classification of connected p-
divisible groups in terms of formal Lie groups. For example, as with the abelian schemes, we
have the following property.

Proposition 1.2.11. For a local noetherian ring (R,m) with residue field k of characteristic
p > 0, the special fiber functor G 7→ Gk from the category of p-divisible groups over R to the
category of p-divisible groups over k is faithful. Moreover, if R is henselian and k is a perfect
field, then this functor is an equivalence of categories.

Proof. We first deduce the second statement from the first statement. As we only need to show
the essential surjectivity of the special fiber functor G 7→ Gk, it is enough to show that, given
a p-divisible group G0 over k, there is a lift G over R. As k is perfect, by Proposition 1.2.3(iv),
the connected-étale sequence is split, so that G0 = G0

0 ×Gét
0 . Recall that, for a henselian local

ring R with residue field k, the functor X 7→ X ⊗R k is an equivalence of categories from the
category of finite étale R-schemes to the category of finite étale k-schemes. Thus, Gét

0 has a
(unique) lift to R, which is an étale p-divisible group over R. Thus, we can assume that G0

is connected. On the other hand, by Theorem 1.2.9, we know that G0 comes from a formal
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Lie group Γ0 over k. As R is henselian, one can lift the group law of the formal Lie group Γ0

coefficient-wise to a formal Lie group Γ over R. Thus, G0 = Γ0(p) = (Γ(p))k, as desired.
We now prove the first statement. Suppose G,H are p-divisible groups over R, and f : G→

H is a morphism where fk : Gk → Hk is a zero map. By the equivalence of categories for étale
and connected p-divisible groups, Proposition 1.2.10 and Theorem 1.2.9, the proposition follows
when G,H are both étale or when they are both connected. Thus, we only need to prove the
two cases, when G is étale and H is connected, and when G is connected and H is étale. As
there is only a trivial map from a connected finite flat group scheme to a finite étale group
scheme, we can therefore assume that G is étale and H is connected.

We will inductively prove that f⊗RR/mk = 0 for all k ≥ 1. We already know f⊗RR/m = 0.
For the induction step, it is sufficient to prove the following: for an artin local ring (R,m) with
an ideal I ⊂ R with mI = 0, if f ⊗R R/I = 0, then f = 0. As the property of a map being zero
can be checked over the strict henselization of R, we can assume that R is strictly henselian, so
that G, an étale R-scheme, is constant. Thus, we can assume that G = Qp/Zp. Then, a map
f corresponds to a sequence of p-power compatible elements in ker(Hn(R) → Hn(R/I)). Let
Hn = SpecBn. As H is connected, we can think of Bn as the quotient of the formal power
series ring B = lim←−Bn. As Im = 0, it follows that the kernel of each map Hn(R) → Hn(R/I)
is killed by [p]. Thus, f ◦ [p] = 0. As [p] is an isogeny, it follows that f = 0.

As the problem of integral models of abelian varieties is of great interest, we can also think
of the analogous problem for p-divisible groups. The Tate’s theorem in [Tat2] states that the
generic fiber functor is fully faithful.

Theorem 1.2.10 (Tate, [Tat2, Theorem 4]). Let R be a noetherian normal domain whose field
of fractions K is of characteristic 0. Then, the generic fiber functor G 7→ GK from the category
of p-divisible groups over R to the category of p-divisible groups over K is fully faithful. In other
words, for p-divisible groups G,H over R, the map

HomR(G,H)→ HomK(G⊗R K,H ⊗R K)

is bijective.

Proof sketch. One first proves that, given a p-divisible group Γ over R, any Zp-direct sum-
mand of T (Γ) arises from a p-divisible subgroup of Γ. Then, given f ∈ HomK(GK , HK) =
HomGal(K/K)(T (G), T (H)), we construct the extension in HomR(G,H) via considering the

graph of f in T (G) × T (H). The corresponding p-divisible group in G × H then in fact is
the graph of an R-morphism G→ H.

It is regarded as a starting point of p-adic Hodge theory; for example, one can deduce a
Hodge-Tate decomposition for p-divisible groups [Tat2, Theorem 3] from this. The Hodge-Tate
decomposition, and more generally p-adic Hodge theory, will be discussed in detail in the later
sections.

We state the de Jong’s generalization of the Tate’s theorem over any base.

Theorem 1.2.11 (de Jong, [dJ, Corollary 1.2]). Let R be a discrete valuation ring, and G,H
be p-divisible groups over R. Let K = Frac(R). Then,

HomR(G,H)→ HomK(G⊗R K,H ⊗R K)

is bijective.

18



Gyujin Oh There is no abelian scheme over Z

1.2.2.4 Deformation of p-divisible Groups

Grothendieck developed a theory of deformations of (truncated) p-divisible groups, which in-
volves with the obstruction and classification of infinitesimal liftings of (truncated) p-divisible
groups.

Remark 1.2.4. In a discussion of this kind of flavor, p-divisible groups are more often called
Barsotti-Tate groups, following Grothendieck’s terminology.

Definition 1.2.3 (n-Truncated p-divisible Group). An n-truncated p-divisible group (or n-
truncated Barsotti-Tate groups) G over a base scheme S is an abelian sheaf on Sfppf which
satisfies the following.

1. G is annihilated by pn.

2. G is flat over the constant sheaf Z/pnZ.

3. G(1) := ker[p]G is finite locally free over S.

4. If n = 1, then kerVG0 = imFG0, where V, F are the Verschiebung and the Frobenius
morphisms respectively, and G0 is the reduction of G modulo p (i.e. the closed subscheme
defined by pOG).

The deformation theory of finite flat group schemes of n-torsion is particularly nice.5 Using
it, Grothendieck gives the following result on infinitesimal lifting of (truncated) p-divisible
groups.

Theorem 1.2.12 (Grothendieck, [I, Théorème 4.4]). Let n ≥ 1, p be a prime number and
i : S → S′ be a closed immersion defined by a nilpotent ideal. Suppose that S′ is affine.

(i) If G is an n-truncated p-divisible group over S, then there exists an n-truncated p-divisible
group G′ over S′ extending G.

(ii) If H is a p-divisible group over S, then there exists a p-divisible group H ′ over S′

extending G.
(iii) Let H be a p-divisible group over S, then every n-truncated p-divisible group G′ over S′

extending Hn comes from a p-divisible group H ′ over S′ extending H, i.e. G′ = H ′
n. This lift

is unique if pNOS = 0 for some N ≥ 1 and S ⊂ S′ is defined by a nilpotent ideal of level ≤ n
N .

(iv) If S is the spectrum of a complete noetherian ring with perfect residue field, then for
any n-truncated p-divisible group G over S, there exists a p-divisible group H over S such that
G = Hn.

1.2.2.5 Classification of p-divisible Groups

We have observed that p-divisible groups are more or less classified by their Tate modules, over a
base on which p is invertible. We will look at several cases where there is a very good alternative,
which all started from the case when the base is Spec k for a perfect field k of characteristic
p. This is due to Dieudonné, so the theory is sometimes called the Dieudonné theory. This
line of thought is continued in Fontaine’s study of filtered (φ,N)-modules and their relations to
crystalline and semi-stable representations, which will be discussed in the next chapter.

For this section, we let k be a perfect field of characteristic p > 0, and let W (k) be the ring
of Witt vectors over k (see for example [Se, II.6] for the definition). Let ϕ : W (k) → W (k) be
the absolute Frobenius, i.e. the automorphism lifting the p-power map on k.

5For a general statement on the obstruction of infinitesimal lifting of finite flat group schemes, see [I, Propo-
sition 3.1].
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Definition 1.2.4 (Dieudonné Ring). The Dieudonné ring of k is the associative ring Dk =
W (k)[F, V ] subject to the relations FV = V F = p, Fc = ϕ(c)F for c ∈ W (k) and cV = V ϕ(c)
for c ∈W (k).

Obvious from the definitions, F and V are defined to be analogous to the Frobenius and the
Verschiebung maps, respectively. Note that a left Dk-module is just aW (k)-module D with a ϕ-
semilinear map F : D → D and a ϕ−1-semilinear map V : D → D such that FV = V F = [p]D.
A left Dk-module is called a Dieudonné module. It is the Dieudonné module that replaces the
role of the Tate module. The main result in this case, applied for both finite flat commutative
group schemes of p-power order and p-divisible groups, is summarized as follows.

Theorem 1.2.13 [BC, Theorem 7.2.4]. There is an additive anti-equivalence of categories
G 7→ D(G) from the category of finite flat commutative k-group schemes of p-power order to
the category of Dieudonné modules of finite W (k)-length, with the following properties.

1. The order of G is pℓW (k)(D(G)), where ℓW (k)(D(G)) is the W (k)-length of D(G).

2. If k′/k is an extension of perfect fields , then W (k′) ⊗W (k) D(G) ∼= D(Gk′) naturally as
left Dk′-modules. In particular, for the absolute Frobenius map ϕ : k → k, ϕ∗(D(G)) ∼=
D(G(p)) as W (k)-modules.

3. The action of F on D(G) is described by the W (k)-linear map

ϕ∗(D(G)) ∼= D(G(p))
D(FG/k)−−−−−→ D(G),

wherer FG/k : G→ G(p) is the relative Frobenius. Moreover, G is connected if and only if
F is nilpotent on D(G).

4. The k-vector space D(G)/F D(G) is canonically identified with the k-linear dual t∨G :=
Homk(tG, k) of the tangent space tG := ker(G(k[ǫ]/(ǫ2)) → G(k)). In particular, G is
étale if and only if F is bijective on D(G).

Theorem 1.2.14 [BC, Proposition 7.2.6]. The functor G 7→ D(G) := lim←−D(Gn) is an anti-
equivalence of categories from the category of p-divisible groups over k and the category of finite
free W (k)-modules D equipped with a ϕ-semilinear map F : D → D such that pD ⊂ F (D), with
the following properties.

1. The height of G is the W (k)-rank of D(G).

2. The equivalence is compatible with any extension k′/k of perfect fields, in the sense of
Theorem 1.2.13.

3. For n ≥ 1, D(Gn) ∼= D(G)/(pn), and this isomorphism is compatible with change in n.

Similarly, on W (k), a p-divisible group is classified by its Dieudonné module of the special
fiber, plus some lifting data.

Definition 1.2.5 (Honda System). A Honda system over W (k) is a pair (M,L) of a finite
free W (k)-module M and a W (k)-submodule L equipped with a ϕ-semilinear map F :M →M
satisfying that pM ⊂ F (M) and that L/pL→M/F (M) is an isomorphism. If F is topologically
nilpotent, the Honda system is called connected.

A finite Honda system over W (k) is a pair (M,L) consisting of a Dieudonné module M of
finite W (k)-length and a W (k)-submodule L such that V |L : L → M is injective and L/pL →
M/F (M) is an isomorphism. If F is nilpotent, the finite Honda system is called connected.
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It turns out that it is the category of Honda systems that classifies the p-divisible groups
over W (k), which is due to Fontaine.

Theorem 1.2.15 [BC, Theorem 7.2.10]. Let p > 2.
(i) There is a natural anti-equivalence of categories G 7→ (D(Gk), L(G)) from the category

of p-divisible groups over W (k) to the category of Honda systems.
(ii) There is a natural anti-equivalence of categories H 7→ (D(Hk), L(H)) from the category

of finite flat commutative group schemes of p-power order over W (k) to the category of finite
Honda systems.

(iii) The two anti-equivalences are compatible with a perfect residue field extension. Also, the
two anti-equivalences are compatible to each other, in the sense that if G is a p-divisible group
over W (k), then (D((Gn)k), L(Gn)) is naturally identified with (D(Gk)/(p

n), L(G)/(pn)).
Moreover, the above results are true for p = 2 when we restrict ourselves to connected objects

on both sides.

This can be subsequently generalized to the case of a perfect discrete valuation ring; in that
case, p-divisible groups are classified by the crystalline Dieudonné functor (cf. [BBM, 3.3]). We
will be subsequently observing that other p-adic Hodge theoretic objects (e.g. crystalline/semi-
stable representations) can also be classified by (semi-)linear algebraic data. The development
of crystalline Dieudonné theory in [BBM] relies crucially on the following beautiful theorem by
Raynaud; we record it here as we will need the theorem for other purpose. The meaning of the
theorem should be clear after we define the notion of abelian schemes.

Theorem 1.2.16 (Raynaud, [BBM, Théorème 3.1.1]). Let G be a finite flat commutative group
scheme over any base S. For every x ∈ S, there is a (Zariski) open neighborhood U ⊂ S such
that there is a closed U -immersion of GU into some abelian scheme AU over U .

1.2.3 Abelian Varieties and Abelian Schemes

1.2.3.1 Rigidity and Commutativity

Over a base scheme S, an abelian scheme over S is an S-group scheme A→ S which is smooth6,
proper with (geometrically) connected fibers7. If the base scheme S = Spec k is the spectrum
of a field, we instead use the term abelian variety. Namely, we define an abelian variety over
a field k to be a smooth, connected, proper k-group scheme, which is the usual definition of an
abelian variety.

There are many basic results for abelian varieties that follow from only the definition of
abelian varieties, including rigidity, commutativity, existence of the dual. We postpone the
discussion of the dual abelian variety to the next section, as we will need to invoke some general
facts about existence of Picard schemes.

Proposition 1.2.12 (Rigidity Lemma). Let X,Y be geometrically integral schemes of finite type
over a field k, and Z be a separated k-scheme. Suppose that X is proper. Let f : X×kY → Z be
a k-morphism such that f evaluated at some geometric point y0 ∈ Y (k) is a constant morphism.
Then, f is independent of X, i.e. there is a unique k-morphism g : Y → Z such that f = g◦pr2,
where pr2 : X ×k Y is the projection.

Proof. Uniqueness is immediate, as X ×k Y → Y is surjective and Y is reduced. By Galois
descent, we can pass the problem to the separable closure ks, or assume that k = ks. An

6We differ the notion of smoothness from formal smoothness, i.e. we require a smooth morphism to be locally
of finite presentation.

7There is a parenthesis since a geometrically connected group scheme over a field is automatically connected.
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advantage here is that X is guaranteed to have a k-rational point, since, for example, X has
a dense open (in particular, nonempty) smooth locus, a locally finite type scheme over a field
has a very dense subset of closed points, and a smooth point over a field has a finite separable
residue field extension (cf. [Stacks, Tag 04QM]). Pick x0 ∈ X(k), and let g(y) = f(x0, y). It is
sufficient to show that f = g ◦ pr2. By faithfully flat descent, we can extend the base field to
k. Suppose that f(X × {y0}) = {z0}, which was the assumption. Pick an affine open U ⊂ Z of
z0, then W := X ×k Y − f−1(U) is closed. As X is proper, pr2(W ) is closed in Y , which does
not contain y0. Thus, V = Y − pr2(W ) is a nonempty open neighborhood of y0. We know that
f maps X ×k V into U . Since X is proper and U is affine, for any point v0 ∈ V , X ×k {v0} is
a point, which means that f |X×kV = g ◦ pr2|X×kV , namely they are identified on a dense open
subset. As these two are maps from a reduced scheme to a separated scheme, f = g ◦ pr2.

Corollary 1.2.1. Let A,A′ be abelian varieties over a field k.
(i) Any morphism of pointed k-varieties f : (A, e)→ (A′, e′) is a homomorphism, where e, e′

are the identity sections of A,A′, respectively.
(ii) A is commutative.

Proof. (i) Consider the map h : A ×k A → A′ defined by (a1, a2) 7→ f(a1, a2)f(a2)
−1f(a1)

−1.
By Proposition 1.2.12, this is a constant map to e′.

(ii) Apply (i) to the inverse map of A.

As we are also interested in the problem of reduction of abelian varieties, we will recall those
basic properties in a more general setting of abelian schemes.

Proposition 1.2.13 (Rigidity Lemma, [MFK, Proposition 6.1]). Given an S-morphism f :
X → Y , i.e. a commutative diagram

X
f

//

p
��
❅❅

❅❅
❅❅

❅❅
Y

q
��⑧⑧
⑧⑧
⑧⑧
⑧⑧

S

suppose S is connected, p is flat, proper and H0(Xs,OXs) = κ(s) for all s ∈ S. For a point
s ∈ S, if f(Xs) is consisted of one point, then there is a section η : S → Y of q such that
f = η ◦ p.

Proof sketch. As p is faithfully flat, we can extend the base to X and use the faithfully flat
descent. On this base, X → S has a section, so we proceed like the proof of rigidity lemma over
a field.

Corollary 1.2.2. Let A be an abelian scheme over a base scheme S.
(i) For any S-group scheme G, an S-morphism f : A→ G taking the identity to the identity

is a homomorphism.
(ii) A is commutative.

Proof. (i) Apply the Rigidity Lemma, Proposition 1.2.13, to

(f ◦mA, pr2) · (f ◦mA ◦ (idA, eA ◦ p), idA)−1 : A×S A→ G×S A,

where mA : A ×S A → A, eA : S → A and p : A → S are the multiplication map, the
identity section and the structure map of A, respectively, and (−) · (−), (−)−1 are from the
group structure of the A-group scheme G×S A.

(ii) Apply (i) to the inverse map of A.
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1.2.3.2 Picard Schemes and Existence of Dual Abelian Schemes

Recall that the Picard group Pic(X) of a scheme X is the group of isomorphism classes of
invertible sheaves on X. Its rigidified variant is often representable by a scheme or an algebraic
space, and it is called the Picard scheme.

Definition 1.2.6 (Relative Picard Functor). For a separated finitely presented morphism f :
X → S, the relative Picard functor PicX/S, from the category of locally Noetherian S-schemes
to the category of abelian groups, is defined by

PicX/S(T ) := Pic(XT )/Pic(T ).

The open subfunctor Pic0X/S of PicX/S is the subgroup of invertible sheaves having degree 0

on all geometric fibers. Equivalently, it is the subset of fiberwise algebraically trivial8 invertible
sheaves.

This is the rigidified variant of the Picard group by the following.

Lemma 1.2.1 [FGA, Lemma 9.2.9]. Suppose that f : X → S has a section g. For an S-scheme
T ,

®
isomorphism classes of (L, u) where L is an

invertible sheaf on XT and u : OT ∼−→ g∗TL is an isomorphism

´
→ PicX/S(T ),

(L, u) 7→ L

is an isomorphism. Along this isomorphism, Pic0X/S corresponds to the pairs (L, u) with L
having degree 0 on all (geometric) fibers.

It is shown that, if f : X → S is proper and flat, PicX/S is representable.

Theorem 1.2.17. Let f : X → S be a flat, proper and finitely presented map.
(i) (Grothendieck/Oort-Murre, [FGA, Corollary 9.4.18.3]) If S = Spec k is the spectrum of

a field k, and X is geometrically reduced, geometrically connected and X(k) 6= ∅, then PicX/k is
represented by a locally finite type k-scheme, which is a disjoint union of quasiprojective open
S-subschemes.

(ii) (Artin, [FGA, Theorem 9.4.18.6]) Assume that the formation of f∗OX commutes with
changing S; namely, for every S′ → S, we have f ′∗OX′ = OS′ ⊗OS

f∗OX , where X ′ = X ×S S′

and f ′ : X ′ → S′ is the pullback of f . Then PicX/S is represented by an algebraic space locally
of finite presentation over S.

(iii) [BLR, Theorem 8.4.3] If the formation of f∗OX commutes with changing S and f has
integral geometric fibers, then PicX/S is separated over S.

We will not recall the precise definition of an algebraic space. Rather, we will just regard it
as some kind of a generalized scheme. We define an abelian algebraic space over a base scheme S
to be a smooth, proper algebraic space over S with geometrically connected fibers. Even though
we don’t really know what an algebraic space is, we can make this definition rigorous by using
the functor of points approach, given that we already know that an algebraic space is locally of
finite presentation. Namely, an algebraic space, locally of finite presentation over S, representing
the functor F : (Sch /S)→ Sets is an abelian algebraic space if,

8Two line bundles L1,L2 on a scheme X are algebraically equivalent if there exists a connected scheme T , two
closed points t1, t2 ∈ T and a line bundle L on X × T such that LX×{ti}

∼= Li for i = 1, 2. An invertible sheaf is
algebraically trivial if it is algebraically equivalent to the structure sheaf.
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• F is a group algebraic space, in the sense that F comes from a functor F ′ : (Sch /S) →
Grp by composing a forgetful functor Grp→ Sets.

• F is proper, by using the valuative criterion of properness. Namely, for any affine S-
scheme Y = SpecA with A being a (discrete) valuation ring, if we let K = Frac(A), then
the natural map F (Y )→ F (SpecK) induced from the inclusion A →֒ K is bijective.

• F is formally smooth, by using the infinitesimal lifting criterion for smoothness. Namely,
for s ∈ S, A an artin local ring which is a finite OS,s-algebra, I ⊂ A an ideal such that
mAI = 0, F (SpecA)→ F (SpecA/I) is bijective.

• F has geometrically connected fibers, by using the following fact, proven by Artin [Ar,
Lemma 4.2]: a group algebraic space which is locally of finite type over a field is a group
scheme.

For an abelian scheme A over S, the conditions of Theorem 1.2.17(ii) are satisfied. Thus,
PicA/S always exists as an algebraic space, locally of finite presentation over S. Also, both

PicA/S and Pic0A/S are naturally group objects in the category of algebraic spaces. If Pic0A/S is
represented by an abelian scheme, we will call it the dual abelian scheme of A, often denoted
as “A. Our objective is to show that the dual abelian scheme always exists. We want to deduce
this by using the following theorem of Raynaud and Deligne.

Theorem 1.2.18 (Raynaud-Deligne, [FC, Theorem 1.9]). Let S be a scheme, and A be an
abelian algebraic space over S. Then A is a scheme, hence an abelian scheme over S.

Note that we already know that Pic0A/S is locally of finite presentation over S. By the above

discussion, we now know how to prove that Pic0A/S is an abelian algebraic space, by only using

the functorial description of Pic0A/S .

By Theorem 1.2.17(i), if S = Spec k is the spectrum of a field, PicA/k (and therefore Pic0A/k)
is a locally finite type k-group scheme. Note that a group schemeG over a field k is automatically
separated, as the diagonal ∆G : G → G ×k G is a base change of the identity section e :

Spec k → G via the map G ×k G
(x,y) 7→xy−1

−−−−−−−→ G, which is a closed immersion. We can thus
apply the Rigidity Lemma with PicX/k as a target, whenever it exists as a scheme, and prove
the following important theorem.

Theorem 1.2.19 (Theorem of the Cube). Let Z be a separated finite type scheme over a
field k, and X,Y be proper k-schemes. Suppose that X,Z are geometrically integral and Y
is geometrically reduced and geometrically connected. Let x0 ∈ X(k), y0 ∈ Y (k), z0 ∈ Z(k).
Suppose L is a line bundle on X ×k Y ×k Z such that Lx0 := L|{x0}×kY×kZ

∼= OY×kZ and
similarly Ly0 ,Lz0 are trivial. Then L ∼= OX×kY×kZ .

Proof. As Ly0 is trivial, L ∈ PicY/k(X×kZ). We want to show that L = 0 inside PicY/k(X×kZ).
Note that as Y is proper, geometrically reduced, geometrically connected and Y (k) 6= ∅, PicY/k
exists as a separated k-scheme, by Theorem 1.2.17(i) and the above discussion. Now we can
apply the Rigidity Lemma, Proposition 1.2.12, to the corresponding map X ×k Z → PicY/k,
since Lz0 ∼= OX×kY implies that X ×k {z0} → 0. As Lx0 is trivial on Y ×k Z, this means that
the morphism X ×k Z → PicY/k is identically zero.

Theorem 1.2.20 (Cubical Structure Theorem). Let A/S be an abelian scheme, and L be an
invertible sheaf on A. For an S-scheme T and a1, a2, a3 ∈ A(T ), the line bundle on S,

(a1 + a2 + a3)
∗L ⊗ (a1 + a2)

∗L−1 ⊗ (a1 + a3)
∗L−1 ⊗ (a2 + a3)

∗L−1

⊗a∗1L ⊗ a∗2L ⊗ a∗3L ⊗ (e∗L)−1
T ,
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is canoncially trivial, where e ∈ A(S) is the identity section.

Proof. It is sufficient to do the universal case, T = A×S A×S A and ai = pri : T → A. By the
Theorem of the Cube, Theorem 1.2.19, and by symmetry, we only need to show that the line
bundle is trivial on {0}×S A×S A. As one can check, the eight factors formally cancel out.

Using the Cubical Structure Theorem, one can prove the following.

Proposition 1.2.14 [MFK, Proposition 6.7]. For an abelian scheme A/S, Pic0A/S is formally
smooth over S.

Proof. Let s ∈ S, R be an artin local ring, finite over OS,s, I ⊂ R be an ideal of R satisfying
mRI = 0. Let L be an element of Pic0A/S(R/I), which is an invertible sheaf on A×S Spec(R/I).
The obstruction on extending this to an invertible sheaf on A ×S SpecR is an element of
H2(Ak,OAk

) ⊗k I/mRI, where k = R/mR and Ak = A ⊗S Spec(R/mR). Note that by the
Cubical Structure Theorem, Theorem 1.2.20, if m : A ×S A → A is the multiplication map,
we have that m∗L ⊗ pr∗1 L−1 ⊗ pr∗2 L−1 is trivial, as it comes from a degree zero line bundle
over SpecR/I, which is trivial as SpecR/I is a point scheme. On the other hand, by Künneth
formula,

H2(Xk,OXk
)⊗k I

m∗−pr∗1 − pr∗2−−−−−−−−→ H2(Xk ×Xk,OXk×Xk
),

is injective. As the obstruction of extending (m∗−pr∗1− pr∗2)L to A×SA×S SpecR is trivial, the
obstruction of extending L to A×S SpecR is trivial, as well. This shows the formal smoothness
of Pic0A/S .

Proposition 1.2.15. For an abelian variety A over a field k, A is projective.

Proof. We first reduce the problem to the case of k = k. Suppose Ak is projective. Then, there
is a very ample divisor D on Ak, which is meant to be defined over a finite extension k′/k. Let
k′′ be the separable closure of k in k′. As k′/k′′ is purely inseparable, k′′p

m ⊂ k′ for some large
enough m. Then, pmD arises from a divisor on Ak′′ , and is very ample. Thus we can assume
that k′/k is finite separable. Extending to the Galois closure of k′, we can assume that k′/k is
finite Galois. Then, D′ =

∑
σ∈Gal(k′/k) σD arises from a divisor over k. As it is a sum of ample

divisors, it is ample. Therefore, D′ defines an ample divisor on A, which makes A projective.
Suppose k = k. As k is infinite, it is quite clear that we can choose finite set of codimension

1 integral subschemes {Z1, · · · , Zn} such that ∩ni=1Zi = {e} and, for any t ∈ TeA, there exists
1 ≤ i ≤ n such that t /∈ TeZi; we first add Zi’s to reduce the dimension of ∩iTeZi, and after
making it zero, we add Zi’s to reduce the dimension of ∩iZi. Let D =

∑
i Zi. We will show that

3D is very ample, which will suffice to show that A is projective. To show that 3D is very ample,
it is sufficient to show that the linear system |3D| separates points and tangent vectors. Note
that for any choice of closed points ai, bi ∈ A(k) for 1 ≤ i ≤ n,

∑
i(t

∗
aiZi+t

∗
bi
Zi+t

∗
−ai−bi

Zi) ∼ 3D.
Now, for any distinct points a, b ∈ A(k), there is j such that Zj does not contain b− a. Choose
aj = −a, then t∗ajZj passes through a but not b. Now we can choose all other ai, bi’s so that all
other t∗aiZi, t

∗
bi
, t∗−ai−biZi miss b. Then this shows that |3D| separates points. The same proof

shows that |3D| separates tangent vectors, as desired.

We now prove the existence of dual abelian schemes, with no other assumptions.

Theorem 1.2.21. For an abelian scheme A over S, there exists the dual abelian scheme “A of
A. In other words, “A := Pic0A/S is represented by an abelian scheme over S.
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Proof. We first prove the case when S = Spec k is the spectrum of a field, namely when A/k is
an abelian variety. We already know Pic0A/k is a smooth k-group scheme, by Proposition 1.2.14.

As every k-scheme is faithfully flat, the valuative criterion for properness clearly holds, so Pic0A/k
is proper. We thus only need to show that it is connected. By passage to the algebraic closure,
we can assume that k = k. Let Pic0cA/k be the connected component of the identity section of

PicA/k. Then, a line bundle corresponding to a point in Pic0cA/k is algebraically trivial via the

universal line bundle P ∈ PicA/k(Pic
0c
A/k) on A×k Pic0cA/k. On the other hand, for a connected

k-scheme T , closed points t1, t2 ∈ T (k) and a line bundle L on X ×k T , both LX×{t1} and
LX×{t2} lie inside the image of the corresponding map T → PicX/k. As T is connected, both
line bundles lie in the same connected component. This means that any algebraically trivial
line bundle should lie in Pic0cA/k. Thus, Pic

0c
A/k = Pic0A/k, which is connected. Thus, we deduced

that Pic0A/k is an abelian variety.
Suppose now that A/S is an abelian scheme. By the discussion around Theorem 1.2.18,

it is sufficient to show that the algebraic space Pic0A/S is proper, formally smooth and has

geometrically connected fibers. By Proposition 1.2.14, we again know Pic0A/S is formally smooth.

As geometric fibers of Pic0A/S are Pic0As/κ(s)
for geometric points s of S, we know it is connected.

We also know Pic0A/S is separated, by Theorem 1.2.17(iii). Note that the proof of [EGA, IV-3,
Corollaire 15.7.11] can be verbatim adapted to algebraic spaces to deduce the following: let X be
an algebraic space, separated and of finite presentation over S, with a section S → X; suppose
that, for any point s ∈ S, Xs is geometrically connected and proper over κ(s); then, X is proper
over S. If we know that Pic0A/S is of finite presentation over S, or, that it is quasicompact over
S, we can use this and we are done. On the other hand, by [SGA6, Exposé XIII, Théorème
4.7], we know that, if S is quasicompact, Pic0X/S →֒ PicX/S is representable and quasicompact.

This in particular implies that Pic0X/S is quasicompact over S whenever S is affine. Thus, for

any base scheme S and an affine open U ⊂ S, Pic0X/S ×SU = Pic0XU/U
is quasicompact over U .

Therefore, Pic0X/S is quasicompact over S. This finishes the proof of the theorem.

For an abelian variety A over k, we often refer to the restriction of the universal line bundle
to A×Pic0A/k as the Poincaré bundle PA. In particular, it gives rise to a canonical isomorphism
of an abelian variety to its double dual.

1.2.3.3 Isogenies and Polarizations

Let S be a base scheme. A homomorphism f : G→ G′ of S-group schemes is called an isogeny
if f is surjective and its kernel ker(f) is a flat finite group scheme over S; recall that the kernel
always exists as a group scheme, unlike cokernels. Note that the quotient by a finite flat group
scheme is an isogeny, if exists. Conversely, as an isogeny f : G → G′ is flat, so f is identified
with the quotient G→ G/ ker f .

Over a connected base scheme S, an isogeny f is of degree n if ker f is a finite flat group
scheme of order n. Over a general base, the degree is a locally constant function over S. This
degree is the same as the degree as a finite map.

Perhaps the most important isogeny for abelian schemes is the multiplication by n map.

Proposition 1.2.16. Let A be an abelian scheme over S, and let n 6= 0 be an integer. Then
the multiplication by n map, [n] : A → A, is an isogeny of degree n2g, where g is the relative
dimension of A over S.

Proof. From the definition of isogeny, it is clear that we can check isogeny fiberwise. Thus, we
can assume that S = Spec k is the spectrum of a field, and A is an abelian variety over k. By
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induction and the Cubical Structure Theorem, Theorem 1.2.20, we can show that, for any line

bundle L over A, [n]∗L ∼= L⊗n2+n
2 ⊗ ([−1]∗L)⊗n2−n

2 . Let L be an ample line bundle over A,
which is possible as we know A is projective over k, and consider the restriction to A[n] = ker[n].
We have

OA[n] ∼= L
⊗n2+n

2

A[n] ⊗ ([−1]∗L)⊗
n2−n

2

A[n] ,

where both LA[n] and ([−1]∗L)A[n] = [−1]∗(LA[n]) are ample on A[n]. As n 6= 0, at least one
of the powers are positive, so it implies that OA[n] is ample. As A[n] is projective over k, by
using Serre’s vanishing, every coherent sheaf over A[n] has vanishing higher cohomology after
twisting sufficiently high power of OA[n], which does nothing. Thus, by Serre’s criterion of
affineness, A[n] is affine over k. An affine proper scheme over k must be finite, so A[n] is a finite
flat k-group scheme. Now notice that as [n] is a morphism between smooth proper irreducible
schemes of the same dimension with 0-dimensional kernel, so it has a closed dense image, or it
is surjective. Thus [n] is an isogeny.

Replacing L with L ⊗ [−1]∗L, we have an ample line bundle L which satisfies [n]∗L ∼= Ln2
.

Note that degL 6= 0, and deg([n]∗L) = deg[n] · degL whereas degLn2
= n2g degL. Thus

deg[n] = n2g.

Proposition 1.2.17. Let A,A′ be abelian schemes of dimension g over S. Let f : A → A′ be
an isogeny of constant degree n. Then, there exists an isogeny f ′ : A′ → A of constant degree n
such that f ◦ f ′ = [n2g]A′ and f ′ ◦ f = [n2g]A.

Proof. By Deligne’s theorem, Theorem 1.2.1, ker f is killed by [n2g]A. Then the proposition is
immediate from the universal property of quotients.

This is important, as this shows that an isogeny is in fact an equivalence relation. We can
thus safely call two abelian schemes A,A′ over S isogenous if there exists an isogeny f : A→ A′.

Another important example of isogeny is an isogeny between an abelian variety and its dual.
Given an invertible sheaf L on A, define λ(L) : A→ “A to be a morphism corresponding to the
line bundle

m∗L ⊗ pr∗1 L−1 ⊗ pr∗2 L−1 ⊗ (e∗L)A×SA,

on A×S A.
Proposition 1.2.18. If L is relatively ample over S, then λ(L) : A→ “A is an isogeny.

Proof. For each s ∈ S, λ(L)s = λ(Ls), so we can assume that S = Spec k is the spectrum of
a field. Let A′ = ker(λ(L))0. Note that m∗L|A′ ⊗ pr∗1(L|A′)−1 ⊗ pr∗2(L|A′)−1 ⊗ (e∗L|A′)A′×kA′

is trivial on A′ ×k A′. The pullback of this sheaf by the map A′ a 7→(a,−a)−−−−−−→ A′ ×k A′ is L|A′ ⊗
[−1]∗(L|A′), which is again ample and trivial. Thus, dimA′ = 0, or λ(L) is finite.

To show the surjectivity, it is sufficient to show that dimA = dim “A. Note that Te“A =
ker(PicA/k(k[ε]/ε

2)→ PicA/k(k)) = H1(A,OA). It is dimA-dimensional, as dimkH
p(A,OA) =(dimA

p

)
, e.g. [Mum, 13, Corollary 2].

This kind of isogeny is called a polarization.

Definition 1.2.7 (Polarization). Let A be an abelian scheme over S. A polarization of A is
a homomorphism λ : A → “A such that, for each geometric point s of S, λs = λ(Ls) for some
ample invertible sheaf Ls on As. A polarization is principal if it is an isomorphism, i.e. when
is of degree 1.

The construction λ(L) has nice properties, and is often a better object to study that the
line bundle L itself.
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Proposition 1.2.19. Let λ : A→ “A be a polarization of an abelian scheme A over S.
(i) Through the canonical isomorphism i : A

∼−→ A∧∧, λ̂ ◦ i = λ.
(ii) For L ∈ Pic0A/S(S), λ(L) = 0.

(iii) λ(L−1) = λ(L) ◦ [−1]A.
(iv) λ(L1 ⊗ L2) = λ(L1) + λ(L2).
(v) For x ∈ A(S), λ(t∗xL) = λ(L).
(vi) If S = Spec k is the spectrum of a field, λ(L) = 0 implies that L ∈ Pic0A/k(k).

Proof. All except (vi) follow from the Cubical Structure Theorem, Theorem 1.2.20, and identi-
fication of maps into “A via their pullback of the Poincaré bundle. For (vi), we use the fact that
deg λ(L) = χ(L)2 (cf. [Mum, 16]), where χ(L) is the Euler characteristic of L.

Define the isogeny category of abelian varieties over a field k to be the localization of the
category of abelian varieties over a field k where k-isogenies are considered as isomorphisms.
The isogeny category is very nice, in fact is semi-simple.

Theorem 1.2.22 (Poincaré Complete Reducibility Theorem). Let A be an abelian variety over
a field k. For A′ →֒ A an abelian subvariety over k, there is an abelian subvariety A′′ →֒ A over
k such that A′ ×k A′′ → A is an isogeny.

Proof. Choose an ample line bundle L on A. Then we have a commutative diagram

A′ i //

λ(i∗L)
��

A

λ(L)
��

Â′ “A
î

oo

Let A′′ = ker(̂i ◦ λ(L))0red. It is a projective smooth connected k-group scheme, so it is an
abelian subvariety of A over k. Note that A′′ ∩ A′ ⊂ kerλ(i∗L), so it is finite. Therefore, to
show that A′ × A′′ → A is an isogeny, we only need to show that the dimensions are right, i.e.
dimA′′ = dimA− dimA′. One way is easy, the other way we have dimA′′ = dimker î as λ(L)
is finite surjective, so dimA′′ = dimker î ≥ dim “A− dim Â′ = dimA− dimA′.

The isogeny category is “the category of abelian varieties modulo torsion.”

Proposition 1.2.20. Let A,B be abelian varieties over a field K. Then, Hom0
K(A,B) :=

HomK -isogeny(A,B) = HomK(A,B) ⊗Z Q. In other words, the group of homomorphisms from
the isogeny class of A to the isogeny class to B is naturally identified with HomK(A,B)⊗Z Q.

Proof. Obviously HomK(A,B) ⊂ HomK -isogeny(A,B), and as [n] maps are isogeny, we can
compose it and its “inverse” inside the isogeny category, so that we have a natural inclusion
HomK(A,B)⊗ZQ ⊂ HomK -isogeny(A,B). On the other hand, an element of HomK -isogeny(A,B)
is of form

A = A0 ← A1 → A2 ← · · · → Aj−1 ← Aj → Bk ← Bk−1 → · · · ← B2 → B1 ← B0 = B,

where the arrows between Ai’s and the arrows between Bi’s are isogenies. On the other hand,
given an isogeny i : A′ ← A′′, there is n ∈ Z\{0} and an isogeny i′ : A′ → A′′, so that i◦ j = [n].
Thus, the “inverse” i−1 ∈ HomK -isogeny(A

′, A′′) is identified as “j ◦ [n]−1,” which up to torsion
the same as j. Thus, an element of HomK -isogeny(A,B) is in HomK(A,B)⊗ZQ in this sense.
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1.2.3.4 Duality and the Weil Pairing

Given a map of abelian schemes f : A→ B, the pullback of invertible sheaves induces the dual
map f̂ : “B → “A.
Proposition 1.2.21. Let A,B be abelian schemes over S.

(i) If f, g : A ⇒ B be two morphisms of abelian schemes. Then (f + g)∧ = f̂ + ĝ. In

particular, ‘[n]A = [n]
Â
.

(ii) The dual of an isogeny is an isogeny.

Proof. (i) We would like to show that, for any S-scheme T and L ∈ Pic0B/S(T ), (fT + gT )
∗L =

(fT )
∗L⊗(gT )∗L. We can check whether a given line bundle is trivial fiberwise, so we can assume

S = Spec k is the spectrum of a field. Checking if two morphisms are equal can be done after a
faithfully flat base change, so we can assume k = k. Then as L ∈ Pic0B/k(k), λ(L) = 0, so the
Cubical Structure Theorem, Theorem 1.2.20, gives us the identity.

(ii) It follows from (i) and the fact that an isogeny factors through [n] for some nonzero
integer n.

Let A be an abelian scheme over S of dimension g. As we know [n] : A → A is an isogeny,
it follows that A[n] = ker[n] is a finite flat commutative group scheme over S of order n2g. As
forseen before, it is then immediate that, for any prime p, A(p) := (A[pn]) forms a p-divisible
group over S of height 2g. A natural question to ask is that, what is the relation between A[n]
and “A[n]?
Proposition 1.2.22. For abelian schemes A,B over S and f : A → B an isogeny, naturally
ker f̂ ∼= (ker f)D. To be more precise, for any S-scheme T ,

(ker f̂)(T ) ∼= HomT−Grp((ker f)T ,Gm,T ).

The pairing (ker f)×S (ker f̂)→ Gm,S induced from this is called the Weil pairing.

Proof. As our setup is compatible with base change, we can just treat the case S = T . Note

that ker f̂(S) = ker(Pic(B)
f∗−→ Pic(A)), and by descent theory, it is equal to the group of

isomorphisms pr∗1OA ∼= pr∗2OA satisfying cocycle condition as OA×BA-modules. As f : A→ B

is the quotient of A by ker f , the action map (ker f)×SA
(g,a) 7→(ga,a)−−−−−−−−→ A×BA is an isomorphism.

Along this isomorphism, the data of pr∗1OA ∼= pr∗2OA becomes m∗OA ∼= pr∗2OA on (ker f)×SA.
This is the same as the data of a unit u in Γ((ker f)×S A,O(ker f)×SA)

×. It is the collection of
u(g) ∈ Γ(A,OA)× for g ∈ (ker f)(S). The cocycle condition is exactly demanding g 7→ u(g),
as a morphism ker f → Gm,S , to be a homomorphism. On the other hand, coboundaries
vanish because p∗OA = OS , where p : A → S is the structure morphism, and its formation is
compatible with base change.

Remark 1.2.5. In particular, the Weil pairing shows that the dual isogeny is of the same degree
as the original isogeny.

1.2.3.5 Néron Models and Reductions

We now define what it means for an abelian variety over a field to have a good or semi-stable
reduction. It need a procedure to pass to an integral model, and it is the integral model that
decides the reduction. On the other hand, it is questionable about how canonical is the passage
to integral model. For example, is there always an integral model which is an abelian scheme?
This cannot be the case, as there is an abelian variety over Q but no nontrivial abelian scheme
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over Z as we will see shortly. However, there is some kind of a “canonical” integral model which
is not necessarily proper, which is called a Néron model.

Definition 1.2.8 (Néron Model). Let R be a Dedekind domain and K = Frac(R). For a
smooth separated finite type K-scheme X, a Néron model of X is a smooth separated finite type
R-scheme Y such that YK ∼= X and it satisfies the following Néron mapping property.

For each smooth R-sheme Y ′ and each K-morphisms uK : Y ′
K → YK = X, there is a unique

R-morphism extending uK .

The Néron mapping property is a kind of universal property to make sure that a Néron
model, if exists, is a canonical object. It is easy to see the following.

Proposition 1.2.23 [BLR, 1.2]. (i) A Néron model is uniquely determined by its generic fiber,
up to canonical isomorphism.

(ii) The formation of Néron models commutes with étale base change.
(iii) A Néron model can be computed locally on the base.
(iv) A Néron model can be checked at closed points. Namely, an R-scheme X is a Néron

model of its generic fiber if, for all closed points s ∈ SpecR, an Rs-scheme Xs is a Néron model
of its generic fiber.

(v) If the generic fiber has a group structure, it extends uniquely to a group structure of a
Néron model.

(vi) An abelian scheme is a Néron model of its generic fiber.

A nontrivial theorem is that an abelian variety admits a Néron model.

Theorem 1.2.23 [BLR, Corollary 1.3.2, Theorem 1.4.2]. Let R be either a Dedekind domain
or a discrete valuation ring. Let K = Frac(R). For an abelian variety A over K, A admits a
Néron model over R, which is quasi-projective over R.

The remaining problem is whether this Néron model is an abelian scheme over R or not.
In fact, it is not necessarily an abelian scheme, due to the lack of properness. We thus say an
abelian variety has a good reduction if its Néron model is an abelian scheme.

Definition 1.2.9 (Reduction Types). Let K be either a global field or a local field of mixed
characteristic. Let A be an abelian variety over K.

(i) If K is a local field, A is called to have a good reduction if its Néron model over OK is
an abelian scheme.

(ii) If K is a global field, A is called to have a good reduction at a prime p ⊂ OK if its
Néron model over (OK)p is an abelian scheme.

If an abelian variety does not have good reduction (at a closed point), then it is called to have
a bad reduction (at the point). We now can easily see the equivalence of different formulations
of Shafarevich conjecture. Namely, for a number field K and a finite set of primes S of K,
an abelian scheme over OK,S really is the same thing as an abelian variety over K with good
reduction outside S.

There are multiple ways of seeing good reduction, all in a similar vein.

Proposition 1.2.24. Let A be an abelian variety over a field K.
(i) If K is a global field, A has good reduction at a prime p ⊂ OK if and only if AKp has

good reduction.
(ii) Let R be either a Dedekind domain or a discrete valuation ring such that K = Frac(R).

For a closed point s ∈ SpecR, A has good reduction at s if and only if As = A ⊗R κ(s) is an
abelian variety over κ(s).
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Proof. (i) is immediate. For (ii), one direction is also immediate, as properness is preserved by
base change. The really nontrivial result we need to use here is that, for a Néron model A over
OSpecR,s, that its reduction As is κ(s)-proper implies that A is OSpecR,s. This follows from
the following fact [EGA, IV-3, Corollaire 15.7.10]: for a separated, finite type, faithfully flat
morhpsim f : X → Y , if Y is locally noetherian and each fiber Xy for y ∈ Y is geometrically
connected and proper over κ(y), then f is proper.

We now know that the property of having good reduction at a prime is solely dependent
on the reduction modulo the prime. We know that the reduction is a smooth finite type
commutative group scheme over the residue field. As we are only interested in the cases of
number fields or local fields of mixed characteristic, the residue field is a finite field. In this
case, we can apply the Chevalley Structure Theorem to analyze the structure of the reduction.

Theorem 1.2.24 (Chevalley Structure Theorem, cf. [BLR, Theorem 9.2.1]). Let G be a smooth
connected group scheme over a perfect field k. Then, there is a unique exact sequence

1→ H → G→ B → 1

where H is a connected smooth affine k-group scheme and B is an abelian variety over k. If
furthermore G is commutative, H uniquely splits as H = T ×k U , where T is a k-torus (i.e.
Tk
∼= GN

m,k
for some N) and U is a smooth connected unipotent k-group (i.e. has a filtration

over k with successive subquotients isomorphic to Ga).

Borrowed from the terminology of describing group schemes in terms of the Chevalley Struc-
ture Theorem, we define the following mildly bad reductions.

Definition 1.2.10 (Reduction Types). Let G be a smooth connected group scheme of finite
type over a Dedekind scheme S. Let s ∈ S be a closed point.

(i) We say G has abelian reduction at s if G0
s is an abelian variety, i.e. the corresponding

H in the Chevalley Structure Theorem is trivial.
(ii) We say G has semi-abelian reduction (or semi-stable reduction) at s if G0

s is an extension
of an abelian variety by an affine torus (“semi-abelian variety”), i.e. the corresponding U in
the Chevalley Structure Theorem is trivial.

(iii) We say G has potentially good (abelian, semi-abelian/semi-stable, respectively) reduc-
tion if there is a finite Galois extension L of K = K(S) such that, over the normalization S′ of
S in L, GS′ has good (abelian, semi-abelian/semi-stable, respectively) reduction at every point
lying over s.

Note that, for abelian varieties and schemes, an abelian reduction is just a good reduction.
These reduction types are reluctant to isogeny.

Proposition 1.2.25. (i) An abelian variety isogenous to an abelian variety with semi-stable
(good, respectively) reduction has semi-stable (good, respectively) reduction.

(ii) A semi-abelian integral model of an abelian variety is identified with an open subscheme
of the Néron model via the morphism from the Néron mapping property.

Proof. (i) By the Néron mapping property, it is sufficient to show the following: if f : A→ A′

is an isogeny of abelian varieties over K, and if A has semi-stable reduction (at a prime), then
f extends to an isogeny of Néron models. Note that, on a semi-abelian group scheme, the
multiplication by n map is finite and flat, as they are on both abelian varieties and torii, for
any n 6= 0. Thus, we can lift multiplication by n maps to an isogeny of Néron models. Then
the general case follows as f factors through [deg f ].
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(ii) Suppose that the semi-abelian integral model is connected. We can pass to the strict
henselization, as the formation of Néron models is compatible with the passage to strict henseliza-
tion. Let n be a positive integer not divisible by the characteristic of residue field k. Then, for
a semi-abelian integral model G over R and Néron model A over R, both extending AK over
K = Frac(R), we have G[n](K) ∼= A[n](K), as both are extending AK . As A[n](K) ∼= A[n](R)
by Néron mapping property and G[n](R) ⊂ G[n](K) by valuative criterion for separatedness,
we deduce that G[n](R) ⊂ A[n](R). Reducing to k, we have G[n](k) ⊂ A[n](k). As k = ks,
the points of finite order not divisible by char k form a dense subset of Gk(k), so it follows
that Gk → A0

k has finite kernel. It is surjective as the dimensions match. By Zariski’s Main
Theorem, it is an isomorphism.

Proposition 1.2.26 (cf. [BLR, 7.4, 7.5]). Let R be either a Dedekind domain or a discrete
valuation ring of mixed characteristic, and K = Frac(R). If R is Dedekind, choose a prime p

in OK . Let k be the residue field (at p).
Suppose that we are given an exact sequence 0→ A′ → A→ A′′ → 0 of abelian varieties over

K, and consider the corresponding complex of Néron models over R, 0→ X ′ → X → X ′′ → 0.
Using the Poincaré Complete Reducibility Theorem, Theorem 1.2.22, we can find an abelian
K-subvariety B ⊂ A such that A→ A′′ induces an isogeny u : B → A′′. Let n = deg u.

(i) A has semi-stable reduction (at p) if and only if A′, A′′ have semi-stable reductions (at p).

(ii) If char k does not divide n, then X ′ → X is a closed immersion, X → X ′′ is smooth with
kernel X ′, and the cokernel of Ak → A′′

k is killed by multiplication with n. If furthermore
A has good reduction (at p), then 0→ X ′ → X → X ′′ → 0 is exact.

(iii) If A has semi-stable reduction (at p), then 0→ X ′ → X → X ′′ → 0 is exact up to isogeny.

(iv) Suppose R is a discrete valuation ring with e < p− 1, where e is the absolute ramification
index. Then the following assertions hold.

(a) If A′ has semi-stable reduction, X ′ → X is a closed immersion.

(b) If A has semi-stable reduction, 0→ X ′ → X → X ′′ is exact.

(c) If A has good reduction, A,A′′ also have good reductions, and 0→ X ′ → X → X ′′ →
0 is exact.

Proof. (i) It is an immediate consequence that A is isogenous to A′ ×A′′.
(ii) In the proof of Proposition 1.2.25(i), it is also clear that, if m is not divisible by char k,

[m] is an étale isogeny on the level of Néron models. Thus, the isogeny A′ × B → A induced
from u : B → A′′ lifts to an étale isogeny, factoring through [n]. The statements follow easily
from this observation.

(iii) From the proof of Proposition 1.2.25(i), we know we can lift u and A′ × B → A to
isogenies. This gives a split exact sequence isogenous to 0→ X ′ → X → X ′′ → 0.

(iv) See the proof of [BLR, Theorem 7.5.4]. The condition e < p − 1 is required precisely
because the proof utilizes Raynaud’s theorem on prolongations, Theorem 1.2.8.

1.2.3.6 Jacobians of Relative Curves

In this section, we will discuss about the Shafarevich conjecture for curves mentioned in the
introduction. First of all, we define a curve over a field to be a proper, geometrically connected
1-dimensional scheme, and a (relative) curve over a base scheme S to be a proper flat S-scheme
whose fibers are curves. For a smooth curve C over a number field K, we define C to have
good reduction at a prime p if there is a smooth proper curve C over (OK)p extending C. It is
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equivalent to saying that the reduction C over κ(p) is a smooth proper curve; smoothness is a
local condition, and properness can be checked at the special fiber by the lemma [EGA, IV-3,
Corollaire 15.7.10] we used.

The first thing to ask is the following: why does C having good reduction outside a finite set
of primes S in K admit a smooth proper curve C over OK,S extending C? We cannot directly
use the argument we used for abelian varieties, since the theory of Néron models is not very
nice in this case. On the other hand, a viewpoint from birational geometry gives us a different
kind of model for curves.

Definition 1.2.11 (Regular Proper R-model). Let R be a Dedekind domain, K = Frac(R), and
C be a smooth K-curve. A regular proper R-model of C is a regular (proper) R-curve whose
generic fiber is isomorphic to C. A minimal regular proper R-model of C is a regular proper
R-model C such that any dominant morphism C → C′ of another regular proper R-model of C
is an isomorphism.

Theorem 1.2.25 (Minimal Models Theorem, [Li, Q, Theorem 9.3.21]). For a smooth K-curve
C of positive genus, there exists a unique minimal regular proper R-model Creg.

Now the situation is clear; if a smooth K-curve has good reduction outside a finite set
of primes S, then the minimal regular proper OK,S-model Creg is necessarily smooth, as it is
fiberwise smooth.

Now we will see how the Shafarevich conjecture for curves follows from the Shafarevich
conjecture for abelian varieties. Given a smooth curve C over a Dedekind domain R, consider
Pic0C/R. It turns out that this is also representable by a scheme.

Proposition 1.2.27 [BLR, Proposition 9.4.4]. Let f : X → S be a proper smooth morphism
of schemes whose geometric fibers are connected curves. Then, Pic0X/S is an abelian S-scheme,

and there is a canonical S-ample rigidified line bundle L(X/S) on Pic0X/S.

We call J(C) := Pic0C/R the Jacobian of C. As the formation of Picard scheme is compatible
with completion, it follows that the generic fiber of J(C) is just J(CK). Therefore, for a number
field K and a finite set of primes S, a K-curve having good reduction outside S is associated
with a principally polarized9 abelian variety over K having good reduction outside S. Thus,
the Shafarevich conjecture for curves is deduced from the Shafarevich conjecture for abelian
varieties if we show that the functor C 7→ J(C) is a finite-to-one map. This is established by
the following theorems.

Theorem 1.2.26 (Torelli’s Theorem, [CS, VII, Corollary 12.2]). Over a perfect field K, let
C,C ′ be smooth K-curves of genus g ≥ 2. If (J(C), λ(L(C/K))) ∼= (J(C ′), λ(L(C ′/K))) as
principally polarized abelian varieties, then C ∼= C ′ as smooth K-curves.

Theorem 1.2.27 [NN, Theorem 1.1]. An abelian variety admits only finitely many principal
polarizations.

Now it is clear that the Shafarevich conjecture for curves follows from the Shafarevich
conjecture for abelian varieties; the Jacobian of a curve over K with good reduction outside S
is an abelian variety over K with good reduction outside S, and this correspondence is finite-
to-one (up to isomorphism).

9Recall that an ample line bundle L gives a polarization λ(L). As the construction of L(X/S) is canonical, it
turns out that the associated polarization is principal in this case, cf. [CS, VII, 6.11].
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1.2.3.7 Reduction Types Via p-divisible Groups

We now describe how a p-divisible group can describe the reduction behavior of an abelian
variety. Recall that we have a famous Néron-Ogg-Shafarevich criterion, treated in many basic
courses on, say, elliptic curves.

Theorem 1.2.28 (Néron-Ogg-Shafarevich Criterion, [BLR, Theorem 7.4.5]). Let A be an
abelian variety over a local field K with residue characteristic p. Let ℓ 6= p be a prime. Then A
has good reduction if and only if the ℓ-adic Tate module Tℓ(A) := lim←−A[ℓ

n](K) is unramified as
a Galois representation of the absolute Galois group GK of K.

That we need ℓ 6= p is reasonable, as generally p-adic Tate modules are badly behaved. We
know that ℓ-adic Tate modules secretly come from ℓ-divisible groups (Proposition 1.2.10), and it
turns out that, if one instead consider ℓ-divisible groups, one does not need the condition ℓ 6= p.
This philosophy is extensively explored in [SGA7-1, Exposé IX], with one extra condition that
the base field K is of characteristic 0. This condition could not be removed precisely because
the Tate’s theorem, Theorem 1.2.10, is only valid over characteristic 0. Therefore, de Jong’s
results, in particular Theorem 1.2.11, can remove this extra hypothesis and prove the results in
full generality.

Theorem 1.2.29 ([SGA7-1, Exposé IX, Corollaire 5.10], [dJ, 2.5]). Let R be a henselian discrete
valuation ring with fraction field K. Let ℓ be any prime. Let A be an abelian variety over K.
Then, A has good reduction if and only if “A(ℓ) has good reduction,” i.e. A(ℓ) extends to an
ℓ-divisible group over R.

The Néron-Ogg-Shafarevich criterion is immediate from this. Note that, if ℓ 6= p, an ℓ-
divisible group over R is always étale, so by Theorem 1.2.10 A has good reduction if and only
if T (A(ℓ)) = Tℓ(A), a π1,ét(K,α)-module, factors through a π1,ét(R,α)-module, where α is a
geometric point of SpecK. Now the Néron-Ogg-Shafarevich Criterion follows as π1,ét(K,α) =
GK , whereas π1,ét(R,α) = IK , the inertia group.

One can also distinguish semi-stable reduction in terms of p-divisible groups.

Theorem 1.2.30 ([SGA7-1, Exposé IX, Proposition 5.13], [dJ, 2.5]). Let R be a henselian
discrete valuation ring with fraction field K. Let ℓ be any prime. Let A be an abelian variety
over K. Then, the following are equivalent.

1. A has semi-stable reduction.

2. For all g ∈ IK in the inertia group, (g − 1)2 acts trivially on A(ℓ). In other words, the
inertia group acts “unipotently of echelon two”.

3. For all g ∈ IK in the inertia group, g acts unipotently on A(ℓ).

4. There is a filtration10 of ℓ-divisible groups A(ℓ)t ⊂ A(ℓ)f ⊂ A(ℓ) such that both A(ℓ)t and
A(ℓ)f/A(ℓ)t extend to ℓ-divisible groups F1, F2 over R (i.e. good reduction) such that F2

and FD1 are étale ℓ-divisible groups over R.

There is also another criterion for semi-stable reduction, called the Raynaud’s Criterion.

Theorem 1.2.31 (Raynaud’s Criterion for Semi-stable Reduction, [SGA7-1, Exposé IX, Théorème
4.7]). Let R be a henselian discrete valuation ring with fraction field K. Let n be a positive in-
teger not divisible by the residue characteristic of R. Suppose that an abelian variety A over

10t stands for “toric part”, and f stands for “finite part.”
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K satisfies that K(A[n](K)) is unramified over K (i.e. the inertia group IK acts trivially on
A[n](K)).

(i) If n > 2, then A has semi-stable reduction.
(ii) If n = 2, then A acquires semi-stable reduction after a finite Galois extension K ′/K

where Gal(K ′/K) is of form (Z/2Z)r.

These results give the celebrated Semi-stable Reduction Theorem.

Theorem 1.2.32 (Semi-stable Reduction Theorem, [SGA7-1, Exposé IX, Théorème 3.6]). Let
S be a noetherian regular connnected scheme of dimension 1. Let K = K(S). For an abelian
variety A over K, there is a finite Galois extension K ′/K such that AK′ has semi-stable reduc-
tion over S′ = S×KK ′. In other words, every abelian variety over K has potentially semi-stable
reduction.

The extension K ′ can be explicitly given by the splitting field of A[ℓ], where ℓ can be any odd
prime different from the residue characteristic. Alternatively, one can choose the splitting field
of A[4] instead.

Note that these results can be easily globalized.

Theorem 1.2.33. Let A be an abelian variety over a number field F . Let S be a finite set of
primes in F , and ℓ be any (rational) prime.

(i) A has good reduction outside primes in S if and only if A(ℓ) extends to an ℓ-divisible
group over OF,S.

(ii) A has semi-stable reduction at primes in S if and only if the inertia groups of primes
in S acts unipotently of echelon two on A(ℓ).

Proof. There is nothing new on the statement of (ii). For (i), we need to construct a global
extension of A(ℓ) over OF,S . Even thought we do not yet know if such thing exists, we know
what it should be. Namely, let A be a Néron model over OF,S . Then, A(ℓ) := (A[ℓn]) may
not be an ℓ-divisible group, but it is not precisely because it may not be finite (or rather more
precisely, proper). We already observed that properness of such thing can be checked fiberwise
by the lemma [EGA, IV-3, Corollaire 15.7.10], and each fiber is proper as A(ℓ)s extends to an
ℓ-divisible group, which is nothing but A(ℓ)s.

We end this section by recording similar results on seeing semi-stable reduction based on
Galois actions on torsion subgroups and ℓ-adic cohomology groups for later purposes.

Proposition 1.2.28 [SZ, §4]. Let R be a henselian discrete valuation ring, K = Frac(R), and
A an abelian variety of dimension g over K. Let p be the residue characteristic of R, and let
IK be the inertia group.

(i) Let n be an integer not divisible by p. If A has semi-stable reduction, then the inertia
group IK acts unipotently of echelon two on A[n]. If n ≥ 5, the converse is true.

(ii) Let k be an integer between 0 < k < 2g, and ℓ 6= p be a prime number. If A has
semi-stable reduction, then the inertia group IK acts unipotently of echelon (k+1) on the ℓ-adic
cohomology Hk

ét(XF ,Zℓ). If k is odd, the converse is true.

1.2.3.8 Tate Modules and Faltings’ Finiteness Theorems

As with p-divisible groups, we would like to see how much ℓ-adic Tate modules can tell about
abelian varieties. Recall that, given an abelian variety A over a field K, the ℓ-adic Tate module
is Tℓ(A) := lim←−nA[ℓ

n](K). One then define Vℓ(A) := Tℓ(A)[1/ℓ] to make a representation. It

is a free Zℓ-module, and in particular, if ℓ 6= charK, A[ℓn]’s are étale over K, so Tℓ(A) ∼= Z
2g
ℓ
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as Zℓ-modules. How much information does the functor A 7→ Tℓ(A) preserve? Certainly, for
abelian varieties A,B over K, we have a map

Zℓ ⊗Z HomK(A,B)→ HomZℓ[GK ](Tℓ(A), Tℓ(B)).

Theorem 1.2.34 [CS, Theorem V.12.5]. The above map is injective, for ℓ 6= charK.

Proof sketch. As EndK(A ×K B) = EndK(A) ⊕ HomK(A,B) ⊕ HomK(B,A) ⊕ EndK(B), it
is suffficient to show when A = B. Also, as EndK(A) →֒ End0K(A) := EndK(A) ⊗Z Q, one
only needs to work on the isogeny category to show that End0K(A)⊗Q Qℓ → EndQℓ[GK ](Vℓ(A))
is injective. By Poincaré Complete Reducibility Theorem, Theorem 1.2.22, one can assume
that A is simple. Then one shows that a degree function deg : EndK A → Z extends uniquely
to deg : End0K(A) → Q, and it becomes a “polynomial function,” i.e. a polynomial function
whenever restricted to a finite dimensional subspace. One shows by using this fact that EndK(A)
is Z-finite. Then one can explicitly show that an element in the kernel of Zℓ ⊗Z EndK(A) →
EndZℓ

(TℓA) is zero by using finite generation of EndK(A).

In particular, using the fact that the degree function is a polynomial, we can define a charac-
teristic polynomial of an element ϕ ∈ EndK(A) as the polynomial n 7→ deg(ϕ−n). It is a monic
polynomial of degree 2 dimA with integer coefficients. If K is a finite field, GK is topologically
generated by the Frobenius map x 7→ xq, and one can think of the characteristic polynomial
fA of the Frobenius endomorphism on Vℓ(A). It turns out that fA, a monic polynomial with
integer coefficients, classifies the isogeny class of A.

It is a very nontrivial theorem of Tate, Zahrin and Faltings that this map is an isomorphism
for many cases of K, and this is an important piece in Faltings’ proof of Mordell Conjecture.
That it is an isomorphism is called the Isogeny Theorem.

Theorem 1.2.35 (Isogeny Theorems). For abelian varieties A,B over a field K and ℓ 6= charK,
the map HomK(A,B)⊗Z Zℓ → EndZℓ[GK ](Tℓ(A), Tℓ(B)) is an isomorphism, when

(i) (Tate, [CS, I.§6]) if K is a finite field,
(ii) (Zahrin, [CS, I.§7]) if K is a global function field, or
(iii) (Faltings, [CS, Theorem II.5.4]) if K is a number field.

This is accompanied with the following another nontrivial theorems, usually referred as the
Semi-simplicity Theorem.

Theorem 1.2.36 (Semi-simplicity Theorems). For an abelian variety A over a field K and
ℓ 6= charK, the rational ℓ-adic Tate module is a semisimple GK-representation, when

(i) (Tate, [CS, I.§6]) if K is a finite field, or
(ii) (Falting, [CS, Theorem II.5.3]) if K is a number field.

These are very strong results. For example, one deduces the following criterion on deter-
mining isogenous abelian varieties.

Theorem 1.2.37. Let k be a finite field. For abelian varieties A,B over k, the following are
equivalent.

(i) A and B are k-isogenous.
(ii) Vℓ(A) and Vℓ(B) are isomorphic as ℓ-adic representations of Gk, for some ℓ 6= char k.
(iii) fA = fB.
(iv) For each finite extension k′/k, #A(k′) = #B(k′).
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Proof. That (i) implies (ii) implies (iii) is obvious. (iii) implies (ii) as semisimpleGk-representations
are determined by eigenvalues of Frobenius. To show that (ii) implies (i), suppose Hom0

k(A,B)⊗Q

Qℓ = HomQℓ[Gk](VℓA, VℓB) contains an isomorphism. We can approximate the isomorphism by

elements of Hom0
k(A,B). As being an isogeny is determined by degree, any homomorphism

sufficiently close to an isomorphism is an isomorphism. Therefore, there is an isomorphism in
Hom0

k(A,B), which means that A,B are isogenous to each other.
Note also that, if k′/k is of degree h, then as #A(k′) is the number of fixed points of the

map x 7→ x#k
′
, #A(k′) =

∏
(1 − αhi ), where αi’s are eigenvalues of the Frobenius. Thus, (iv)

holds if and only if the eigenvalues of the Frobenius are the same if and only if (iii) holds.

The Isogeny and Semi-simplicity Theorems eventually enable us to prove various finiteness
results.

Theorem 1.2.38 (Faltings’ Finiteness Theorems, [CS, II.§6]). Over a number field K, the
following are true.

(i) The Shafarevich conjecture for curves is true.
(ii) The Shafarevich conjecture for abelian varieties is true.
(iii) Given an abelian variety A over K, there are only finitely many K-abelian varieties,

up to isomorphism, isogenous to A.
(iv) The Mordell conjecture is true; namely, a K-curve of genus ≥ 2 has only finitely many

K-rational points.

1.3 Nonexistence of Abelian Scheme over Z

We are ready to prove the nonexistence of abelian variety over Q with everywhere good re-
duction. Although the spirit of the proof comes from [Fo1], there are several ways to proceed
from the main ramification bound (Theorem 1.1.1). In particular, we will give several different
results that p-divisible groups and finite flat commutative p-group over the ring of integer of
a small number field are of certain simple forms. These results will imply the nonexistence of
abelian variety over a small number field with everywhere good reduction. The following proofs
are originated from [Fo1] and [Sc2].

1.3.1 Fontaine’s Ramification Bound

Our objective of this section is to prove the aforementioned following theorem about the rami-
fication number of field of definition of a finite flat group scheme.

Theorem 1.1.1. Let K be a finite extension of Qp, and let e = vK(p) be the absolute ramifica-
tion index. For an integer n ≥ 1, suppose Γ is a finite flat commutative group scheme over OK
killed by pn. Let L = K(Γ(K)), and G = Gal(L/K). Then, G(u) = 1 for u > e

Ä
n+ 1

p−1

ä
, and

v(DL/K) < e
Ä
n+ 1

p−1

ä
, where DL/K is the different of L/K.

First, we fix the notations. Let K be a complete discrete valuation ring with mixed char-
acteristic (0, p) and L/K be a finite extension. Let πL ∈ OK be a uniformizer, vK a val-
uation normalized such that vK(πK) = 1. Choose πL to be a uniformizer of OL such that
OL = OK [πL]. Let vL be the extended valuation of vK such that vL(πL) = 1/eL/K , where eL/K
is the ramification index of L/K. For σ ∈ G = Gal(L/K), we define iL/K(σ) = vL(σ(πL)−πL).
We can then define a piecewise linear continuous increasing function φL/K : R≥0 → R≥0

by φL/K(i) =
∑
σ∈Gmin(i, iL/K(σ)). Let ψL/K be the inverse function of φL/K . Define
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uL/K(σ) = φL/K(iL/K(σ)). Let iL/K = supσ 6=1 iL/K(σ), uL/K = supσ 6=1 uL/K(σ). Finally,
we define the lower/upper ramification groups as follows.

G(i) = {σ ∈ G | iL/K(σ) ≥ i}, G(u) = {σ ∈ G | uL/K(σ) ≥ u}.

This upper/lower numbering of ramification groups is slightly different from the usual conven-
tion, e.g. [Se, Chapter IV]. If Gi, G

u are the usual notations in [Se, Chapter IV], then our
notations are related as

G(i) = GeL/K i−1, G
(u) = Gu−1.

1.3.1.1 Ramification of Complete Intersection Algebra

Using the basic ramification theory, we will prove the following.

Proposition 1.3.1 [Fo1, Proposition 1.7]. Let A be a finite flat OK-algebra of form A =
OK [[x1, · · · , xm]]/〈f1, · · · , fm〉. Suppose there exists an element 0 6= a ∈ OK annihilating
Ω1
A/OK

, so that Ω1
A/OK

is a flat A/aA-module.

(i) Suppose S is a finite flat OK-algebra and I is a topologically nilpotent divided power
ideal. Then,

HomOK
(A,S) = im(HomOK

(A,S/aI)→ HomOK
(A,S/I)).

(ii) If L is the field over K generated by the K-points of Y = SpecA (notationally L =
K(Y (K))), then uL/K ≤ vK(a) + eK

p−1 .

Before proving the theorem, we define some terms. For a finite flat OK-scheme X = SpecB,
K(X(K)), the field generated by K-valued points of X, is defined as follows: as BK = B⊗OK

K
is finite over K and Ω1

BK/K
= Ω1

B/OK
⊗OK

K = 0, BK is a finite étale algebra over K; thus, BK

is a finite product of finite separable extensions L1, · · · , Lm of K. We can then define K(X(K))
to be the compositum of Li’s in a fixed algebraic closure K.

For a finite flat OK-algebra S, an ideal I ⊂ S is a divided power ideal if, for all x ∈ I and
n ∈ N, the element γn(x) = xn/n! is also an element of I. We define I [m] to be the ideal of S
generated by the products γn1(x1) · · · γnr(xr) for all x1, · · · , xr ∈ I and

∑
ni ≥ m. A divided

power ideal I is topologically nilpotent if ∩∞m=1I
[m] = 0.

Proof of Proposition 1.3.1(i). (i) Let mA be the maximal ideal of A (A is local!) and J =
〈f1, · · · , fm〉 ⊂ OK [[x1, · · · , xm]]. As Ω1

A/OK
is a free A/aA-module (A is local!), we have

∂fi
∂xj

= apij for some pij ∈ A. Also, as a · dxi should be expressed as a linear combination of

dfj ’s, the coefficient matrices will form an inverse matrix of the matrix (pij). In particular, the
matrix (pij) is invertible.

The statement of (i) will follow if, given an OK-homomorphism φ : A → S/aI, we can
uniquely lift φ to an OK-homomorphism φ : A→ S. Note that I [1] = I and ∩I [n] = 0. We will
inductively lift φ : A→ S/aI [n] to φ : A→ S/aI [n+1]. To be more precise, given u1, · · · , um ∈ S
such that fi(u1, · · · , um) ∈ aI [n], we want to find ǫi ∈ I [n], unique modulo I [n+1], such that
f(u1 + ǫ1, · · · , um + ǫm) ∈ aI [n+1]. The unique lifting will then follow and the proof of (i) will
be finished.

Using the Taylor expansion, we have

fi(u1 + ǫ1, · · · , um + ǫm) = fi(u1, · · · , um) +
m∑

j=1

∂fi
∂xj

(u1, · · · , um)ǫj

+
∑

|r|≥2

∂rfi
∂xr

(u1, · · · , um)
ǫr

r!
,
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where ǫr =
∏
k ǫ

rk
k . The series converges as I is a topologically nilpotent divided power ideal.

Lift pij ’s to A, and we have ∂fi
∂xj

= apij + rij where rij ∈ J . As fi(u1, · · · , um) ∈ aI [n], we have

∂fi
∂xj

(u1, · · · , um)ǫj = apij(u1, · · · , um)ǫj + rij(u1, · · · , um)ǫj .

Note that, as rij ∈ J , rij(u1, · · · , um)ǫj ∈ aI [n]I [n] ⊂ aI [n+1]. Similarly, for r1 + · · · + rm ≥ 2,

the higher derivatives ∂r1+···+rmfi
∂x

r1
1 ···∂xrmm

are a sum of a polynomial in J and a multiple of a. Therefore,

∂r1+···+rmfi
∂x

r1
1 ···∂xrmm

(u1, · · · , um) is a multiple of a. An important point is the following.

Claim. For |r| ≥ 2, ǫ
r

r! is in I [n+1], i.e. (I [n])[2] ⊂ I [n+1].

To show this, it is sufficient to show that x ∈ I [n] implies x2/2 ∈ I [n+1]. We can further

assume that x =
x
a1
1 ···x

at
t

a1!···at!
for a1 + · · ·+ at ≥ n, x1, · · · , xt ∈ I. Note however that

x2

2
=

x2a11 · · ·x2att

2a1!2 · · · at!2

=
x2a11 · · ·x2att

(2a1)! · · · (2at)!
· 1
2

Ç
2a1
a1

å
· · ·
Ç
2at
at

å

=
x2a11 · · ·x2att

(2a1)! · · · (2at)!
·
Ç
2a1 − 1

a1 − 1

åÇ
2a2
a2

å
· · ·
Ç
2at
at

å
∈ I [2n] ⊂ I [n+1].

Appplying this to the Taylor expansion, we have

fi(u1 + ǫ1, · · · , um + ǫm) ≡ fi(u1, · · · , um) + a
∑

j

pij(u1, · · · , um)ǫj (mod aI [n+1]).

Thus it is sufficient to show that there are unique ǫ1, · · · , ǫm ∈ I [n] such that

∑

j

pij(u1, · · · , um)ǫj ≡ −fi(u1, · · · , um) (mod I [n+1]).

As (pij) ∈ GLm(A), (pij(u1, · · · , um)) ∈ GLm(S), which means that the solution is unique.
Finally, the unique solution is in I [n], as −fi(u1, · · · , um) ∈ I [n].

1.3.1.2 Converse to Krasner’s Lemma

To prove Proposition 1.3.1(ii), we first need a lemma.

Lemma 1.3.1 [Fo1, Proposition 1.5]. For any finite Galois extension E/K and a positive real
number t, denote mt

E = {x ∈ OE | v(x) ≥ t}, where v is the unique extended valuation of vK .
(i) If t > uL/K , then for any finite Galois extension E/K, every OK-algebra homomorphism

OL → OE/mt
E lifts to an OK-algebra homomorphism OL → OE.

(ii) Given a finite Galois extension E/K and a positive real number t, if every OK-algebra
homomorphism OL → OE/mt

E lifts to an OK-algebra homomorphism OL → OE, then t >
uL/K − 1

eL/K
.

Proof. (i) Let f(x) ∈ OK [x] be the minimal polynomial of πL. An OK-algebra homomorphism
OL → OE/mt

E is determined by its image β ∈ OE of πL, where β must satisfy v(f(β)) ≥ t >
uL/K . On the other hand, we claim that v(f(β)) = φL/K(supg∈G v(β − gπL)), where v is the
unique valuation of an algebraic closure containing both L and E. Suppose g0 ∈ G achieves
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the maximum of v(β − gπL). For all g ∈ G, vK(β − gπL) = min{vK(β − g0πL), vK(g0(πL −
g−1
0 gπL))} = min{vK(β − g0πL), iL/K(g−1

0 g)}. As f(β) = ∏
g∈G(β − gπL), the claim follows.

By the claim, we get v(β − g0πL) = supg∈G v(β − gπL) > iL/K = sup16=g∈G v(gπL − πL), for
some g0 ∈ G. By Krasner’s lemma, K(g0πL) = L ⊂ K(β) ⊂ E, which induces a lift OL → OE .

(ii) It is sufficient to prove that, for t = uL/K − 1
eL/K

, there is an OK-algebra map OL →
OE/mt

E which does not lift to an OK-algebra map OL → OE . Let L/K ′/K be the maximal
unramified extension. As a base change of an étale morphism is étale, E ⊗K K ′ =

∏
Ei is

unramified over E, where Ei/E’s are finite unramified extensions of E. Taking any Ei, any OK-
algebra map OL → OE/mt

E extends to an OK′-algebra map OL → OEi/m
t
Ei
. As uL/K = uL/K′

and eL/K = eL/K′ , we can therefore assume that L/K is totally ramified. Also, we can assume
that L 6= K.

Suppose L/K is tamely ramified, then vL(gπL−πL) > 1
eL/K

implies g = 1. Thus, iL/K(g) =
1

eL/K
for all 1 6= g ∈ G, so iL/K = 1

eL/K
. Therefore, uL/K = 1, and t = 1 − 1

eL/K
. Take E/K

be any totally ramified extension of degree d < eL/K . There is no OK-algebra map OL → OE ,
as they have different ramification indices. On the other hand, define f : OL → OE/πtKOE as

sending πL to a uniformizer πE of E. As vL(
∏
g∈G(gπL−πE)) = [L:K]

eL/K
= 1, this is a well-defined

map. This proves the case when L/K is tamely ramified.
If L/K is wildly ramified, then for all g ∈ G with g 6= 1, eL/KiL/K(g) ≥ 1, and as p | [L : K],

p − 1 of g ∈ G − {1} satisfies eL/KiL/K(g) ≥ 2. Therefore, t > 1. As eL/Kt is an integer, let
eL/K = eL/Kr+s where r, s ∈ N with s < eL/K . Let f [x] ∈ OK [x] be the minimal polynomial of
πL, and let g(x) = f(x)−πrKxs. As eL/K > s, this polynomial is monic, and r ≥ 1, so πK divides
all coefficients of g other than the top coefficient. As f is Eisenstein, if s > 0, g is automatically
Eisenstein; if s = 0, r ≥ 2, so again g is Eisenstein. Let β be a root of g(x), and let E = K(β).
As g is Eisenstein, E/K is totally ramified. We claim that the map OL → OE/mt

E sending
πL to β is a well-defined OK-algebra map. This is because v(β) = 1

eL/K
, and f(β) = πrKβ

s, so

v(f(β)) = v(πrKβ
s) = t.

Now it remains to show that there is no OK-algebra map OL → OE . If not, this implies
L ⊂ E. As both extensions L/K and E/K have the same degree, L = E. Thus, v(gπL − β) ∈

1
eL/K

Z for all g ∈ G. On the other hand, vK(
∏
g∈G(gπL − β)) = vK(f(β)) = vK(π

r
Kβ

s) = t.

Thus,
eL/K sup

g∈G
v(gπL − β) = eL/Kφ

−1
L/K(vK(f(β))) = eL/Kφ

−1
L/K(t)

is an integer. Let d be the slope of the left segment of φL/K at iL/K . This is precisely the

cardinality of G(iL/K). Then, eL/Kφ
−1
L/K(t) = eL/K(iL/K − 1

eL/Kd
) = eL/KiL/K − 1

d . This implies

that d = 1. However, as G(iL/K) 6= 1, this is a contradiction.

This is certainly not a difficult conclusion. In particular, one can kill the error term e−1
L/K

by taking an arbitrarily large tamely ramified base change. We record this for later use.

Theorem 1.3.1 [Y, Proposition 3.3]. With the same notation as Lemma 1.3.1, one can improve
(ii) by t ≥ uL/K instead of t > uL/K − 1

eL/K
.

1.3.1.3 Ramification Bound

Now we can finish the proof of Proposition 1.3.1.

Proof of Proposition 1.3.1(ii). If L/K is tamely ramified, then uL/K ≤ 1 ≤ vK(a) ≤ vK(a) +
e

p−1 , so we can assume that L/K is wildly ramified. Here we use Lemma 1.3.1. Specifically, we
will show the following.
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Claim. For t > vK(a) +
eK
p−1 and a finite Galois extension E/K, any OK-algebra homo-

morphism OL → OE/mt
E lifts to an OK-algebra homomorphism OL → OE .

If this is true, then vK(a) +
eK
p−1 ≥ uL/K − 1

eL/K
, so uL/K ≤ vK(a) +

eK
p−1 + 1

eL/K
. As

eL/KiL/K(g) is an integer for all g ∈ G − {1} and |G(i)| is divisible by p for all i ≤ iL/K , it
follows that eL/KuL/K is an integer divisible by p. On the other hand, by the claim,

eL/K(p− 1)uL/K ≤ eL/K(p− 1)vK(a) + eL/KeK + p− 1.

As eL/K is divisible by p, eL/K(p− 1)vK(a) + eL/KeK is divisible by p. As eL/K(p− 1)uL/K is
divisible by p, It turns out that

eL/K(p− 1)uL/K ≤ eL/K(p− 1)vK(a) + eL/KeK ,

or uL/K ≤ vK(a) + eK
p−1 , as desired.

Thus, it remains to prove the claim. As Y (OL) realizes all geometric points of Y as L-rational
points (by the definition of L), for any finite Galois E/K, #Y (OE) ≤ #Y (K) = #Y (OL) with
equality if and only if L ⊂ E if and only if there is an OK-algebra map OL → OE .

Note that mt
E = am

t−v(a)
E . As t− v(a) > eK

p−1 , m
t−v(a)
E is a divided power ideal11. Also, it is

obviously topologically nilpotent. Given a map OL → OE/mt
E , the kernel of the composition

OL → OE/mt
E → OE/m

t−v(a)
E , which is just m

t−v(a)
L , is also a topologically nilpotent divided

power ideal by the same reason. We apply (i) of Proposition 1.3.1 to get

HomOK
(A,OE) = im(HomOK

(A,OE/amt−v(a)
E )→ HomOK

(A,OE/mt−v(a)
E ))

and
HomOK

(A,OL) = im(HomOK
(A,OL/amt−v(a)

L )→ HomOK
(A,OL/mt−v(a)

L )).

As we are given a map OL → OE/mt
E , composing this map with an element in Y (OL) =

HomOK
(A,OL), which is an element in HomOK

(A,OL/mt
L). gives an element in Y (OE) =

HomOK
(A,OE), which is an element in HomOK

(A,OE/mt
E). This is necessarily injective by

the definition of L being the field of definition of Y = SpecA. Thus, #Y (OE) = #Y (OL), so
L ⊂ E, and the claim follows.

Proposition 1.3.1 proves the main ramification bound, Theorem 1.1.1.

Theorem 1.1.1. Let K be a finite extension of Qp, and let e = vK(p) be the absolute ramifica-
tion index. For an integer n ≥ 1, suppose Γ is a finite flat commutative group scheme over OK
killed by pn. Let L = K(Γ(K)), and G = Gal(L/K). Then, G(u) = 1 for u > e

Ä
n+ 1

p−1

ä
, and

v(DL/K) < e
Ä
n+ 1

p−1

ä
, where DL/K is the different of L/K.

Proof. We just need to prove that uL/K ≤ e
Ä
n+ 1

p−1

ä
; the statement about the valuation of

different follows from the general fact that v(DL/K) = uL/K− iL/K . This is because v(DL/K) =
v(
∏

16=g∈G(gπL − πL)). As uL/K = φL/K(iL/K), we have

uL/K =
∑

g∈G

min(iL/K , iL/K(g))

= iL/K +
∑

16=g∈G

iL/K(g)

= iL/K + v(
∏

16=g∈G

(gπL − πL))

= iL/K + v(DL/K),

11This follows by looking at the valuations of factorials.
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which implies that v(DL/K) < uL/K ≤ e
Ä
n+ 1

p−1

ä
.

Let Γ = SpecA. Suppose first that Ω1
A/OK

is a free A/pnA-module. As k is perfect, by

Proposition 1.2.3(iv), Γk = SpecA ⊗OK
k is a direct product Γét

k × Γ0
k. By the classification

result, Theorem 1.2.5, in particular we deduce that A ⊗OK
k, thus A, is locally of complete

intersection. Thus, A =
∏
iAi with each Ai of form Ai = OKi [[x1, · · · , xm]]/(fi1, · · · , fim) for

some unramified extensions Ki/K. This enables us to apply Proposition 1.3.1(ii).
Now it only remains to reduce the problem to the case when Ω1

A/OK
is a free A/pnA-module.

For a general case, note that, by Theorem 1.2.16, we can embed Γ into an abelian scheme X
over OK , as OK is local. As X[pn](K) contains Γ(K), it is sufficient to prove the theorem for
X[pn]. On the other hand, the exact sequence of étale group schemes

0→ X[pn]→ X
[pn]−−→ X → 0

gives us

0→ Ω1
X/OK

[pn]−−→ Ω1
X/OK

→ Ω1
X[pn]/OK

→ 0.

As Ω1
X/OK

is a (locally) free OK-module, Ω1
X[pn]/OK

is a free OK/pnOK-module and we can use
the argument discussed in the previous paragraph.

Remark 1.3.1. In [Fo1], Fontaine conjectured that a similar ramification bound holds for
étale cohomologies of a proper smooth scheme over a ring of Witt vectors. It is indeed a
generalization of Theorem 1.1.1, as what we are really analyzing is the first étale cohomology
group of an abelian variety. It is proved in [Ab3], which will be discussed in the next chapter.

We record the global consequences, which we will be really using in proving nonexistence
results.

Theorem 1.3.2 [Fo1, Théorème 3, Corollaire 3.3.2]. Let E be a number field, and fix an
algebraic clousre E. Let Γ be a finite flat commutative OE-group scheme killed by pn, and let
F = E(Γ(E)). For all prime ideal p ⊂ OE, let ep be the absolute ramification index of p and rp
be the exponent of p inside the discriminant ∆F/E. Then we have the following.

(i) If p does not divide p, rp = 0. In other words, F/E is unramified outside p.
(ii) If p divides p,

rp < [F : E]ep

Å
n+

1

p− 1

ã
.

(iii) If dE , dF are the (absolute) discriminants of E,F , respectively, then

|dF |
1

[F :Q] < |dE |
1

[E:Q] p
n+ 1

p−1 .

Proof. (i) Let Γ = SpecA. As A is killed by pn, it annihilates I/I2, where I is the augmentation
ideal of A. Thus, pn annihilates Ω1

Γ/OE
= A⊗OE

I/I2. As pn is a unit in κ(p), Ω1
Γκ(p)/κ(p)

, killed

by pn, is zero. Thus, Γκ(p) is étale. By Proposition 1.2.11, ΓOEp
is étale. Thus, A ⊗OE

OEp is
the product of unramified extensions OE′ ⊃ OEp . Thus A⊗OE

Ep is the product of unramified
extensions of Ep, which implies that any direct factor of A ⊗OE

E is a field extension of E
unramified at p. Thus, F/E, which is the compositum of those direct factors, is unramified at
p.

(ii) Let P1, · · · ,Pg be prime ideals of F dividing p. Letm = v(DFP1
/Ep

). By Theorem 1.1.1,

we know that m < eep
Ä
n+ 1

p−1

ä
. As F/E is Galois, we know that Pi’s are Galois conjugate
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to each other. Thus, the contribution of p in ∆F/E is NF/E((P1 · · ·Pg)
m) = pmfg, where f is

the degree of the residue field extension of FP1/Ep. Thus,

rp = mfg = efgep

Å
n+

1

p− 1

ã
= [F : E]ep

Å
n+

1

p− 1

ã
.

(iii) Let the prime factorization of (p) in E be denoted as (p) =
∏h
i=1 p

ei
i . By (i) and (ii),

∆F/E =
∏h
i=1 p

ri
i , where ri < [F : E]ei

Ä
n+ 1

p−1

ä
. Recall that

∆F/Q = ∆
[F :E]
E/Q NE/Q(∆F/E).

Let fi be the degree of the residue field extension of Epi/Qp. Then, NE/Q(∆F/E) = (pr), where

r =
∑h
i=1 firi. Therefore, taking the [F : Q]-th roots on both sides, we now know that

|dF |
1

[F :Q] = |dE |
1

[E:Q] p
r

[F :Q] .

Then, the following proves the statement.

r

[F : Q]
=

h∑

i=1

firi
[F : Q]

<

Å
n+

1

p− 1

ã h∑

i=1

fiei[F : E]

[F : Q]
=

Å
n+

1

p− 1

ã
[E : Q]

[E : Q]
= n+

1

p− 1
.

1.3.2 Constraints on p-groups and p-divisible Groups

1.3.2.1 Results of Fontaine

The ramification bounds we proved in the previous section give severe restrictions on the field
F generated by geometric points of a p-group over the ring of integers of a small number field.
In particular, it gives an upper bound on the absolute discriminant dF . Combined with the
Odlyzko discriminant bound [Mar], we can bound the degree [F : Q], and this reduces us to
consider only finitely many cases. The low-degree cases have very simple structures, thanks to
the following.

Proposition 1.3.2 [Fo1, Proposition 3.2.1]. Let k be an algebraically closed field of character-
istic p, which is an odd prime, W =W (k), K = FracW , and K an algebraic closure of K. Let
Γ be a finite flat commutative W -group scheme killed by p, and let L = K(Γ(K)). Suppose that
Γ contains a subgroup isomorphic to µp. Then L satisfies one of the following.

1. L/K is cyclic of degree p− 1, and there exists integers r, s such that Γ ∼= (Z/pZ)r ⊗ µsp.

2. [L : K] = p(p − 1), and there exists integers r, s and a short non-split exact sequence
0→ µsp → Γ→ (Z/pZ)r → 0.

3. L/K is cyclic of degree p2 − 1.

4. [L : K] ≥ p2(p− 1).

Proof. Note that as e = 1 < p− 1, so we can use the results of Section 1.2.1.7. In particular, by
embedding the category of finite flat commutativeW -group schemes of p-power order inside the
category of finite flat commutativeK-group schemes of p-power order, we see that the category of
finite flat commuatitve W -group schemes of p-power order is an abelian category. In particular,
any such group scheme has a Jordan-Hölder composition series. Note also that, by Cartier’s

43



Gyujin Oh There is no abelian scheme over Z

theorem, Theorem 1.2.2, and the equivalence of categories in Section 1.2.1.4, G 7→ G(K) is an
equivalence of categories from the category of finite flat commutative K-group schemes killed
by p to the category of finite Fp[GK ]-modules, where α is a geometric point in SpecW . The
classification of Raynaud F -schemes in [R] can be translated into the language of Fp[GK ]-
modules in this case as follows.

• A simple Fp[GK ]-module M of dimension h is a 1-dimensional Fph-vector space, with the

GK-action given by χ
i0+pi1+···+ph−1ih−1

h for integers 0 ≤ i0, · · · , ih−1 ≤ p− 1, not all equal
to p − 1, where χh : GK → F×

ph
is a character sending g 7→ gπh/πh and πh ∈ K is a

(ph − 1)-st root of p.

• EndFp[GK ](M) = Fph , and a conjugation by an element in EndFp[GK ](M) shifts (i0, · · · , ih−1)
circularly, so that M being simple implies that (i0, · · · , ih−1), as a function from Z/hZ to
Z, has period exactly h.

Let Γ1, · · · ,Γt be Jordan-Hölder factors of Γ, and let hm = dimFp Γm(K). Let im : Z/hmZ→ Z

be the map of period exactly hm corresponding to Γm(K). By [R, Corollaire 3.4.4], we can
suppose that im(j) ≤ e = 1 for all j. Let Lm be the compositum of K(ζp) and K(Γm(K)). It
is clear that Lm/K is tamely ramified, thus cyclic. Let dm = [Lm : K]. If there is hm ≥ 3, then
we are automatically directed to the fourth case by the following claim.

Claim. If hm ≥ 3, then dm > p2(p− 1).

Note that dm is the smallest multiple of p−1 such that phm−1 divides dm(i
m(0)+pim(1)+

· · · + phm−1im(hm − 1)). If there are consecutive j, j + 1 (modulo hm) such that im(j) =
im(j + 1) = 0, then we can shift so that we can assume im(hm − 2) = im(hm − 1) = 0. Then

dm ≥ phm−1
phm−2−1

p−1

> p2(p−1). If not, as hm ≥ 3 and (im(0), · · · , im(hm−1)) is of period hm, there

exist consecutive j, j+1 (modulo hm) such that im(j) = im(j+1) = 0. We can shift so that we
can assume im(hm− 2) = im(hm− 1) = 0. By considering that dm((1− im(0)) + p(1− im(1)) +
· · · + phm−1(1 − im(hm − 1))) is divisible by phm − 1 as well, we get the same bound, namely

dm ≥ phm−1
phm−2−1

p−1

> p2(p− 1).

Now we can assume that hm ≤ 2 for all m. If hm = 1 (2, respectively), then dm = p − 1
(p2 − 1, respectively), because of the simplicity assumption on Jordan-Hölder factors. If Γ is
semi-simple (i.e. a direct sum of Jordan-Hölder factors), then we can conclude that L is cyclic
of degree either p− 1 or p2 − 1. If it is not semisimple, then [L : K] cannot be tamely ramified
(as it cannot be cyclic), so p divides [L : K]. Therefore, if there exists some hm = 2, then p2−1
divides [L : K], so that [L : K] ≥ p(p2 − 1) and it is in the fourth case.

Therefore, we are left with the case of non-semi-simple Γ with hm = 1 for all 1 ≤ m ≤ t.
Over K, any extension of µp by µp or Z/pZ is trivial, and the same is for an extension of Z/pZ
by Z/pZ. Thus, the only way ΓK can be non-semi-simple (which is true by the full faithfulness
of generic fiber functor) is that ΓK is an extension of (Z/pZ)r by µsp, for some r, s ≥ 0. In that
case, [L : K] = pu(p − 1) for some u ≥ 1; if u = 1, we are in the second case, and if u ≥ 2, we
are in the fourth case. So we have checked that all are divided into the four cases, when p is
odd.

Combined with the above proposition, it can be shown that the field generated by geometric
points of a p-group is of certain form. The following is an example of the consequence of this
philosophy, which is proved in [Fo1].
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Lemma 1.3.2 [Fo1, 3.4.2]. Let E be a number field and Γ be a finite flat commutative OE-group
scheme. Suppose that Γ is killed by p and F = E(Γ(E)). Then we have the following.

(i) If E = Q (resp. Q(
√
−1), Q(

√
−3)) and p ∈ {3, 5, 7, 11, 13, 17} (resp. p ∈ {3, 5, 7},

p ∈ {5, 7}), then F ⊂ E(ζp).
(ii) If E = Q(

√
5) and p = 3, F ⊂ E(ζ3, 3

√
η), where η is a fundamental unit of E.

Proof. By taking Γ × µp instead of Γ, we can assume that there is a closed subscheme of Γ
isomorphic to µp. Let F0 = E(ζp), so that F0 ⊂ F . If E 6= Q, let i : E → E be the nontrivial
element of Gal(E/Q). The, replacing Γ with Γ⊕ i(Γ), we can also assume that F/Q is Galois.

Let n = [F : Q], n0 = [F : E], n′0 = [F : F0], a = [E : Q]. Then, we have n = an0 and
n0 = (p−1)n′0. Let dE and dF be the absolute discriminant of E and F . By Theorem 1.3.2(iii),
we have |dF |1/n < |dE |1/a · pp/(p−1). Thus, for each E, we have a bound on dF . By using the
Odlyzko discriminant bound [Mar], for each case, we deduce bounds on n = [F : Q], thereby
n′0.

• For E = Q, if p = 3, 5, 7, 11, 13, 17, then n ≤ 6, 12, 18, 50, 88, 574, so that n′0 ≤ 3, 3, 3, 5, 7, 35.

• For E = Q(
√
−1), if p = 3, 5, 7, then n ≤ 22, 64, 316, so that n′0 ≤ 5, 8, 26.

• For E = Q(
√
−3), if p = 5, 7, then n ≤ 38, 108, so that n′0 ≤ 4, 9.

• For E = Q(
√
5), if p = 3, then n ≤ 28, so that n′0 ≤ 7.

To show that F = F0, note that we know from Theorem 1.3.2 that F/F0 is unramified outside
p. Also, we can check from [Mas] that F0 has class number 1 in all cases we are considering.
Thus, the Hilbert class field of F0 is F0 itself. Therefore, to show that F = F0, we only need to
show that F/F0 is unramified at primes over p.

Let e be the absolute ramification index of a place of F over p, which is independent of the
choice of place as F is Galois over Q. As the absolute ramification index of F0 at a place over
p is p − 1, e = (p − 1)e′. What we want to show for all cases except E = Q(

√
5) and p = 3 is

that e′ = 1. For all cases we are considering, E/Q is unramified at p. Thus, e divides n0, and
e′ divides n′0. By Proposition 1.3.2, it follows that either e′ ∈ {1, p, p + 1} or e′ ≥ p2. For all
cases we are considering, n′0 < p2. Therefore, if e′ 6= 1, then either e′ = p or p+ 1. This is even
impossible if n′0 < p. Thus, we are left to deal with cases

(E, p) = (Q, 3), (Q, 17), (Q(
√
−1), 3), (Q(

√
−1), 5), (Q(

√
−1), 7), (Q(

√
−3), 7), (Q(

√
5), 3).

The case e′ = p + 1 is when e = p2 − 1, so F/E is tamely ramified. In that case, we observed
in the proof of Theorem 1.1.1 that v(DF/E) < uF/E = 1, so that actually a sharper bound

|dF |1/n < |dE |1/ap holds. After recalculation, we get n ≤ 2, 116, 8, 20, 50, 32, 78 so that n′0 ≤
1, 7, 2, 2, 4, 2, 6, respectively, which is < p+ 1 for all cases. Thus, e′ = p+ 1 is impossible.

For the case e′ = p, let’s first show that n′0 = p. If p < n′0 < p2, then by Sylow theorems,
there is only one Sylow p-group of Gal(F/F0), which is of order n′0 (as the number of Sylow
p-groups is 1 modulo p). Therefore, for a prime P of F lying over p, the inertia group Iβ is the
unique Sylow p-group of Gal(F/F0). Then F Iβ is an everywhere unramified extension of F0,
which is a contradiction as F0 has class number 1. Note however that n′0 < p2 for all cases we
have. Therefore, necessarily we have n′0 = e′ = p, and n0 = e = p(p− 1).

Let p be a prime of E over p. Let k be the residue field of OFp , and let W =W (k); it is an
extension of OEp as E is unramified at p. By Proposition 1.3.2, ΓW is a nontrivial extension
of (Z/pZ)r by µsp, for some nonnegative integers r, s. We will eventually show that Γ itself is
a nontrivial extension of (Z/pZ)r by µsp. First we show ΓOEp

is so. As both FracW and Ep

have absolute ramification index e = 1 < p − 1, the generic fiber functor on the category of
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finite flat commutative group schemes over W (OEp , respectively) killed by p-power is fully
faithful respecting sub-objects and quotients, by Theorem 1.2.8. As every finite flat group
scheme over Ep or FracW is étale, we can think of finite flat group schemes over those fields as
Galois modules, and here we can finally use Galois descent. Therefore, that ΓW is a nontrivial
extension of (Z/pZ)r by µsp is also true for ΓOEp

. Here we went through the process

ΓW
generic fiber−−−−−−−→ ΓFracW

Galois descent−−−−−−−−−→ ΓEp

generic fiber←−−−−−−− ΓOEp
.

Now we proceed to Γ. By Theorem 1.2.6, we can think of Γ as a triple (
∏

p|p ΓOEp
,ΓOE [1/p], idΓEp

).
First, the extensions ΓOEp

are compatible with Galois conjugates, as the extension exact se-
quences are just connected-étale sequences in this case. As Γ is of p-power order, ΓOE [1/p] is
étale by Proposition 1.2.4(ii). What is more is that we know F/E is unramified outside p. Thus,
ΓOE [1/p] is an étale group scheme with a trivial π1,ét-action, so it is a constant group scheme.
Thus, we can identify µsp inside Γ as a triple

Ñ
∏

p|p

(µsp)OEp
, G,

(
id∏

p|p
ΓEp

)
|∏

p|p
(µsp)Ep

é
,

where G is the collection of points in ΓOE [1/p] which lifts to a point in
∏

p|p(µ
s
p)Ep ⊂

∏
p|p ΓEp ;

this is the only choice we can make as ΓOE [1/p] is a constant group scheme. Thus, µsp exists as
a closed OE-subgroup scheme of Γ, and its quotient is an étale OE-group scheme whose base
change to OEp is (Z/pZ)r. As it has trivial Galois action outside p, again by Theorem 1.2.6, it
is a constant group scheme as a OE-group scheme, and it is thus necessarily (Z/pZ)r.

Now F/F0 is generated by p
√
u1, · · · , p

√
ur upon the choice of elements u1, · · · , ur ∈ E, cor-

responding to generators of (Z/pZ)r. However, as we know [F : F0] = p, only one unit will
be sufficient to generate F . Thus, F = E(ζp, p

√
u) for some u ∈ E which is not a p-th power.

By rescaling, we can suppose that u is an algebraic number not divisible by a p-th power of a
prime. To show that u is a unit, it is sufficient to prove so for an extension of Z/pZ by µp, as the
field generated by geometric points of such extension is certainly contained in F , which should
be just equal to F by degree reasons. Note however that as OE is a PID, we can completely
classify such extensions.

Claim. Over OE , if a finite flat commutative OE-group scheme satisfies 0 → µp → G →
Z/pZ → 0, then G is a Katz-Mazur group scheme; namely, there exists η ∈ O×

E such that, for
an OE-algebra S,

G(S) = {(x, i) | x ∈ S×, xp = ηi for all 0 ≤ i < n}.
Equivalently, G = Spec

∏p−1
i=0 OE [x]/(xp − ηi).

If the claim is true, then F = E(ζp, p
√
η), as desired. On the other hand, except E = Q(

√
5),

there is no nontrivial fundamental unit of OE . Therefore, proving the claim will finish the proof.
We actually prove the claim by calculating the order of Ext1OE

(Z/pZ, µp), which will be a finite

group in this case. First of all, there are |O×
E/O

×p
E | many different Katz-Mazur groups, as E

does not contain a primitive p-th root of unity (recall that p 6= 2), you have to first choose a
unit η, and any other η′ off by a p-th power will give the same group. On the other hand, we
have exact sequences

0→ µp,OE
→ Gm,OE

p−→ Gm,OE
→ 0

and
0→ (Z)OE

p−→ (Z)OE
→ (Z/pZ)OE

→ 0.

46



Gyujin Oh There is no abelian scheme over Z

Therefore, the following are also exact, as they are long exact sequences of Ext functor.

HomOE
((Z)OE

,Gm,OE
)
x 7→xp−−−→ HomOE

((Z)OE
,Gm,OE

)

→ Ext1OE
((Z)OE

, µp,OE
)→ Ext1OE

((Z)OE
,Gm,OE

),

HomOE
((Z)OE

, µp,OE
)
x 7→xp−−−→ HomOE

((Z)OE
, µp,OE

)→ Ext1OE
((Z/pZ)OE

, µp,OE
)

→ Ext1OE
((Z)OE

, µp,OE
)
x 7→xp−−−→ Ext1OE

((Z)OE
, µp,OE

).

Now we know some of these entries. First of all, the functor HomOE
((Z)OE

,−) is just the global
section functor. Therefore, for any fppf sheaf F , ExtiOE

((Z)OE
,F ) = H i((SpecR)fppf ,F ).

Thus, HomOE
((Z)OE

,Gm,OE
) = O×

E , and Ext1OE
((Z)OE

,Gm,OE
) = H1

fppf(SpecOE ,Gm,OE
).

Note however that, by faithfully flat descent, an invertible sheaf on fppf topology is the same
as just an invertible sheaf on Zariski topology, so it is just Pic(OE) (cf. [Stacks, Tag 03P8]).
As OE is a PID, the Picard group vanishes. Thus, the first exact sequence gives us

Ext1OE
((Z)OE

, µp,OE
) = O×

E/O
×p
E .

On the other hand, the second exact sequence gives us

Ext1OE
((Z/pZ)OE

, µp,OE
) = Ext1OE

((Z)OE
, µp,OE

) = O×
E/O

×p
E .

Thus, the orders match, and the claim is proved.

Finally, now we can prove the structural restrictions on finite flat commutative group schemes
over the ring of integer of a small number field.

Theorem 1.3.3 [Fo1, Théorème 4]. Let E be a number field, and Γ be a finite flat commutative
group scheme over OE of p-power order.

(i) If E = Q (resp. Q(
√
−1), Q(

√
−3)) and p ∈ {3, 5, 7, 11, 13, 17} (resp. p ∈ {3, 5, 7},

p ∈ {5, 7}), then Γ is a direct sum of a constant group and a diagonalizable group.
(ii) If E = Q(

√
5) and p = 3, Γ is an extension of a constant group by a diagonalizable

group.

Proof. Let F = E(Γ(E)). As F/E is unramified outside p, by Theorem 1.2.6, the category of
finite flat commutative OE-group schemes of p-power order can be fully faithfully embedded
in the category of finite flat commutative OEp-group schemes of p-power order, for a prime p|p
in E. By Proposition 1.2.6, any extension of Z/pZ (µp, µp, respectively) by Z/pZ (Z/pZ, µp,
respectively) is étale (trivial, connected, respectively). Also, except the case of E = Q(

√
5) and

p = 3, any extension of µp by Z/pZ is trivial, by the proof of Lemma 1.3.2. Also as in the proof
of Lemma 1.3.2, using that E/Q is unramified at p, we can use, via Theorem 1.2.8, Raynaud’s
classification utilized in the proof of Proposition 1.3.2 to see that the only simple objects of the
category of finite flat commutative OE-group schemes of p-power order are µp and Z/pZ, and
the category is abelian.

We now show that, using Jordan-Hölder composition series, for all cases, Γ is an extension
of a constant group by a diagonalizable group. Let 0 = Γ0 ⊂ Γ1 ⊂ · · · ⊂ Γm−1 ⊂ Γm = Γ be
a composition series. Suppose that there is some 0 < i < m such that Γi/Γi−1 is µp whereas
Γi+1/Γi is Z/pZ. As the extension

0→ µp → Γi+1/Γi−1 → Z/pZ→ 0

is trivial by the remark in the above paragraph, we can in particular find a subgroup Γ′
i ⊂ Γi+1

such that Γ′
i/Γi−1

∼= µp and Γi+1/Γ
′
i
∼= Z/pZ. We then replace Γi with Γ′

i in the composition.
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After repeating this process finitely many times, we get a composition series where there is some
0 < j < m such that for all 0 < i ≤ j, Γi/Γi−1 = µp, whereas for all j < i ≤ m, Γi/Γi−1 = Z/pZ.
The discussion in the above paragraph says that, an extension of a constant (diagonalizable, re-
spectively) group by a constant (diagonalizable, respectively) group is constant (diagonalizable,
respectively). Thus, we deduce that Γ/Γj is constant whereas Γj is diagonalizable. This implies
that, in all cases, Γ is an extension of a connected group by a diagonalizable group. This proves
(ii).

To show (i), we need to show that the extension is split. To show this, we just need to show
that Ext1OE

(Gc, Gd) = 0 for any constant group Gc and diagonalizable Gd of p-power order. We
prove this via strong induction on |Gc||Gd|. Note that Ext1OE

(Z/pZ, µp) = 0 in the cases of (i)
by the remark we made in the first paragraph of the proof. Thus, the case |Gc| = |Gd| = p is
done. Now in a general case, suppose |Gc| > p. Then, we can find a subgroup G′

c ⊂ Gc such
that G′

c
∼= Z/pZ and Gc/G

′
c 6= 1. Note also that any morphism from an étale group scheme to

a connected group scheme is trivial, as it factors through the reduction of the connected group,
which is trivial. Thus, a part of the long exact sequence for Ext in this case is

0→ Ext1OE
(Gc/G

′
c, Gd)→ Ext1OE

(Gc, Gd)→ Ext1OE
(G′

c, Gd).

By strong induction, Ext1OE
(Gc, Gd) = 0. The same argument applies to the case when |Gd| > p,

as in this case we can find G′
d ⊂ Gd such that G′

d
∼= µp. This finishes the proof.

This easily gives the nonexistence result we were looking at.

Theorem 1.1.2 [Fo1, Corollaire 2]. For E = Q,Q(
√
−1),Q(

√
−3),Q(

√
5), there is no nontriv-

ial abelian variety over E with everywhere good reduction.

Proof. Suppose the contrary, and let A be an abelian variety of dimension g ≥ 1 over E with
everywhere good reduction. Let p be any prime corresponding to E as in Theorem 1.3.3. Then,
the p-divisible group A(p) is, by Theorem 1.3.3, an extension of a constant p-divisible group by
a diagonalizable p-divisible group. Note that a constant p-divisible group is necessarily of form
(Qp/Zp)

r, as it is clear by passage to Tate module, and a diagonalizable p-divisible group is
necessarily off form (µp∞)s by Cartier duality. Thus, A(p)0 = (µp∞)s and A(p)ét = (Qp/Zp)

r.

As A(p) is of dimension g (cf. [Tat2, 2.3]), A(p)0 is of dimenson g, and A(p)ét = (“A(p)0)D is so
by Cartier duality and existence of dual abelian varieties. Thus, A(p) sits inside a short exact
sequence

0→ (µp∞)g → A(p)→ (Qp/Zp)
g → 0.

In particular, if E = Q,Q(
√
−1) or Q(

√
−3), we have A(p) ∼= (Qp/Zp)

g⊕ (µp∞)g. Thus, for any
n > 0, there is an E-rational primitive pn-torsion point of A, where primitivity here means that
the point is not of pn−1-torsion. Let A be a Néron model of A over OE , then this E-rational
point in A factors through OE , so there is a OE-rational primitive pn-torsion point of A. For
a prime p of E over p, after the reduction modulo p, the OE-rational primitive pn-torsion point
of A becomes a k-rational primitive pn-torsion point of Ak, where k = κ(p). This means that
Ak(k) has at least pn elements. As this is a finite set, choosing a large enough n gives us a
contradiction.

For E = Q(
√
5), for any n > 0, still we have a subgroup Γn ⊂ A such that Γn ∼= (µpn)

g.
The quotient A/Γn, which exists by Theorem 1.2.3, is an abelian variety as it is proper and
connected, and A[pn]/Γn = (A/Γn)[p

n] is a constant group scheme of order png. By the same
process of passage to Néron model and its reduction, it follows that png ≤ #(A/Γn)k(k). On the
other hand, an abelian variety over a finite field k has a bounded number of k-rational points,
namely #(A/Γn)k(k) ≤ (

√
#k + 1)2g, which is a consequence of Riemann Hypothesis over a
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finite field, Proposition 2.2.9. Thus, png ≤ (
√
#k + 1)2g, which is a contradiction if we take n

large enough.
One can alternatively prove this corollary just with finite flat group schemes, without ap-

pealing to p-divisible groups. Namely, for any n ≥ 1, we have the exact sequence

0→ Dn → A[pn]→ Cn → 0,

where Dn and Cn are diagonalizable and constant, respectively. By using the same argument
as above, we can bound |Cn| ≤ (

√
#k + 1)2g. We can take the Cartier dual of this sequence,

and get the exact sequence
0→ CDn → “A[pn]→ DD

n → 0,

as “A[pn] = A[pn]D by the Weil pairing, Proposition 1.2.22. Thus we can similarly bound
|Dn| = |DD

n | ≤ (
√
#k + 1)2g. Thus, p2ng = |A[pn]| ≤ (

√
#k + 1)4g, which is a contradiction by

taking a large enough n.
Without appealing to the Riemann Hypothesis over finite field, one can argue alternatively

as follows. As A/Dn and A are isogenous, (A/Dn)k and Ak are isogenous abelian varieties
over k. As they have the same number of k-rational points by Theorem 1.2.37, #Ak(k) ≥
|Cn|. By taking dual, #“Ak(k) ≥ |DD

n | = |Dn|. As “A and A are also isogenous, we have
#Ak(k)

2 = #Ak(k) ·#“Ak(k) ≥ |Cn| · |Dn| = |A[pn]| = p2ng. Taking large enough n, one gets a
contradiction.

1.3.2.2 Restrictions on 2-Groups

Although we have proved the nonexistence of abelian variety over Q with everywhere good
reduction, it will be beneficial to review the whole argument in general terms so that we can see
what is needed in generalizing the argument to other situations. In particular, we prove that
a finite flat commutative Z-group scheme of 2-power order is also an extension of a constant
group scheme by a diagonalizable group scheme, a case excluded in the previous section.

There are several arguments that work for all cases, regardless of the choice of E or p.

• Given a finite flat commutative OE-group scheme G of p-power order, F = E(G(E)) will
still be unramified outside p and moderately ramified at p, by Theorem 1.3.2.

• The Jordan-Hölder composition series will exist. Even though we cannot appeal to Ray-
naud’s theory on prolongations, we can use Proposition 1.2.5 so that we can find a filtration
by finding a corresponding filtration for the generic fiber. Also, even though we do not
know if the category of finite flat commutative OE-group schemes is abelian, we know
quotients exist by Theorem 1.2.3; it is the behavior of general cokernel that we do not
know well, but we will not need it in this situation. The quotients will be simple objects
as, if not, there will be some object strictly in between consecutive entries of the filtration,
which will translate into an object in between consecutive entries of the filtration of the
generic fiber, and this is impossible as, over the generic fiber, we know the category is
abelian.

• If we know that the only simple objects are constant and diagonalizable groups, then we
can rearrange the given composition series so that any finite flat commutative OE-group
scheme of p-power order is an extension of a constant group by a diagonalizable group.
This is always possible because Theorem 1.2.6 and Proposition 1.2.6 are all we need for
this argument.
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On the other hand, what was special about the cases we considered in the previous section is
esssentially the classification of simple objects. Namely, to conclude that the only simple objects
in the category of finite flat commutative OE-group schemes of p-power order are µp and Z/pZ,
one needs a very special condition so that one can use something like Lemma 1.3.2 or Raynaud’s
results on full faithfulness of generic fiber functor. For example, we can see that even if E = Q

and p = 2, the only simple objects are µ2 and Z/2Z, and it is because “2 is small so that we
can consider all cases.”

Proposition 1.3.3 [Sc2, §5]. The simple objects of the category of finite flat commutative
Z-group schemes of 2-power order are µ2 and Z/2Z.

Proof. Let G be a finite flat commutative Z-group scheme killed by 2. Let L = Q(G(Q)). Note
that the Katz-Mazur group scheme G−1 with the choice η = −1 has Q(G−1(Q)) = Q(

√
−1);

recall thatG−1 = Spec
∏1
i=0 Z[x]/(x

2−(−1)i). AsG−1 is killed by 2, we can defineG′ := G×G−1

and instead consider F = Q(G′(Q)) ⊃ Q(
√
−1). By Theorem 1.3.2, |dF |

1
[F :Q] < 21+

1
2−1 = 4,

so by Odlyzko’s discriminant bound [Mar], [F : Q] ≤ 4. Thus, either F = Q(
√
−1) or [F :

Q(
√
−1)] = 2. In any case, L, as a subfield of F , is also a Galois 2-extension of Q.
Now, let H be a finite flat commutative Z-group scheme of 2-power order, which is also

simple in that category. As 0 6= H[2] ⊂ H, it follows that H is killed by 2, so K = Q(H(Q))
is of degree 1, 2 or 4 over Q. As Gal(K/Q), a 2-group, acts on HQ(Q), which is a finite set of
2-power order, by basic conjugacy class counting technique from group theory, we know that the
subgroup of HQ(Q) fixed by Gal(K/Q) is nontrivial and is of order divisible by p. Therefore, one
can take a Galois submodule of HQ(Q) of order p. As HQ is étale over Q, it follows that there
is a order 2 closed Q-subgroup scheme S of HQ. By Proposition 1.2.5, there is a corresponding
order 2 subgroup scheme S′ of H. As H is simple, it follows that H = S′, or that H is of
order 2. By [Tat1, 3.2], it is of form Ga,b where, a, b ∈ Z with ab = −2, such that Ga,b is
characterized as, for a commutative ring S, Ga,b(S) = {y ∈ S | y2 = ay} with group structure
as y ∗ z = y+ z+ byz. Pairs off by a unit give the same group scheme, and G−2,1 = µ2 whereas
G1,−2 = (Z/2Z). This is the desired conclusion.

Thus, the discussion we had earlier in this section proves the following theorem.

Theorem 1.3.4. A finite flat commutative Z-group scheme of 2-power order is an extension of
a constant group by a diagonalizable group.

This alone also implies the nonexistence of abelian scheme over Z.

1.4 Nonexistence of Certain Semi-stable Abelian Varieties over

Q

Fontaine’s first nonexistence proof in the previous section is really a structure theorem of fi-
nite flat group schemes and p-divisible groups “having everywhere good reduction,” i.e. those
extending to the ring of integers. Philosophically, one can prove a structure theorem of “low
degree objects” in a certain category if

1. the given category is pre-abelian, i.e. has kernels and cokernels,

2. one identifies all the simple objects in the category,

3. and one identifies all the possible extensions of a simple object by another simple object
in the category.
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What the proofs we have seen in the previous section did was to associate the given category, the
category of abelian varieties over a number field with everywhere good reduction, to a pre-abelian
subcategory of an abelian category. Examples are pn-torsion subgroups in a category of finite
flat group schemes in a category of fppf sheaves, p-divisible groups in a category of p-divisible
groups in a category of fppf sheaves, and Tate modules in a category of Fp or Zp-modules with
a group action. This dévissage-like argument is the heart of all proofs of similar nonexistence
problems. In particular, the proofs in the next chapter will use certain (pre-)abelian categories
coming up in (integral) p-adic Hodge theory.

Residing in the category of finite flat group schemes/p-divisible groups for now, one might
ask if a similar proof applies to a certain type of abelian variety which can be characterized by
its torsion subgroups or p-divisible groups. We have observed that semi-stable reduction can
also be determined purely by p-divisible groups and/or torsion subgroups, thanks to Theorem
1.2.30 and its related theorems in the Section 1.2.3.7. We would like to indulge in this idea to
prove the following result.

Theorem 1.1.3 [Sc1, Theorem 1.1]. For the primes ℓ = 2, 3, 5, 7, 13, there is no nontrivial
abelian variety over Q with good reduction outside ℓ and semi-stable reduction at ℓ.

Alternatively, one can try to control the ramification of ℓ-adic Tate modules, where ℓ is
different from the place of bad reduction. This, although gives no stronger result than Theorem
1.1.3, is in some sense more related to the more general approach we will take in the second
chapter. Finite flat group schemes and p-divisible groups are, in some sense, more rigid, as there
always is representability issue. On the other hand, we can quite freely handle purely algebraic
objects such as Galois representations, Dieudonné modules and Tate modules, although it is
more difficult to find meaning in the real world. A miracle of p-adic Hodge theory is that such
linear algebraic data can encode so much information.

1.4.1 Results of Schoof

1.4.1.1 The category Dpℓ
Let ℓ be a prime. An abelian variety A over Q with good reduction everywhere outside ℓ will
give an abelian scheme A over Z[1/ℓ]. We will consider pn-torsion subgroups A[pn], for p 6= ℓ
another prime. Note that A[pn] obviously lies inside the category of finite flat commutative
Z[1/ℓ]-group schemes of p-power order, which we denote as Cpℓ . By Theorem 1.2.30, A[pn]
actually lies inside the full subcategory of Cpℓ of finite flat commutative Z[1/ℓ]-group schemes
G for which (g − 1)2 acts trivially on G(Q) for all g in the inertia groups of primes lying over
ℓ. We denote this subcategory as Dpℓ . The following properties of Dpℓ are clear from the very
definition of Dpℓ .

• If G ∈ Dpℓ , then GD ∈ D
p
ℓ .

• If G1, G2 ∈ Dpℓ , then G1 ×Z[1/ℓ] G2 ∈ Dpℓ .

• Dpℓ is a pre-abelian category. More generally, for an object in Dpℓ , any quotient or subobject
of it inside Cpℓ is in Dpℓ .

• Any G ∈ Cpℓ for which the inertia groups of primes over ℓ act trivially on G(Q) is also in
Dpℓ . We denote the category of such objects in Cpℓ as Gpℓ .12 Examples are µp,Z/pZ.

12Note that objects in G
p
ℓ do not necessarily come from a Z-group scheme. Being a p-divisible group is quite a

restriction so that unramified Galois action implies good reduction, but a lot more freedom is given in formation
of finite flat group schemes.
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• Given G ∈ Dpℓ , any twist, unramified outside ℓ and semi-stable at ℓ, of G is also in Dpℓ . To
be more precise, let ρ be a finite-dimensional representation of Gal(Q/Q) over Fp. It can
be regarded as an Fp[Gal(Q/Q)]-module, denoted as V (ρ). If ρ is unramified outside ℓ∞,
and if (ρ(g)2− id)2 = 0 for every g in an inertia group of any prime over ℓ, then this Galois
module, as an étale group scheme over Q, extends to an object in Dpℓ , as OL[1/ℓ]/Z[1/ℓ]
is unramified. An example we will primarily use is ρp;ℓ : Gal(Q(ζℓ)/Q)→ GL(F2

p), where,
under the identification Gal(Q(ζℓ)/Q) ∼= (Z/ℓZ)× ∼= Z/(ℓ− 1)Z,

x 7→
Ç
1 x
0 1

å
,

which makes sense if p|(ℓ− 1).

• Note that an extension of G1 ∈ Dpℓ by G2 ∈ Dpℓ is not necessarily an object in Dpℓ , because
even though we know that an intertia group over ℓ acts unipotently, the rank of unipotence
may increase. Thus, Ext1Z[1/ℓ](G1, G2) does not necessarily parametrize extensions of G1

by G2 in Dpℓ . On the other hand, if G1, G2 ∈ Gpℓ , the inertia group action on an extension
of G1 by G2 is at worst tamely ramified; as the extension is a p-group, this shows that the
group action is actually unramified, so that the extension is also in Gpℓ , so is in Dpℓ . Thus,
in that case we know that Ext1Z[1/ℓ](G1, G2) parametrizes extensions of G1 by G2 in Dpℓ .

1.4.1.2 Criterion for Appropriate Choice of Primes ℓ 6= p

We now try to adapt the general strategy to Dpℓ . According to the general strategy, we expect
the following.

Proposition 1.4.1 [Sc1, Proposition 3.1]. Let ℓ be a prime, and suppose there is a prime p 6= ℓ
satisfying the following two conditions.

1. The only simple objects in Dpℓ are Z/pZ and µp.

2. Ext1Z[1/ℓ](µp,Z/pZ) = 0 (which is equal to Ext1Dp
ℓ
(µp,Z/pZ) by the remark in the previous

section).

Then, there is no nontrivial abelian vareity over Q having good reduction outside ℓ and semi-
stable reduction at ℓ.

Proof. As Dpℓ is a pre-abelian category, any object has a Jordan-Hölder composition series. By
1, all successive subquotients are either µp or Z/pZ. By 2, you can push all Z/pZ’s to the right.
So, for any object G ∈ Dpℓ , there is an exact sequence 0 → D → G → C → 0, where D (C,
respectively) is obtained by successive extensions by µp’s (Z/pZ’s, respectively). In particular, C
is étale, and as the order of C is a power of p, π1,ét(Z[1/ℓ]) = Gal(K/Q), whereK is the maximal
p-extension unramified outside ℓ∞, acts through a finite p-group P . Its abelianization is cyclic,
as every abelian extension of Q is contained in a cyclotomic extension. Thus, it follows that P
itself is cyclic; one can see this by for example noticing that the Frattini quotient of P is cyclic
[G, Section 5.1, Theorem 1.2]. Specifically, π1,ét(Z[1/ℓ]) acts through Gal(Q(ζℓ)/Q). Thus, the
Jordan-Hölder filtration of C by Z/pZ’s becomes split after the base change to Z[1/ℓ, ζℓ], which
means that C is constant over the ring. By Cartier duality, D becomes diagonalizable over the
same ring.

Now suppose that there is a nontrivial abelian variety A over Q having good reduction
outside ℓ and semi-stable reduction at ℓ. If we let its Néron model over Z[1/ℓ] as A, then for
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any n ≥ 1, A[pn] ∈ Dpℓ by Theorem 1.2.30. Thus, it fits into an exact sequence of finite flat
Z[1/ℓ]-group schemes

0→ Dn → A[pn]→ Cn → 0,

where Cn and Dn become constant and diagonalizable, respectively, over Z[1/ℓ, ζℓ]. Pick any
prime p of Z[1/ℓ, ζℓ] and let k be the residue field. As A/Dn is also an abelian scheme over
Z[1/ℓ, ζℓ], its reduction mod p, (A/Dn)k, is an abelian variety over k. As in the last part of the
proof of Theorem 1.1.2, one can use either the Riemann Hypothesis over finite field or Theorem
1.2.37 to deduce that A has too many rational points, leading to a contradiction.

For convenience, we will call a pair (ℓ, p) of primes appropriate if it satisfies the conditions
of Proposition 1.4.1.

1.4.1.3 Calculation of Ext1Z[1/ℓ](µp,Z/pZ)

We will first calculate Ext1Z[1/ℓ](µp,Z/pZ), which really has nothing specific to this problem.

Theorem 1.4.1 [Sc1, Corollary 4.2]. For ℓ 6= p distinct primes, Ext1Z[1/ℓ](µp,Z/pZ) is naturally
an Fp-vector space, and

dimFp Ext
1
Z[1/ℓ](µp,Z/pZ) =

{
1 if ℓ2−1

24 ≡ 0(mod p)

0 otherwise
.

Proof. We use the Mayer-Vietoris sequence, Theorem 1.2.7. Note that Hom’s all vanish. Also,
Ext1Zp

(µp,Z/pZ) = 0, as we can utilize the connected-étale sequence in this case, so that the
exact sequence

0→ Z/pZ→ G→ µp → 0

becomes, after taking the connected component functor,

0→ 0→ G0 → µp → 0,

which means that the extension is split by identifying the connected component with µp. There-
fore, the Mayer-Vietoris sequence becomes

0→ Ext1Z[1/ℓ](µp,Z/pZ)→ Ext1Z[1/pℓ](µp,Z/pZ)→ Ext1Qp
(µp,Z/pZ).

What is Ext1Qp
(µp,Z/pZ)? Note that the two group schemes µp,Z/pZ are étale, so we can

think everything in terms of Galois modules. As µp ∼= Z/pZ over Qp(ζp), Ext
1
Qp(ζp)

(µp,Z/pZ) ∼=
Ext1Qp(ζp)

(Z/pZ, µp). On the other hand, the Gal(Qp(ζp)/Qp)-invariants of Ext
1
Qp(ζp)

(µp,Z/pZ)

are precisely Ext1Qp
(µp,Z/pZ), as an obstruction of Galois descent is in H2 of Galois cohomology

of Gal(Qp(ζp)/Qp) acting on a p-group, and as Gal(Qp(ζp)/Qp) is of order coprime to p, the
Galois cohomology should vanish. On the other hand, if we denote χ : Gal(Qp(ζp)/Qp) → F×

p

to be the cyclotomic character, then as Gal(Qp(ζp)/Qp) acts on µp as χ whereas acts trivially
on Z/pZ, the Gal(Qp(ζp)/Qp)-invariant subspace of Ext1Qp

(µp,Z/pZ) is identified with the χ2-

eigenspace of Ext1Qp(ζp)
(Z/pZ, µp).

The exactly same argument applies to Z[1/pℓ] via the extension Z[1/pℓ, ζp]/Z[1/pℓ]; for
a number field E, the étale fundamental group of OE [ 1N ] is the Galois group Gal(EN/E),
where EN is maximal among extensions of E unramified outside N , so the Galois group of
Z[1/pℓ, ζp]/Z[1/pℓ] is also Gal(Qp(ζp)/Qp), a group of order coprime to p. Thus, our Mayer-
Vietoris sequence becomes

0→ Ext1Z[1/ℓ](µp,Z/pZ)→ Ext1Z[1/pℓ,ζp](Z/pZ, µp)χ2 → Ext1Qp(ζp)
(Z/pZ, µp)χ2 .
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The Ext long exact sequence of functor HomQp(ζp)(·, µp) and HomZ[1/pℓ,ζp](·, µp) to the exact
sequence 0→ Z→ Z→ Z/pZ→ 0 gives

0→ µp → Ext1Z[1/pℓ,ζp](Z/pZ, µp)→ H1(π1,ét(Z[1/pℓ, ζp]), µp)→ 0,

and
0→ µp → Ext1Qp(ζp)

(Z/pZ, µp)→ H1(π1,ét(Qp(ζp)), µp)→ 0,

where H1 here is a group cohomology. Taking χ2-eigenspaces, as (µp)χ2 = 0, we have

Ext1Z[1/pℓ,ζp](Z/pZ, µp)χ2
∼−→ H1(π1,ét(Z[1/pℓ, ζp]), µp)χ2 ,

and
Ext1Qp(ζp)

(Z/pZ, µp)χ2
∼−→ H1(π1,ét(Qp(ζp)), µp)χ2 .

Thus, the Mayer-Vietoris sequence now becomes

0→ Ext1Z[1/ℓ](µp,Z/pZ)→ H1(π1,ét(Z[1/pℓ, ζp]), µp)χ2 → H1(π1,ét(Qp(ζp)), µp)χ2 .

Now we fit this into the long exact sequence of group cohomology applied to the Kummer

sequence 0 → µp → Gm
x 7→xp−−−→ Gm → 0. Then, we get the following diagram with vertical

complexes being exact (written in this way due to the lack of space).

Z[1/pℓ, ζp]
×

x 7→xp

��

// Qp(ζp)
×

x 7→xp

��

Z[1/pℓ, ζp]
×

��

// Qp(ζp)
×

��

H1(π1,ét(Z[1/pℓ, ζp]), µp)

��

// H1(π1,ét(Qp(ζp)), µp)

��

H1(π1,ét(Z[1/pℓ, ζp]),Gm)

x 7→xp

��

// H1(π1,ét(Qp(ζp)),Gm)

x 7→xp

��

H1(π1,ét(Z[1/pℓ, ζp]),Gm) // H1(π1,ét(Qp(ζp)),Gm)

Note that H1(π1,ét(R),Gm) = Pic(R). Thus, the above diagram simplifies into

0 // Z[1/pℓ, ζp]
×/Z[1/pℓ, ζp]

×p //

��

H1(π1,ét(Z[1/pℓ, ζp]), µp) //

��

Pic(Z[1/pℓ, ζp])[p] //

��

0

0 // Qp(ζp)
×/Qp(ζp)

×p ∼ // H1(π1,ét(Qp(ζp)), µp) // Pic(Qp(ζp))[p] = 0

Note that Pic(Z[1/pℓ, ζp]) is the ideal class group of Z[ζp] modulo the ideal classes supported
in the primes lying over ℓ. Thus, Pic(Z[1/pℓ, ζp])[p]χ2 is a quotient of Pic(Z[ζp])[p]χ2 . Note
however that Pic(Z[ζp])[p]χ = 0 by [W, Proposition 6.16] and this implies Pic(Z[ζp])[p]χ2 = 0
by the proof of [W, Theorem 5.34]. This implies that Ext1Z[1/ℓ](µp,Z/pZ) fits into an exact
sequence with very computable entries, namely

0→ Ext1Z[1/ℓ](µp,Z/pZ)→ (Z[1/pℓ, ζp]
×/Z[1/pℓ, ζp]

×p)χ2 → (Qp(ζp)
×/Qp(ζp)

×p)χ2 .

We know quite well about fundamental units of cyclotomic fields thanks to [W, §8], so the
computation will not be so bad. We now divide into cases.
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1. p = 2. As the only fundamental units of Q(ζ2) are ±1, and as ±5a generates the
whole (Z/2mZ)×, the group Z[1/2ℓ]×/Z[1/2ℓ]×2 is generated by 2,−1, ℓ whereas the group
Q×

2 /Q
×2
2 is generated by 2,−1, 5. So the kernel is nonzero if and only if ±ℓ is a 2-adic

square, i.e. ℓ ≡ ±1(mod 8).

2. p = 3. Note that χ2 = 1. As the fundamental unit of Z is ±1, the group

(Z[1/3ℓ, ζ3]
×/Z[1/3ℓ, ζ3]

×3)id

is 2-dimensional, generated by 3 and ℓ. Also 2-dimensional is (Q3(ζ3)
×/Q3(ζ3)

×3)1, which
is generated by 3 and some other integer n. Thus the kernel is nonzero if and only if ℓ is
a 3-adic cube, i.e. when ℓ ≡ ±1(mod 9).

3. p ≥ 5. As 2 < p− 1, (Qp(ζp)
×/Qp(ζp)

×p)χ2 is 1-dimensional. The theorem [W, Theorem
8.25] implies that the exact sequence is surjective on the right, so Ext1Z[1/ℓ](µp,Z/pZ) is

0-dimensional if and only if (Z[1/pℓ, ζp]
×/Z[1/pℓ, ζp]

×p)χ2 is 1-dimensional. As Z[1/pℓ, ζp]
is obtained by inverting ℓ from Z[1/p, ζp], there is a natrual exact sequence

0→ Z[1/p, ζp]
× → Z[1/pℓ, ζp]

× →
⊕

l|ℓ

Z→ Pic(Z[1/p, ζp])
p−→ Pic(Z[1/pℓ, ζp])→ 0.

Note that we already have seen that Cl(Z[1/p, ζp])[p]χ2 = 0. Thus, after tensoring with
Zp, we can take χ2-eigenspace, so that we get an exact sequence

0→ (Zp[1/p, ζp]
×)χ2 → (Z[1/pℓ, ζp]

×)χ2 →
Ñ
⊕

l|ℓ

Zp

é

χ2

→ 0.

This is split as the third entry is Zp-free. Thus we can take quotient on each entry by
p-th power and still remain to get an exact sequence. Thus, we have an exact sequence

0→ (Z[1/p, ζp]
×/Z[1/p, ζp]

×p)χ2 → (Z[1/pℓ, ζp]
×/Z[1/pℓ, ζp]

×p)χ2 →
Ñ
⊕

l|ℓ

Fp

é

χ2

→ 0.

Note that [W, Proposition 8.13] says that, as Fp[Gal(Q(ζp)/Q)]-modules,

Z[1/p, ζp]
×/Z[1/p, ζp]

×p ∼= µp × Fp[Gal(Q(ζp + ζ−1
p )/Q)],

which has one-dimensional χ2-eigenspace. Thus, Ext1Z[1/ℓ](µp,Z/pZ) is 0-dimensional if

and only if
Ä⊕

l|ℓ Fp
ä
χ2

is 0-dimensional. Note that
Ä⊕

l|ℓ Fp
ä
, as an Fp[Gal(Q(ζp)/Q)]-

module, is isomorphic to Fp[Gal(Q(ζp)/Q)/(ℓ)], so the χ2-eigenspace is nontrivial if and
only if it is one-dimensional and χ2(ℓ) = 1, which is equivalent to ℓ ≡ ±1(mod p).

Thus we have computed all cases, so that

dimFp Ext
1
Z[1/ℓ](µp,Z/pZ) =





if p = 2 and ℓ ≡ ±1(mod 8),

1 p = 3 and ℓ ≡ ±1(mod 9),

or p ≥ 5, ℓ ≡ ±1(mod p)

0 otherwise.

A compact way of writing the long condition above is that ℓ2−1
24 ≡ 0(mod p), so we are done.
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1.4.1.4 Simple Objects of Dpℓ
To use Proposition 1.4.1, the simple objects of Dpℓ should be µp and Z/pZ. Recall that, in the
first nonexistence proofs, we deduced this via arguing first that, a simple object must be of
order p, andn that there are not many choices for order p groups. Along the lines of Proposition
1.3.3, we have the following.

Theorem 1.4.2 [TO, §3, Corollary]. If R is a localization of the ring of integers of a field K
whose class number is coprime to p− 1 and (p) stays inert to be a prime ideal in R, then, up to
a twist by everywhere unramified character, the only finite flat commutative R-group schemes
of order p are µp and Z/pZ.

In particular, this theorem can be applied to R = Z[1/ℓ]. So what we need to prove is that,
for an appropriate choice of p 6= ℓ, simple objects of Dpℓ are of order p.

Proposition 1.4.2. Let ℓ 6= p be distinct primes. Suppose that every G ∈ Dpℓ , killed by p and
containing µp as a closed subgroup scheme, has a field of definition L = Q(G(Q)) a p-extension
of Q(ζp). Then the only simple objects of Dpℓ are µp and Z/pZ.

Proof. Let G be a simple object in Dpℓ . The field L′ generated by geometric points of G × µp
has [L′ : Q(ζp)] a power of p. As Gal(Q/Q(ζp)) ⊂ Gal(Q/Q) acts on G(Q) via the finite p-group
Gal(L/Q(ζp)), and as G(Q) is a simple Galois module of p-power order, the fixed part of G(Q)
being nontrivial implies that the whole G(Q) is fixed by Gal(L/Q(ζp)). Thus, Gal(Q/Q) acts on
G(Q) via Gal(Q(ζp)/Q). As Gal(Q(ζp)/Q) is a cyclic group of order p− 1, and as the (p− 1)-st
roots of unity are all in Fp, the eigenspace decomposition of G(Q) implies that the whole G(Q)
is equal to one of the eigenspaces, and is therefore 1-dimensional over Fp. Therefore, G is of
order p, so by Theorem 1.4.2, G is Z/pZ or µp twisted by a character ψ unramified outside
ℓ∞. As G is an order p group, such a character necessarily has order dividing p − 1. On the
other hand, as G ∈ Dpℓ , the ramification index at ℓ of the field generated by geometric points
of ψ should be a power of p. Thus, ψ is ramified only at ∞, or ψ is trivial. This finishes the
proof.

Thus, we can alleviate our condition to embed a group scheme in Dpℓ killed by p to a known
group scheme whose field of definition is of degree a power of p over Q(ζp).

Lemma 1.4.1 [Sc1, Proposition 5.1]. Let ℓ, p be distinct primes and G ∈ Dpℓ be killed by
p. Then, one can find another G′ ∈ Dpℓ , containing G and killed by p, such that the field of
definition L = Q(G′(Q)) satisfies the following properties.

• Let

F =

{
Q(ζℓ) if p|(ℓ− 1)

Q otherwise.

Then, F (ζ2p,
p
√
ℓ) ⊂ L, and this extension is unramified at all primes outside p.

• Let dL be the absolute discriminant of L. Then, vp(d
1

[L:Q]

L ) < 1 + 1
p−1 .

Proof. Let G′ ∈ Dpℓ be defined as follows.

G′ =





µp ×G×Gℓ ×G−1 if p = 2

µp ×G×Gℓ × ρp;ℓ if p > 2, p|(ℓ− 1)

µp ×G×Gℓ otherwise.
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Here Gǫ is the Katz-Mazur group scheme, and ρp;ℓ is the 2-dimensional Fp-representation of GQ

defined at the beginning of the section. It is obvious that L = Q(G′(Q)) contains F (ζ2p,
p
√
ℓ).

As G′ ∈ Dpℓ , we know that the inertia group of any prime l in L over ℓ acts tamely. Also, as G′

is killed by p, for any g in the inertia group of l, gp = id. Since tame ramification groups are
cyclic, this implies that the ramification index of l divide p. On the other hand, we know that
any prime over ℓ in F (ζ2p,

p
√
ℓ) has ramification index exactly p, so L/F (ζ2p,

p
√
ℓ) is unramified

over ℓ. By Theorem 1.3.2, we a priori knew this extension is unramified outside p and ℓ. Thus,
this extension is unramified outside p. The upper bound on the p-adic valuation of discriminant
is the Fontaine’s ramification bound in Theorem 1.3.2 as well.

Now we completely translated our problem into a Galois theory problem. Given a prime
ℓ, is there a prime p 6= ℓ such that ℓ2−1

24 6≡ 0(mod p) and a Galois extension satisfying the
conditions of Lemma 1.4.1 has degree a power of p? If so, (ℓ, p) will be appropriate, and we can
deduce the nonexistence of semi-stable abelian varieties over Z[1/ℓ].

Theorem 1.1.3 [Sc1, §6]. For the primes ℓ = 2, 3, 5, 7, 13, there is no nontrivial abelian variety
over Q with good reduction outside ℓ and semi-stable reduction at ℓ.

Proof. We will show that the pairs of primes (ℓ, p) = (2, 3), (3, 2), (5, 2), (7, 3), (13, 2) are appro-

priate. Indeed, those primes satisfy ℓ2−1
24 6≡ 0(mod p). Thus, we need to check that, for a pair

of prime in the above, a field extension L satisfying the conditions of Lemma 1.4.1 has a degree
over Q a power of p. The Odlyzko discriminant bounds [Mar] with a discriminant bound from
Lemma 1.4.1 imply that,

[L : Q] <





24 if (ℓ, p) = (2, 3)

32 if (ℓ, p) = (3, 2)

480 if (ℓ, p) = (5, 2)

270 if (ℓ, p) = (7, 3)

60 if (ℓ, p) = (13, 2).

Let F (ζ2p,
p
√
ℓ) as in the conditions of Lemma 1.4.1 be denoted as K. Then, it follows that

[L : K] ≤





3 if (ℓ, p) = (2, 3)

7 if (ℓ, p) = (3, 2)

59 if (ℓ, p) = (5, 2)

14 if (ℓ, p) = (7, 3)

14 if (ℓ, p) = (13, 2).

In particular, the Galois group Gal(L/K) is of order < 60 for all cases, so it is solvable. As
Gal(K/Q) is also solvable in all cases, G = Gal(L/Q) is solvable as well.

Then the proof proceeds by calculating various cases using class field theory to show that
successive subquotients of the derived series of [G : G] is a p-group, and the fixed field of
[G : G], the maximal abelian extension of Q in L, is a p-extension of Q(ζp); one can check the
calculations in [Sc1, §6]. In particular, this implies that [G : G] as well as Gal(L/Q(ζp))/[G : G]
is a p-group. Thus, Gal(L/Q(ζp)) is a p-group. We can then use Lemma 1.4.1 and Proposition
1.4.2 to deduce that the only simple objects of Dpℓ are µp and Z/pZ. Therefore, the pairs of
primes we stated in the beginning of the proof are appropriate, as desired.

1.4.2 Results of Brumer-Kramer

Despite of yielding strictly weaker results, the work of Brumer-Kramer in [BK] should be men-
tioned, as it uses a different application of Fontaine’s discriminant bounds. The proof is quite
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different in spirit, since it proceeds by making a contradiction, not by analyzing restrictions
on p-divisible groups, but by constructing infinitely many non-isomorphic isogenous abelian
varieties, contradicting with the Faltings’ Finiteness Theorem, Theorem 1.2.38(iii). We will in
particular use ℓ-adic Tate modules, for ℓ 6= p.

1.4.2.1 Increasing Effective Stage of Inertia

Let A be an abelian variety over Qp of dimension d > 0 with semi-stable bad reduction. We
want to keep track of how ramified A(ℓ) is via the following definition.

Definition 1.4.1. The effective stage of inertia acting on Tℓ(A), written i(A, ℓ, p), is the min-
imal integer n ≥ 1 such that Qp(A[ℓ

n]) is ramified at p.

This definition is in particular well-defined because of the Néron-Ogg-Shafarevich Criterion,
Theorem 1.2.28. We would like to construct a new non-isomorphic yet isogenous abelian variety
from A via taking the quotient of it by an appropriate finite subgroup so that the effective stage
of inertia increases.

Recall that, by Theorem 1.2.30, the ℓ-adic Tate module Tℓ(A) has a “finite part”Mf
ℓ (A) =

Tℓ(A)
Ip , where Ip is the inertia group, and a “toric part”Mt

ℓ(A) ⊂M
f
ℓ (A) which corresponds

toMf
ℓ (
“A) via the Weil pairing. From this information, we know how to quotient A to increase

the effective stage of inertia.

Theorem 1.4.3 [BK, Lemma3]. Let Mf (A) and Mt(A) denote the projections of Mf
ℓ (A)

and Mt
ℓ(A) to A[ℓ]. For any GQp-submodule κ of Mf (A) containing Mt(A), i

′(A/κ, ℓ, p) =
i(A, ℓ, p) + 1.

Proof sketch. Let A′ = A/κ. As κ ⊂ A[ℓ], the isogeny ϕ : A → A′ is of degree ℓ, so we can
construct a Qp-isogeny ϕ

′ : A′ → A so that ϕ◦ϕ′ = [ℓ]A′ , ϕ′ ◦ϕ = [ℓ]A. Note that the effect of ϕ
on ℓ-adic Tate modules is that it is injective, it factors through Tℓ(A

′)/ℓTℓ(A
′) = A′[ℓ], and the

cokernel is isomorphic to an ℓ-Sylow subgroup of κ. In particular, Tℓ(ϕ)(Mf
ℓ (A)) ⊂ M

f
ℓ (A

′)
and Tℓ(ϕ)(Mt

ℓ(A)) ⊂Mt
ℓ(A

′). So we have a commutative diagram

Tℓ(A)/Mf
ℓ (A)

ϕ
//

×ℓ

��

Tℓ(A
′)/Mf

ℓ (A
′)

��

Mt
ℓ(A) Mt

ℓ(A
′)

ϕ′
oo

The conditionMt(A) ⊂ κ ⊂Mf (A) implies that the horizontal arrows are isomorphisms, and
the conclusion follows.

To apply this to our situation, consider an abelian variety A over Q with semi-stable bad
reduction at p and good reduction outside p. It is sufficient to show that, for some ℓ 6= p,

Mf
ℓ (AQp) and/orM

t
ℓ(AQp), a priori GQp-submodules of Tℓ(A), are actually GQ-submodules of

Tℓ(A). This is possible with a restriction on the ℓ-division field Q(A[ℓ]).

Proposition 1.4.3 [BK, Proposition 4]. Let A/Q be an abelian variety with semi-stable bad
reduction at p and good reduction at ℓ. Suppose that the ℓ-division field L = Q(A[ℓ]) satisfies
the following condition: there is only one prime over p. Then, there is a Q-isogeny ϕ : A→ A′

such that i(A′, ℓ, p) = i(A, ℓ, p) + 1.
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Proof. As noted above, it is sufficient to show thatMf
ℓ (AQp) is a GQ-submodule of Tℓ(A). As

the inertia group Ip is normal in the decomposition group Dp, it follows that Mf
ℓ (AQp) is a

Dp-module. As there is only one prime in L over p, it follows that Dp maps onto Gal(L/Q) by

restriction. This implies thatMf
ℓ (AQp) is a Gal(L/Q)-module. As L is the field of definition of

A[ℓ], it follows thatMf
ℓ (AQp) is a GQ-submodule of A[ℓ].

Thus, as done in the proof of Fontaine, we have reduced the problem about the field of
definition of a torsion subgroup. We have seen a fair amount of problems like this, so we list
what we know about L = Q(A[ℓ]).

• The extension L/Q is Galois, and is unramified outside ℓ and p.

• The ramification degree of L at p divides ℓ, as A[ℓ] is killed by ℓ.

• The higher ramification groups G
(u)
ℓ vanishes for u > 1+ 1

ℓ−1 , where Gℓ is a decomposition
group at a prime over ℓ.

• It actually turns out that L always contains Q(ζℓ). This is due to the following lemma.

Lemma 1.4.2 [BK, Lemma 1]. If A is an abelian variety defined over a field K of characteristic
0, then K(ζℓn) ⊂ K(A[ℓn]).

Proof. Consider a polarization λ : A→ “A over K of minimal degree. If A[ℓ] ⊂ kerλ, then there
exists another polarization γ : A→ “A over K such that γ ◦ [ℓ]A = λ, which gives a contradiction
on the minimality of degree. Thus, A[ℓ] is not contained in kerλ. We can then choose a point
p1 ∈ A[ℓ] − kerλ and lift it to pn ∈ A[ℓn] such that its ℓn−1-th power is p1. That p1 ∈ A[ℓ]
but not in kerλ implies that λ(pn) is of order exactly ℓn. As charK = 0, the Weil pairing
eℓn : A[ℓn]× “A[ℓn]→ µℓn is perfect, we can find a point qn ∈ A[ℓn] such that eℓn(qn, λ(pn)) = ζn.
Observe that Gal(K(A[ℓn])/K) fixes pn, qn ∈ A[ℓn], so it fixes ζn. Thus, K(ζn) ⊂ K(A[ℓn]).

1.4.2.2 Finishing the Proof

We have succeeded in translating the whole problem to a class field theoretic problem. The
following result is the main down-to-earth calculation of [BK].

Theorem 1.4.4. For pairs of primes (ℓ, p) = (2, 3), (2, 7), (3, 2), (3, 6), (5, 2), (5, 3), a Galois
extension L/Q(ζℓ) satisfying the following conditions have only one prime over p.

1. The ramification degree of L/Q at p divides ℓ.

2. The higher ramification groups G
(u)
ℓ vanishes for u > 1+ 1

ℓ−1 , where Gℓ is a decomposition
group at a prime over ℓ.

This will induce the following main result of [BK].

Theorem 1.4.5 [BK, Theorem 1]. There is no semi-stable abelian variety of positive dimension
defined over Q with good reduction everywhere outside one prime p ≤ 7.

Proof sketch of Theorem 1.4.4. Consider the following subfield of L,

F =

{
Q(ζℓ) if ℓ is odd

Q(ζ4) if ℓ = 2

Here, if ℓ = 2, one may need to extend L to contain ζ4, which is harmless in proving the theorem.
Let E be the maximal abelian subextension of F in L and H = Gal(L/F ). Note that we now
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face a case where L/Q may be ramified even outside ℓ. However, note that the valuation of the
different DQp(A[ℓn])/Qp

is ℓn−i(A,ℓ,p)+1 − 1 for n ≥ i(A, ℓ, p); this is because the inertia group Ip
acts via the maximal pro-ℓ quotient, which is (topologically) generated by one element. Thus,
we have a discriminant bound

|dL|
1

[L:Q] < ℓ1+
1

ℓ−1 p1−
1
ℓ .

The Odlyzko discriminant bound [Mar] tells us that

[L : Q] ≤





10 if (ℓ, p) = (2, 3)

22 if (ℓ, p) = (2, 7)

14 if (ℓ, p) = (3, 2)

68 if (ℓ, p) = (3, 5)

40 if (ℓ, p) = (5, 2)

168 if (ℓ, p) = (5, 3)

Thus,

[L : F ] ≤





5 if (ℓ, p) = (2, 3)

11 if (ℓ, p) = (2, 7)

7 if (ℓ, p) = (3, 2)

34 if (ℓ, p) = (3, 5)

10 if (ℓ, p) = (5, 2)

42 if (ℓ, p) = (5, 3)

< 60,

which implies that H is solvable.
For ℓ odd, p is inert in F , so E is necessarily Q(ζℓ, ℓ

√
p). We use class field theory to

compute successive subquotients of derived series of H to conclude that H is an ℓ-group. As
the ramification degree at p divides ℓ, |H| = ℓ, so E = L, and indeed there is only one prime in
E over p.

On the other hand, if ℓ = 2, E is a subfield of Q(ζ4,
√
p), and as there is only one prime

in Q(ζ4,
√
p) over p, one can assume that L/E is nontrivial. Let E′ be the maximal abelian

subextension of E in L. A basic Galois theory shows that E′/E is nontrivial of odd degree,
unramified outside 2 and at worst tamely ramified for primes over 2. However, such field does
not exist via class field theory.
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Chapter 2

Nonexistence of Certain Proper

Schemes

2.1 Overview

Thanks to the development of p-adic Hodge theory, algebraic objects can be associated to a
vastly wider class of varieties and schemes, and it starts by looking at the p-adic étale cohomology
groups of the schemes. If a given scheme is nice enough, which is a condition especially has
to do with reduction behavior, the p-adic étale cohomology, as a p-adic Galois representation,
is known to fall into some very nice class of p-adic Galois representations. Such classes of p-
adic Galois representations have corresponding Dieudonné modules, which are just consisted of
Galois modules with linear algebraic data. By proving ramification bounds for such algebraic
objects, one can lay severe structural restrictions on the p-adic Galois representation coming
from geometry.

More specifically, for a smooth proper scheme X over a number field K having everywhere
good reduction, it is known that the p-adic étale cohomology group Hm

ét (XK ,Qp) as a p-adic
GK-representation is unramified outside p and crystalline at p. The relevant discriminant bound
we will be proving for this situation is the following.

Theorem 2.1.1 (Fontaine, [Fo2, Théorème 2]). Let k be a perfect field of characteristic p > 0,
W = W (k), K = FracW and G = GK . Let X be a proper smooth scheme over O. Let
0 ≤ m < p − 1 be an integer. Then, the ramification subgroups G(v) ⊂ G acts trivially on any
subfactor in Hm

ét (XK ,Qp) which is annihilated by p if v > 1 + m
p−1 .

On the other hand, if X has a semi-stable reduction at p and good reduction everywhere
else, then the p-adic étale cohomology group Hm

ét (XK ,Qp) as a p-adic GK-representation is
unramified outside p and semi-stable at p. The relevant discriminant bound in this situation is
the following.

Theorem 2.1.2 (Caruso-Liu, [CL, Theorem 1.1]). Let p > 2 be a prime number and k be a
perfect field of characteristic p. Let W =W (k), and K be a totally ramified extension of W [1/p]
of degree e. Let G = GK , and vK be the discrete valuation on K noramlized by vK(K

×) = Z.
Consider a positive integer r and V a semi-stable representation of G with Hodge-Tate

weights in [−r, 0]. Let T be the quotient of two G-stable Zp-lattices in V , which is again a
representation of G annihilated by pn for some integer n. Denote by ρ : G → AutZp(T ) the
associated group homomorphism and by L the finite extension of K defined by ker ρ. If we write
nr
p−1 = pαβ with α ∈ N and 1

p < β ≤ 1, then

1. if µ > 1 + e(n+ α) + max(eβ − 1
pn+α ,

e
p−1), then G

(µ) acts trivially on T ;
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2. vK(DL/K) < 1 + e(n+ α+ β)− 1
pn+α ,

where DL/K is the different of L/K.

Using these two discriminant bounds, we will prove the following two nonexistence results.

Theorem 2.1.3 (Fontaine, [Fo2, Théorème 1], [Ab2, 7.6]). Let X be a smooth proper variety
over Q with everywhere good reduction. Then, H i(X,ΩjX) = 0 for i 6= j, i+ j ≤ 3.

Theorem 2.1.4 (Abrashkin, [Ab4, Theorem 0.1]). If Y is a smooth projective variety over Q

having semi-stable reduction at 3 and good reduction outside 3, then h2(YC) = h1,1(YC).

In this chapter, we develop the necessary preliminaries to understandn the above results.
The preliminaries include étale cohomology theory, p-adic Hodge theory, p-adic comparison
theorems and various integral p-adic Hodge theory including the theory of Fontaine-Laffaille,
Breuil-Kisin and Liu.

2.2 Preliminaries

We assume the reader is familiar with class field theory, algebraic geometry and homological
algebra, including spectral sequences.

2.2.1 Étale Cohomology and the Weil Conjectures

2.2.1.1 Sites and Topoi

The first motivation for development of étale cohomology is to develop a cohomology theory
of schemes that is analogous to singular cohomology of topological spaces. To achieve the
objective, one needs a cohomology theory that is defined over some topology which is finer than
the Zariski topology.

In retrospect, sheaf cohomology as well as singular cohomology can be neatly defined as
a right derived functor of a left-exact section functor. In this sense, one realizes that what is
really needed to define a cohomology theory is not the underlying topology, but the category
of sheaves on the topology, known as a topos. Recall that a sheaf on a scheme is determined
by its restriction on affine open subschemes. In this regard, we can in particular massage the
restriction of having an actual topology to instead have information on a certain kind of open
sets and how such open sets cover other open sets. This is the notion of site, which we will
define now.

Definition 2.2.1 (Site). A site is consisted of a pair (T,Cov(T )) of a category T and a collection
Cov(T ) of coverings, i.e. families {ϕi : Ui → U}i∈I of morphisms in T , satisfying the following
properties.

1. For {ϕi : Ui → U}i∈I ∈ Cov(T ) and a morphism V → U in T , the fiber products Ui×U V
exist for all i ∈ I, and {ϕi,V : Ui ×U V → V }i∈I ∈ Cov(T ).

2. Given {ϕi : Ui → U}i∈I ∈ Cov(T ) and {ψij : Vij → Ui}j∈Ji ∈ Cov(T ) for all i ∈ I, the
family {ϕi ◦ ψij : Vij → U}i∈I,j∈Ji is also a covering.

3. If ϕ : U ′ → U is an isomorphism in T , then {ϕ : U ′ → U} is a covering.

We often denote the site itself as T too.
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Example 2.2.1. Obviously, any topology on a topological space X gives a site (OX ,Cov(OX)),
where OX is the category of open subsets of X, and coverings are just topological coverings.
This is why categorical-minded people sometimes use the word topology instead of site.

A slightly more interesting example is the canonical topology. Given a category C with fiber
products, one can always define a site, the canonical topology, by requiring a covering to be a
family of universal effective epimorphisms. Namely, a family {Ui → V } of morphisms in C is a
family of effective epimorphisms if the equalizer sequence

Hom(V, Z)→
∏

i

Hom(Ui, Z) ⇒
∏

i,j

Hom(Ui ×V Uj , Z)

is exact for each Z ∈ C. A family of morphisms is a family of universal effective epimorphisms
if any pullback of the family is a family of effective epimorphisms. It is easy to check that this
is indeed a site, and it is also meant to be the finest site on C that each representable presheaf,
U 7→ Hom(U,Z) for a fixed Z ∈ Obj C, is a sheaf.

As the assignment of data in the definition of sites is functorial, we can define a morphism
of sites and, more importantly, the notion of presheaves and sheaves on a site.

Definition 2.2.2 (Morphism of Sites). Given sites T, T ′, a morphism of sites is a functor
f : T → T ′ of the underlying categories satisfying the following.

1. Given a covering {ϕi : Ui → U}i∈I ∈ Cov(T ), we have a covering {f(ϕi) : f(Ui) →
f(U)}i∈I Cov(T ′).

2. Given a covering {ϕi : Ui → U}i∈I ∈ Cov(T ) and a morphism g : V → U in T , the
canonical morphism

f(Ui ×U V )→ f(Ui)×f(U) f(V ),

coming from the universal property of fiber products, is an isomorphism.

Definition 2.2.3 (Sheaves on Sites). Let T be a site, and C be a category with products, for
example AbGrp or Sets. Then a presheaf on T with values in C is a contravariant functor
F : T → C. A morphism of presheaves is a natural transformation between contravariant
functors.

A presheaf F on T is a sheaf if, for every {Ui → U}i∈I ∈ Cov(T ), the equalizer sequence

F (U)→
∏

i∈I

F (Ui) ⇒
∏

i,j∈I

F (Ui ×U Uj)

is exact in C. A morphism of sheaves is a morphism as a morphism of presheaves. In particular,
(pre)sheaves on T with values in AbGrp are called abelian (pre)sheaves.

We would like to introduce general facts about sites and categories of abelian sheaves on
sites. The proofs will be omitted, but they are fairly straightforward abstract nonsense. In this
section, we will let T be a site, and P (S, respectively) be the category of abelian presheaves
(abelian sheaves, respectively) on T .

Theorem 2.2.1 ([Tam, (I.2.1.2), (I.3.2.2)]). The categories P,S are abelian categories with
sufficiently many injectives.

For U ∈ Obj(T ), ΓU : P → AbGrp be the section functor, i.e. F 7→ F (U). We will use the
same notation for the section functor on the category of abelian sheaves as well.
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Proposition 2.2.1 [Tam, (I.2.1.1), (I.3.2.1), (I.3.1.1)]. Let U ∈ Obj(T ).
(i) The section functor ΓU : P → AbGrp on P is exact. More generally, a sequence

F ′ → F → F ′′ in P is exact if and only if F ′(U)→ F (U)→ F ′′(U) is exact in AbGrp for all
U ∈ Obj(T ).

(ii) The natural inclusion functor ι : S → P is left exact. Therefore, the section functor
ΓU : S → AbGrp on S is left exact.

(iii) The inclusion ι : S → P has the left adjoint functor, the sheafification functor # : P →
S. The sheafification functor is exact.

Definition 2.2.4 (Direct and Inverse Images). Let T, T ′ be sites, and P,P ′ be the categories of
abelian presheaves on T, T ′, respectievly. Given a morphism f : T → T ′ of topologies, we define
the (presheaf) inverse image functor fp : P ′ → P by fpF ′(U) = F ′(f(U)). The functor fp has
a left adjoint fp : P → P ′, called the (presheaf) direct image functor.

Similarly, let S,S ′ be the categories of abelian sheaves on T, T ′. Then, there are the (sheaf)
inverse image functor fs := #T ◦fp ◦ ιT ′ and the (sheaf) direct image functor fs := #T ′ ◦fp ◦ ιT ,
which is left adjoint to fs.

Proposition 2.2.2. Let f : T → T ′ be a morphism of topologies.
(i) fp is exact and commutes with direct limits.
(ii) fp is right exact and commutes with direct limits.
(iii) fs is left exact.
(iv) fs is right exact and commutes with direct limits.

Therefore, given an abelian sheaf F on T , we can define the cohomology of U ∈ Obj(T ) with
values in F via

Hq(U,F ) = RqΓU (F ),

where the right derived functor is taken on S. If T has a final object e, one sometimes writes
Hq(T, F ) instead of Hq(e, F ). More generally, there is a right dervide functor Rqf q : S ′ → S,
which is called the higher direct image sheaves.

Even though a definition by derived functor is almost uncomputable, we can adapt an idea
from classical cases to define the Čech cohomology. Consider a covering {Ui → U} ∈ Cov(T ).
Then, as it is not necessarily a sheaf, the functor

H0({Ui → U}, ·) : P → AbGrp,

defined as
H0({Ui → U}, F ) = ker(

∏

i

F (Ui) ⇒
∏

i,j

F (Ui ×U Uj)),

is not necessarily the same as F (U), and is instead left exact. Thus, with respect to the
covering {Ui → U}, we can define the q-th Čech cohomology group as the q-th right derived
functor Hq({Ui → U}, ·) := RqH0({Ui → U}, ·). As usual, we call an abelian sheaf F flasque
(or flabby) if Hq({Ui → U}, F ) = 0 for all q > 0 and all coverings {Ui → U}. By general
abstract nonsense, the following are standard.

Proposition 2.2.3 [Tam, §3.5]. Let F be a flasque abelian sheaf on a site T .
(i) Hq(U,F ) = 0 for all q > 0 and U ∈ T .
(ii) Injective abelian sheaves are flasque.
(iii) Flasque resolutions in S can be used to compute Hq(U, ·).

The Čech cohomology is computable by the following sense.
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Proposition 2.2.4 [Tam, I.2.2.3]. For an abelian presheaf F on T , the group Hq({Ui → U}, F )
is the q-th cohomology group of the Čech complex C•({Ui → U}, F ), defined as

Cq({Ui → U}, F ) =
∏

(i0,··· ,iq)∈Iq+1

F (Ui0 ×U · · · ×U Uiq),

with the coboundary dq : Cq({Ui → U}, F )→ Cq+1({Ui → U}, F ) defined as

(dqs)i0,··· ,iq+1 =
q+1∑

j=0

(−1)jF (pr)(s
i0,··· ,îj ,··· ,iq+1

),

where “ij means ij is deleted and pr is the appropriate projection.

One can define the notion of Čech cohomology without referring to a specific covering as
follows. We define {U ′

j → U}j∈J ∈ Cov(T ) is a refinement of {Ui → U}i∈I if there is a map
ε : J → I of index sets and a family of U -morphisms fj : U

′
j → Uε(j). Then there is a natural

homomorphism
H0(F, f) : H0({Ui → U}, F )→ H0({U ′

j → U}, F ).
Taking the direct limit over the category of coverings of U , we get

Ȟq(U,F ) := lim−→
{Ui→U}∈Cov(T )

Hq({Ui → U}, F ),

the q-th Čech cohomology group of U with values in F .

Proposition 2.2.5 [Tam, I.2.2.6]. The functor F 7→ Ȟ0(U,F ) from P to AbGrp is left exact,
and the right derived functors of this functor are the q-th Čech cohomology groups.

Now one remains to compare these various right derived functors. The most fundamental
theorem is Grothendieck’s Composition of Functors Spectral Sequence.

Theorem 2.2.2 (Grothendieck’s Composition of Functors Spectral Sequence, [Tam, 0.2.3.5]).
Let C, C′ be abelian categories with sufficiently many injectives, and C′′ be another abelian cate-
gory. Let F : C → C′ and G : C′ → C′′ be left exact additive covariant functors. Suppose that the
functor F maps injectives in C to G-acyclic objects, i.e. those with vanishing RqG’s for q > 0.
Then, for A ∈ Obj C, there is a cohomological spectral sequence

Ep,q2 (A)⇒ Ep+q(A),

given by
Ep,q2 (A) = RpG(RqF (A)),

En(A) = Rn(G ◦ F )(A).

We wonder if we can use this to ΓU on S, as ΓU = Ȟ0(U, ·) ◦ ι. We define Hq := Rqι.

Proposition 2.2.6 [Tam, (I.3.4.2, I.3.4.3)]. Let F be an abelian sheaf, and U ∈ Obj(T ).
(i) There is a canonical isomorphism Hq(F )(U) ∼= Hq(U,F ).
(ii) For q > 0, Ȟ0(U,Hq(F )) = 0.

Thus, we have the following spectral sequences.
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Theorem 2.2.3 (Čech-to-Derived Spectral Sequence, [Tam, I.3.4.4]). Let F be an abelian sheaf,
U ∈ Obj(T ).

(i) For a covering {Ui → U} ∈ Cov(T ), there is a cohomological spectral sequence

Ep,q2 = Hp({Ui → U},Hq(F ))⇒ Ep+q = Hp+q(U,F ),

functorial in F .
(ii) There is a cohomological spectral sequence

Ep,q2 = Ȟp(U,Hq(F ))⇒ Ep+q = Hp+q(U,F ),

functorial in F .

Theorem 2.2.4 (Leray Spectral Sequence, [Tam, I.3.7.5]). Let T ′′ g−→ T
f−→ T ′ be morphisms of

sites. Let F ′ be an abelian sheaf on T ′. Then, there is a cohomological spectral sequence

Ep,q2 = Rpgs(Rqfs(F ′))⇒ Ep+q = Rp+q(f ◦ g)s(F ′),

functorial in F ′. In particular, if g is the restriction of the site T to U ∈ Obj(T ), then the
spectral sequence is

Ep,q2 = Hp(U,Rqfs(F ′))⇒ Ep+q = Hp+q(f(U), F ′),

functorial in F ′.

In particular, using the low-term exact sequence coming from a cohomological spectral
sequence, one gets the following useful corollary.

Corollary 2.2.1 [Tam, I.3.4.7]. For an abelian sheaf F , Ȟp(U,F )→ Hp(U,F ) is bijective for
p = 0, 1 and injective for p = 2.

We end this section by noticing how to compute cohomology by restricting sites. Firstly,
given an object U ∈ Obj(T ), one can think of the category T/U consisted of U -objects. It has
a site, also denoted as T/U , whose coverings are coverings in T . For the natural morphism

i : T/U → Y of sites, is is exact ([Tam, I.3.8.1]). This implies that Hp(U,F ) ∼= Hp({U id−→
U}, isF ), where the right cohomology is evaluated over T/U .

More generally, we have the following Comparison Lemma.

Theorem 2.2.5 (Comparison Lemma, [Tam, I.3.9.1]). Let i : T ′ → T be a morphism of sites
with the following properties.

1. As a functor, i is fully faithful.

2. A covering {Ui → U} ∈ Cov(T ), with Ui’s and U objects coming from T ′, is a covering
in T ′.

3. Each object U ∈ Obj(T ) has a covering {Ui → U} with objects Ui’s coming from T ′.

Then, the functors is and is are quasi-inverse equivalences of categories between the category of
abelian sheaves on T and the category of abelian sheaves on T ′. In particular, one can evaluate
cohomology over any of the two sites.

This in particular enables us to compare various cohomology theories over different sites.
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2.2.1.2 Étale Site, Étale Sheaves and Étale Cohomology

Now that we have the whole general framework of cohomology defined over a site, we can just
define what the étale site is and let the étale cohomology to be defined as the cohomology over
the étale site.

Definition 2.2.5 (Étale Site). Let X be a scheme. Consider the category Ét /X whose objects
are the étale morphisms U → X and whose morphisms are the X-morphisms between X-étale
schemes (which are necessarily étale). We can define the étale site Xét on Ét /X by defining a
covering to be a family {Ui → U} of X-morphisms whose union of images cover the whole U .

The generalities on sites immediately provide us the inverse image and direct image functors,
and more importantly the cohomology group for sheaves on the étale site, called the étale
cohomology. A sheaf on the étale site is called an étale sheaf. Also, we have the notion of sheaf
pullback and pushforward, coming from the generalities of sites. We will denote from now on
with asterisks on superscripts and subscripts. In particular, given a morphism f : X → Y ,

f∗F (Y
′) = F (Y ′ ×Y X),

for an étale sheaf F on X and an étale Y -scheme Y ′, whereas

f∗G(X ′) = lim
(Y ′,g)

G(Y ′),

for an étale sheaf G on Y and an étale X-scheme X ′, where the limit runs over pairs (Y ′, g)
with étale Y -scheme Y ′ and an Y -morphism g : X ′ → Y ′.

We first examine various examples of étale sheaves.

Example 2.2.2. Let X be a scheme.

1. The structure sheaf. We define the structure sheaf OXét
(orOX , if there is no confusion)

to take values OXét
(U) = Γ(U,OU ). That it is a sheaf is basically a faithfully flat descent.

2. Representable sheaves. Given an X-scheme, we can define a functor Z : Ét /X → Sets

by Z(U) = HomX(U,Z). That this is a sheaf is also seen by faithfully flat descent. This
sheaf is called to be representable by Z. We drop underline in the notation if there is no
confusion.

If we started with an X-group scheme, we end up with a sheaf of groups. Most commonly
used representable étale sheaves are as follows.

• The structure sheaf, which is just Ga.

• O×
X = Gm, where the sheaf is defined by U 7→ Γ(U,OU )×.

• µn, where the sheaf is defined by U 7→ {x ∈ Γ(U,OU ) | xn = 1}.
• GLn,X , where the sheaf is defined by U 7→ GLn(Γ(U,OU )).

3. Constant sheaves. Given a set (or an abelian group) F , one can define the constant
sheaf F (U) = F π0(U), where π0(U) is the number of connected components of U . This is
the sheafification of the presheaf U 7→ F .

4. Quasicoherent OX-modules. Given a quasicoherent OX -module F , the functor (f :
U → X) 7→ Γ(U, f∗F) defines an étale sheaf Fét. A convenient fact is that H i

ét(X,Fét) =
H i(X,F), where the right side is the usual sheaf cohomology. We can use the Leray
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spectral sequence for the inclusion i : XZar → Xét of Zariski topology to étale topology
gives a cohomological spectral sequence

Ep,q2 = Hp(X,Rqis(F ))⇒ Ep+q = Hp+q
ét (X,F ),

for an abelian étale sheaf F . If F = Fét for some quasicoherent OX -module, then
RqisFét = 0 for q > 0 whereas isFét = F , so we get H i

ét(X,Fét) = H i(X,F).

5. Skyscraper sheaves. Let x be a geometric point of X, and F be a set (or a group).
The skyscraper sheaf F x is defined by F x(U) = ⊕HomX(x,U)F . For an abelian étale sheaf

F , there is a natural isomorphism Hom(F , F x) = Hom(Fx, F ); this will be clear when we
define a stalk of an abelian étale sheaf.

We now examine the most basic case—when X = Spec k is the spectrum of a field k.
Note that an étale k-scheme is necessarily of form Spec

∏
i ki, where ki/k is a finite separable

extension. Thus, X ′ → X ′(ks) is an equivalence of sites between (Spec k)ét and the canonical
topology on the category of sets with continuous left Gal(ks/k)-actions. From this equivalence
of sites, one gets the following consequences on abelian sheaves.

Corollary 2.2.2 [Tam, II.2.2]. The functor F 7→ lim−→k′/k finite separable
F (Spec k′) is an equiva-

lence of categories from the category of abelian sheaves on (Spec k)ét and the category of con-
tinuous Gal(ks/k)-sets. Thus, for any abelian étale sheaf F on Spec k,

Hq
ét(Spec k, F )

∼= Hq(Gal(ks/k), lim−→
k′/k finite separable

F (Spec k′)),

where the right hand side is Galois cohomoology.

Thus, even over a point scheme, an abelian étale sheaf can be quite complex, except for
example when the field is separably closed. Thus, it will be more appropriate to evaluate stalk
of an étale sheaf at a geometric point.

Definition 2.2.6. Given a geometric point x : SpecΩ → X (so that Ω is separably closed)
and an abelian étale sheaf F on X, the stalk Fx of F at x is defined by the abelian group
x∗F (SpecΩ). Equivalently,

Fx = lim
U
F (U),

where U runs over étale neighborhoods of x. Alternatively, one can only evaluate the limit in
the full subcategory of connected affine étale neighborhoods of x, as it is initial.

The following are easy formal consequences which are not specific to étale topology, except
that the stalk of the étale structure sheaf is the strict henselization of the stalk of the scheme
structure sheaf; it is however just a re-statement of how a strict henselization is constructed.

Proposition 2.2.7 [Tam, II.5, II.6]. Let x : SpecΩ → X be a geometric point, and F be an
abelian étale sheaf.

(i) The functor F 7→ FP is exact and commutes with direct limits.
(ii) If f : X → Y is a morphism of schemes, then for any abelian sheaf G on Yét, (f

∗G)x ∼=
Gf◦x.

(iii) The stalk OX,x is the strict henselization of the usual scheme-stalk OX,x.
(iv) The property of being an isomorphism, a monomorphism, an epimorphism, a zero étale

sheaf, an exact sequence of étale sheaves can all be checked at the level of (étale) stalks.
(v) Sheafification does not change stalks.
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However, the stalks is “not compatible with pushforwards.” For example, for an open im-
mersion j : U →֒ X and an étale sheaf F on Uét, the stalks of j∗F need not be zero outside U .
On the other hand, there is another functor j!, the extension by zero functor, defined by the
sheafification of the presheaf defined by

ϕ : V → X étale 7→
{
F (V ) if ϕ(V ) ⊂ U
0 otherwise.

This functor sends a sheaf to a sheaf which indeed has a zero stalk outside U , as the sheafification
does not change stalks. Also, j! is an exact functor, and is a left adjoint to j∗. Note that this
construction is bound to that j is an open immersion; a pushforward through a closed immersion
has a zero stalk outside the closed set. In particular, if we let Z = X − U be the complement
closed set and let i : Z →֒ X denote a closed immersion, adjointness gives us a canonical map
j!j

∗F → F and F → i∗i
∗F , and they fit into an exact sequence

0→ j!j
∗F → F → i∗i

∗F → 0,

as this can be checked at stalks. More generally, data over U and Z is sufficient to characterize
the original sheaf by the following.

Proposition 2.2.8 [Mil1, Proposition 8.17]. Let i : Z → X be a closed immersion, and let
j : X − Z = U → X be an open immersion. The functor

F 7→ (i∗F, j∗F, i∗F → i∗j∗(j
∗F ))

is an equivalence of categories from the category of abelian sheaves over Xét to the category of
triples (F1, F2, φ) where F1, F2 are abelian sheaves on Zét, Uét, respectively, and φ : F1 → i∗j∗F2

is a morphism.

The existence of shriek functors is bound to the fact that the pullback f∗ is not only left
exact but exact, as j! makes a previously left adjoint j∗ to be also a right adjoint of some
functor. More concretely, Gf(x)

∼−→ (f∗G)x is canonically isomorphic, for f : X → Y and G an
étale sheaf on Y . Finally, we remark that étale site is a topological invariant, so that a pullback
and pushforward by a universal homeomorphism induces equivalences of étale sites (cf. [FK,
Proposition I.3.16]).

2.2.1.3 Ga, Gm, µn and Z/nZ

We now want to compute very basic étale cohomology groups. Note that we already know
Hp(X,F) ∼= Hp

ét(X,Fét), so that Hp
ét(X,OX) = Hp(X,OX). But there is more: recall the

notion of exact sequences of finite flat group schemes. The sequence of Zariski sheaves induced
by the given exact sequence is not necessarily exact. For example, the sequence

0→ µn → Gm
n−→ Gm → 0,

even though n is invertible at each point inX, need not be surjective on the right, as OX,x simply
may not have all n-th roots. However, this sequence is exact as étale sheaves, precisely because
stalks are strictly henselian. Thus, we can use of long exact sequence for étale cohomology of
this exact sequence. This sequence is called the Kummer sequence. Moreover, H1

ét(X,O×
X,ét)

has a special meaning; we know by Corollary 2.2.1 that it is Ȟ1
ét(X,O×

X,ét), and, as we have
seen in Section 1.3.2.1, any étale invertible sheaf descends to a Zariski invertible sheaf, so that
Ȟ1

ét(X,O×
X,ét) = H1(X,O×

X) = Pic(X). Thus, for example, from the long exact sequence we get

0→ H0
ét(X,O×

X,ét)/(H
0
ét(X,O×

X,ét))
n → H1

ét(X, (µn)X)→ Pic(X)[n]→ 0.
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Another basic exact sequence is called the Artin-Schreier sequence, which applies for the base

scheme of characteristic p > 0. Note that in that case, OX,ét x 7→xp−x−−−−−→ OX,ét is also surjective
(which is not surjective as Zariski sheaves), and the kernel is the constant sheaf (Z/pZ)X . Thus,
we get the Artin-Schreier sequence

0→ (Z/pZ)X → OX,ét x 7→xp−x−−−−−→ OX,ét → 0.

On the other hand, for an irreducible regular scheme X, there is the Weil divisor exact sequence
([Mil1, Proposition 13.4])

0→ Gm → g∗Gm,K →
⊕

codim(z)=1

iz∗Z→ 0,

where g : η → X is the inclusion of the generic point, K is the function field, and iz : z → X
is the inclusion of the point. This really is just a divisor exact sequence in the usual scheme
theory. This exact sequence can be used to prove the cohomology of µn over curves.

Theorem 2.2.6 (cf. [Mil1, §14], [FK, I.5.1]). Let X be a connected, smooth, projective curve
over an algebraically closed field k. Then, if n is not divisible by the characteristic of k,

H i
ét(X,µn) =





µn(k) i = 0

Pic(X)[n] i = 1

Z/nZ i = 2

0 i ≥ 3

If char k = p > 0, then

H i
ét(X,Z/pZ) =





Z/pZ i = 0

a finite abelian group i = 1

0 i ≥ 2

2.2.1.4 Finiteness Conditions on Sheaves

We start with noticing how finite morphisms behave very nicely with étale cohomology. Let
f : X → Y be a finite morphism, then, first of all, all the higher direct images Rqf∗ vanish
[FK, I.3.4]. Thus, for arbitary morphism g : Z → Y , the natural base change morphism
g∗(Rqf∗G) → Rvf ′∗(g

′∗G) is canonically isomorphic, where f ′, g′ are pullbacks of f, g by g, f ,
respectively. This is a special case of the Proper Base Change Theorem, but nevertheless
philosophically this case should be the prime case.

Another reason why finiteness works well with étale cohomology can be seen in the Repre-
sentability Lemma.

Theorem 2.2.7 (Representability Lemma, [FK, I.3.15]). An étale sheaf F of sets on a scheme
X is representable if and only if the following conditions are satisfied.

1. The stalks of F are finite sets.

2. For each étale scheme U → X over X and every two sections α, β ∈ F (U), the set of
poitns x0 ∈ U for which germs αx0 , βx0 are different is an open set.

This Lemma can be seen in the following context. Note that any étale sheaf F on X has
a surjection ∐Xα → F from disjoint union of representable sheaves, e.g. you can just take the
collection of stalks. The finiteness conditions are laying finiteness condition on this family so
that F can actually be thought as being “represented by a quotient space.” In this regard, we
can develop a very important notion of contructible sheaves.
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Definition 2.2.7 (Locally Constant Sheaves, Constructible Sheaves). An étale sheaf F on a
noetherian scheme X is locally constant if there is an étale cover {Ui → X} such that F |Ui is
constant. If in addition each F |Ui is represented by a finite set, we say F is locally constant
constructible (or, finite locally constant as in [FK]). Finally, F is constructible if X admits a
finite stratification over which F is locally constant constructible. Here, a finite stratification
is a finite set {Xi} of pairwise-disjoint non-empty locally closed subschemes of X.

This definition of constructibility is to ensure that F is a quotient of a finite disjoint union
of representable sheaves. Thus, F is always at least represented by an algebraic space, which
we have had a glimpse on in Section 1.2.3.2. Note also that we need noetherianness for X to
apply noetherian induction. This is not a restriction, as all the scheme we will be interested in
will be noetherian.

We list basic properties of constructible sheaves. Let X be a noetherian scheme, and F be
an étale sheaf over X.

• Locally constant constructible sheaves are representable. This is just a faithfully flat de-
scent. In particular, the category of locally constructible sheaves over X is equivalent to
the category of finite étale X-schemes via Y 7→ Y .

• A sheaf represented by an étale scheme is constructible.

• A sheaf is constructible if and only if, for every nonempty closed irreducible subscheme
Y ⊂ X, there is an étale scheme V over Y such that F |V is constructible [FK, I.4.3”].

• Constructibility is étale-local. More precisely, if there is an étale cover {Ui} such that F |Ui

is constructible for all i, then F is constructible [C, Theorem 1.1.7.5].

• If F is constructible, then given a family of sheaves {Fi → F} whose union ∐iFi → F
is surjective, there is a finite subfamily Fi1 , · · · , Fin such that ∐nj=1Fij → F is surjective
[FK, I.4.5].

• F is constructible if and only if there is an étale scheme Y over X such that F has a
surjection from Y , i.e. there exists a surjective map Y → X. From this condition, it
is immediate that a subsheaf of a constructible sheaf is constructible. By Representabil-
ity Lemma, Theorem 2.2.7, we can deduce that a subsheaf of a representable sheaf is
representable.

• Constructibility is preserved by many functors, for example pullback, image, finite limit.
This can be easily seen by noetherian induction: by noetherian induction, we can reduce
to the case when the given étale sheaf F is locally constant constructible, and locality of
constructibility reduces the problem to the case when F is finite constant. On the other
hand, it is not in general true that a pushforward of a constructible sheaf is constructible,
unless there is another finiteness condition on the morphism we are pushing forward. In
contrast, extension of a constructible sheaf by zero is constructible [C, Example 1.1.7.8].

Note that stalks of constructible sheaves are finite groups, so they are torsion groups. We will
call a sheaf with torsion stalk groups a torsion sheaf. The relation between the category of
constructible sheaves and the category of torsion sheaves is this.

Theorem 2.2.8 [FK, I.4.8-9]. The category of constructible sheaves is an abelian subcategory
of the category of torsion sheaves. Conversely, the category of torsion sheaves is generated by
the category of constructible sheaves via filtered direct limit. In other words, every torsion sheaf
is the filtered direct limit of its constructible subsheaves.

An abelian étale torsion sheaf satisfies the ascending chain condition, then it is constructible.
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In particular, if F is a constructible sheaf killed by n 6= 0, then F is a subsheaf of a direct
sum of Z/nZ!

2.2.1.5 Base Change Theorems

Recall that we have a natural base change homomorphism for a cartesian diagram. Namely,
given a cartesian square

XT
f ′

//

g′

��

T

g

��

X
f

// S

using adjunction, there is a natural map

g∗(Rif∗F )→ Rif ′∗(g
′∗F ),

for every abelian étale sheaf F on X. We call this map the base change homomorphism. This
morphism, even though not isomorphic in all cases, is indeed isomorphic for certain important
cases. One is the Proper Base Change Theorem; we fix the above notation throughout this
section.

Theorem 2.2.9 (Proper Base Change Theorem, [FK, I.6.1]). If f : X → S is proper and F is
a torsion sheaf on X, then the base change homomorphism is an isomorphism.

It is done via various reduction techniques. As cohomology and filtered direct limit of
sheaves commute [C, Theorem 1.3.2.1], we can assume F is constructible Z/nZ-module for
some integer n > 1. By Noetherian induction [C, Theorem 1.3.2.2], since an isomorphism can
be checked stalkwise, we can reduce the problem to the case when S = SpecR is the spectrum
of a strictly henselian local noetherian ring R and g : S′ → S is the inclusion of the closed
point. Using Chow’s lemma, one can also assume that f is projective. Embedding X into PnS
and subsequently covering it by P1

S × · · · × P1
S , it is sufficient to prove when X = P1

S . Then
one is reduced to the problem of cohomology of curves. The detailed proof can be found in [C,
1.3.4] and [FK, I.6.1].

The Proper Base Change Theorem has some immediate corollaries as follows.

Corollary 2.2.3. Let f : X → Y be a proper morphism, and F be an abelian torsion sheaf on
X.

(i) For every geometric point y ∈ Y , (Rqf∗(F ))y ∼= Hq(Xy, Fy) for q ≥ 0.
(ii) If f is of relative dimension ≤ n, Rqf∗F = 0 for q > 2n.
(iii) If X is a proper k-scheme and k′/k is an extension of separably closed fields, then

Hq(X,F ) ∼= Hq(Xk′ , Fk′) for all q ≥ 0.

Another instance where the base change homomorphism is an isomorphism is when base-
changing through a smooth morphism.

Theorem 2.2.10 (Smooth Base Change Theorem, [C, Theorem 1.3.5.2], [FK, I.7.3]). If g : T →
S is an inverse limit of smooth S-schemes1 with affine transition maps, and if the torsion orders
of sections of F are invertible on S, then the base change homomorphism is an isomorphism.

1The requirement that T is an inverse limit of smooth S-schemes is convenient in considering non-finite type
base change. For example, we can see that étale cohomology of a torsion sheaf of invertible order stays the same
through a purely transcendental field extension.
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This is proven by again using various reduction techniques; the details are in [FK, I.7] and
[C, 1.3.5]. In particular, this is equivalent to the Acyclicity Theorem.

Theorem 2.2.11 (Acyclicity Theorem, [FK, I.7.4]). Let g : SpecB → SpecA be a smooth
homomorphism of strictly henselian rings. Then, for any torsion sheaf F on SpecA of invertible
order, F → g∗g

∗F is an isomorphism, and Rig∗(g
∗F ) = 0 for i > 0.

2.2.1.6 Cohomology with Proper Support and Finiteness Theorems

We will eventually reach theorems inspired from algebraic topology, for example Poincaré dual-
ity. Thus, it is viable to expect that we will at some point need the notion of cohomology with
compact support. Its existence was somehow forseen in the case of extension-by-zero functor.
We can generalize this functor to a wider class of morphisms.

Definition 2.2.8 (Higher Direct Images with Proper Support, [C, Definition 1.3.6.1]). Let
f : X → S be a separated finite type morphism with S quasicompact quasiseparated. By Nagata
compactification theorem, there exists an open immersion j : X → X to a proper S-scheme
f : X → S. The higher direct images with proper support for torsion sheaves are Rqf! :=
(Rqf∗) ◦ j!.

In this setting, the cohomology with proper support is defined as

Hq
c,ét(X,F ) := Hq

ét(X, j!F ).

We list some basic properties. Let f : X → S be separated finite type with S quasicompact
quasiseparated.

• Indeed, the definition Rqf! is well-defined, so that it does not depend on the choice of
compactification. In particular, f! = f∗ if f is already proper.

• The functor f! is left adjoint to f
∗.

• The formation of the functor Rqf! is compatible with base change [FK, I.8.7(1)].

• If h = g ◦ f , then in the derived category Rh! ∼= R g! ◦ R f!. More concretely, this means
that we can apply Grothendieck’s Composition of Functors Spectral Sequence, Theorem
2.2.2, so that there is a cohomological spectral sequence

Ep,q2 = Rpg!(R
qf!(F ))⇒ Ep+q = Rp+qh!(F ),

for any torsion sheaf F [FK, I.8.7(2)].

• We knew that j! is exact for an open embedding j. This means that Rqj! = 0 for q > 0.

• Excision. If Z →֒ X is a closed subscheme with open complement U , then there is a long
exact excision sequence

· · · → Ri(f |U )!(F |U )→ Rif!F → Ri(f |Z)!(F |Z)→ · · ·

for torsion sheaves F on X [FK, I.8.7(3)].

The cohomology with proper support is somehow the “right object” to satisfy finiteness; the
finiteness of (ordinary) étale cohomology is a consequence of finiteness of cohomology with
proper support. We record various finiteness theorems with references, since the proofs are
technical and long-winding as others are.
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Theorem 2.2.12 [C, Theorem 1.3.6.3]. Let f : X → S be a finite type separated map to
a scheme S, and let F be a torsion abelian sheaf on Xét. Then Rif!(F ) vanishes for i >
2 sups∈S dimXs. If S is noetherian and F is constructible, Rif!(F ) is constructible as well.
In particular, if S = Spec k for a separably closed field k, H i

c,ét(X,F ) is a finite group and it
vanishes for i > 2 dimX.

Theorem 2.2.13 [C, Theorem 1.3.6.4]. Let f : X → S be a finite type separated map between
schemes of finite type over a regular base of dimension ≤ 1 (e.g. the spectrum of a field or
a Dedekind domain). Let F be a constructible abelian sheaf on X whose torsion-orders are
invertible on S. Then, the sheaves Rif∗F are constructible, and they vanish for i > dimS +
2dimX.

Theorem 2.2.14 [C, Theorem 1.3.7.1]. Let f : X → S be smooth and proper. Let F be
a locally constant constructible abelian sheaf on X, whose torsion-orders are invertible on S.
Then, Rif∗F is locally constant constructible on S and its formation commutes with arbitrary
base change.

2.2.1.7 Künneth Formula, Poincaré Duality

As promised, we have Künneth formula and Poincaré duality for étale cohomology. In this
section, we briefly explain how to construct the natural map for those formulas and state
theorems on when those maps are isomorphic (or fit inside a short exact sequence).

We first start with Künneth formula. The setting is as follows. Fix a commutative ring
Λ that is killed by a nonzero integer. Let f : X → S, f ′ : X ′ → S be separated finite type
maps. Given étale sheaves of Λ-modules F, F ′ on X,X ′, respectively, we would likt to relate
the cohomology of π∗F ⊗Λ π

′∗F ′ where π : X ×S X ′ → X, π′ : X ×S X ′ → X ′ are projections.
We cannot define pullback along π or π′ as they might not be proper.

First, assume that S is quasicompact and quasiseparated. We can then choose j : X →֒ X
and j′ : X ′ →֒ X ′ into proper S-schemes f : X → S, f ′ : X ′ → S. Then, X ×S X ′ is also
a compactification of X ×S X ′. Along the projections of this product we can pullback, which
gives us a map

Rpf∗(j!F )⊗Λ R
qf ′∗(j

′
!F

′) // Rp+q(f × f ′)∗(π∗(j!F )⊗Λ π′
∗
(j′!F

′))

Rpf!(F )⊗Λ R
qf ′! (F

′)

++❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲

Rp+q(f × f ′)∗(j × j′)!(π∗F ⊗Λ π
′∗F ′)

Rp+q(f × f ′)!(π∗F ⊗Λ π
′∗F ′).

This map is independent of compactification, so this construction globalizes to give the Künneth
morphism ⊕

p+q=n

Rpf!(F )⊗Λ R
qf ′! (F

′)→ Rn(f × f ′)!(π∗F ⊗Λ π
′∗F ′).

As there is an extra torsion term in the Künneth formula from algebraic topology, we also need
torsion terms to correctly characterize Rr+s(f × f ′)!(π∗F ⊗Λ π

′∗F ′). This is because what we
really get is an isomorphism of complexes in the derived category. For example, if F or F ′ has
Λ-flat stalks, then the Künneth morphism is the edge map of a cohomological spectral sequence

⊕

a+a′=s

TorrΛ(R
af!F,R

a′f ′!F
′)⇒ Rr+s(f × f ′)!(π∗F ⊗Λ π

′∗F ′),
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where the Tor is evaluated in the category of étale sheaves [C, Theorem 1.3.9.2]. From this, we
know that the Künneth morphism is an isomorphism when, for example, either F or F ′ has flat
direct images with proper support.

For the Poincaré duality, one starts with a globalized trace map. For a Z[1/n]-scheme S
and any smooth separated finite type map f : Y → S with pure relative dimension d, there is a
unique theory of trace map trf : R2df!(µ

⊗d
n )→ Z/nZ satisfying axioms, including compatibility

with base change, reduction modulo a divisor of n, transitivity in f (via spectral sequence) and
match with originally existing trace maps in low dimensions [C, 1.3.8.5]. Then, the Poincaré
duality is really about the existence of cup product pairing. For any Z/ℓnZ-sheaf G, we define
G(d) := G⊗Z/ℓnZ µ

⊗d
ℓn .

Theorem 2.2.15 (Poincaré duality, [C, Theorem 1.3.8.1]). Let ℓ be a prime, and f : X → S be
a smooth separated map between noetherian Z[1/ℓ]-schemes. Let (Λ,m) be a complete discrete
valuation ring with finite residue field of characterristic ℓ and fraction field of charcateristic
zero. Let F,G be constructible sheaves on X of Λ/mn+1-modules on X and S, respectively.
Then, there is a canonical isomorphism

ExtiX(F, f
∗G(d)) ∼= HomS(R

2d−if!(F ), G),

that is compatible with base change and étale localization on X.
When S = Spec k is a geometric point and F is locally constant constructible with Λ/mn+1-

flat stalks, then the isomorphism in the special case G = Λ/mn+1 is induced by the perfect cup
product pairing

H i
ét(X,F

∨(d))⊗H2d−i
c,ét (X,F )→ H2d

c,ét(X, (Λ/m
n+1)(d))

tr−→ Λ/mn+1.

2.2.1.8 ℓ-adic Cohomology

Even though the étale cohomology of a non-torsion sheaf is not saying much, we can instead
exploit the fact that projective limit does not commute with étale cohomology. Let ℓ be a prime.

Definition 2.2.9 (ℓ-adic Sheaves). A projective system (Fn)n∈N of constructible sheaves on a
scheme X is called an ℓ-adic sheaf if ℓn+1Fn = 0 for all n ≥ 0 and

Fn+1 ⊗Z/ℓn+2Z Z/ℓn+1Z
∼−→ Fn.

An ℓ-adic sheaf F = (Fn) is locally constant ( constructible, respectively) if all Fn’s are
locally constant (constructible, respectively).

Example 2.2.3. 1. If a constructible sheaf F is killed by ℓm, then Fn = F/ℓn+1F for n ≥ 0
forms an ℓ-adic sheaf. In particular, the category of constructible ℓ-power torsion sheaves
embeds as a full subcategory inside the category of ℓ-adic sheaves.

2. Given a finitely generated Z/ℓZ-module M , MX = ((M/ℓn+1M)X) is an ℓ-adic sheaf.

3. The constant sheaf Zℓ = ((Z/ℓn+1Z)X) is an ℓ-adic sheaf.

4. The Tate twist Zℓ(1) = (µℓn+1,X) is an ℓ-adic sheaf. Thus, Zℓ(m) for any m ∈ Z is an
ℓ-adic sheaf.

Given an ℓ-adic sheaf, we define the ℓ-adic cohomology to be the projective limit of étale
cohomologies of component torsion sheaves.
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Definition 2.2.10 (ℓ-adic Cohomology). For F = (Fn) an ℓ-adic sheaf on X, we define the
ℓ-adic cohomology (with proper support)

Hr
ét(X,F ) = lim←−

n

Hr
ét(X,Fn), H

r
ét,c(X,F ) = lim←−

n

Hr
ét,c(X,Fn).

To show that this is a well-behaving concept, one puts this concept inside the Artin-Rees
category of Z/ℓZ-sheaves, which is a better category to study algebraically. In the end, the
ℓ-adic sheaves behave like how we expect.

Theorem 2.2.16 [Mil2, Lemma V.1.11]. Let F = (Fn) be an ℓ-adic sheaf on Xét such that Fn
is flat as a sheaf of Z/ℓnZ-modules, and Hr

ét(X,Fn) is finite for all r and n. Then, Hr(X,F )
is finitely generated as a Zℓ-module, and there are exact sequences

0→ Hr
ét(X,F )/ℓ

nHr
ét(X,F )→ Hr

ét(X,Fn)→ Hr+1(Xét, F )[ℓ
n]→ 0.

One can define the rational ℓ-adic cohomology by inverting ℓ’s in the cohomology group,
and get similar results.

2.2.1.9 Weil Conjectures and the Hard Lefschetz Theorem

The Weil conjectures are about number of points of a nonsingular variety over a finite field.
Suppose X is a nonsingular projective (or proper) variety of dimension n over Fq. For each m,
let Nm be the number of points in X(Fqm). We define the zeta function of X to be

Z(X, t) = exp

Ñ
∑

m≥1

Nm
tm

m

é
.

The Weil conjectures are the four assertions about Z(X, t).

1. Rationality. Z(X, t) is a rational function of t, so that it can be written as a finite
alternating product of polynomials

Z(X, t) =
P1(t) · · ·P2n−1(t)

P0(t) · · ·P2n(t)
,

where each Pi(t) is an integral polynomial. Furthermore, P0(t) = 1− t, P2n(t) = 1− qnt,
and Pi(t) =

∏
j(1− αi,jt) for some numbers αi,j ∈ C.

2. Functional Equation. Z(X, t) satisfies

Z(X,
1

qnt
) = ±qnχ/2tχZ(X, t),

where χ is the Euler characteristic of X.

3. Riemann Hypothesis. For all 1 ≤ i ≤ 2n− 1 and all j, |αi,j | = qi/2.

4. Betti Numbers. If X is a reduction of a nonsingular projective variety Y over a number
field, then the degree of Pi is the i-th Betti number of Y .

Its first full proof was done by Deligne by using Lefschetz pencils. We will only record some
remarks and consequences regarding the conjecture and its proof.

Let ℓ be a prime different from the characteristic of Fq. Note first that the Frobenius ϕ of Fq
acts on X

Fq
, and in turn acts on the ℓ-adic cohomology Hm

ét (XFq
,Qℓ) = Hm

ét (XFq
,Zℓ)⊗Zℓ

Qℓ. By
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the Finiteness Theorems, the ℓ-adic cohomology groups are finite-dimensional. The Lefschetz
Fixed Point Formula then implies that

Nm =
∑

r

(−1)r Tr(ϕm |Hr
ét
(X

Fq
,Qℓ)).

Noticing this, we record what Deligne proved.

Theorem 2.2.17 (Deligne, [FK, IV.1.2]). Let X be a smooth projective variety over a finite
field κ with q = pm elements. Let ℓ 6= p.

(1) The polynomials
Pi(t) = det(1− tϕ|Hi

ét
(X

Fq
,Qℓ)

)

in Qℓ[t] have rational integer coefficients independent of ℓ.
(2) All eigenvalues λ of ϕ|Hi

ét
(X

Fq
,Qℓ)

have the complex absolute value |λ| = qi/2.

(3) We have Z(X, t) =
∏
i Pi(t)

(−1)i+1
, and the functional equation

Z(X, 1/qnt) = εq
1
2
nχ(X)tχ(X)ZX(t),

where n = dimFq X, χ(X) =
∑
i(−1)i dimQℓ

H i(X
Fq
,Qℓ), and ε = (−1)N where N is the

multiplicity of the eigenvalue q⌊n/2⌋ of ϕ|Hn(X
Fq
,Qℓ).

An immediate consequence is this.

Proposition 2.2.9. Let X be a smooth, projective variety over Fq of pure dimension d, and
let Nn = #X(Fqn). Then, Nn = 1 + qnd + rn where |rn| ≤

∑
0<i<2d q

ni/2 dimQℓ
H i

ét(XFq
,Qℓ).

In particular, if X is an abelian variety, then Nn ≤ (1 +
√
q)2n.

Along with the Riemann Hypothesis (that eigenvalues are of modulus qi/2), the following
Hard Lefschetz Theorem, which was proved also by Deligne in his generalization of Weil Con-
jectures, is frequently used.

Theorem 2.2.18 (Hard Lefschetz Theorem, [FK, IV.5.5]). Let X be a smooth irreducible
projective scheme over an algebraically closed field K, and let ℓ 6= charK. Then, there is a
cohomology class η ∈ H2(X,Qℓ(1)) such that, for 0 < i ≤ n = dimX,

ηi : Hn−i(X,Qℓ)
a 7→ηi∪a−−−−−→ Hn+i(X,Qℓ(i))

is an isomorphism.

2.2.2 p-adic Hodge Theory

2.2.2.1 Ax-Sen-Tate Theorem and Galois Cohomology of Cp

The p-adic Hodge theory is about classifying p-adic Galois representations of p-adic local fields.
Recall that a ground of mental composure in algebraic geometry came from the world over
algebraically closed fields; over an algebraically closed field, everything is as expected in the
classical algebraic geometry, and one can work with closed points, etc. A similar ground in the
theory of p-adic Galois representations is the field Cp, which is defined as the p-adic completion
of the algebraic closure Qp of Qp. It is complete with respect to p-adic topology as well as
algebraically closed by standard approximation argument.

Let K be a p-adic field, i.e. a field of characteristic 0, complete with respect to a discrete

valuation having a perfect residue field of characteristic p > 0. Note that CK := K̂ is also
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isomorphic to Cp. As the Galois action GK on K is continuous, GK also continuously acts
on CK . What Tate observed in his article [Tat2] is that the p-adic étale cohomology of a p-
divisible group (especially an abelian variety) over a p-adic field K becomes very nice when
the p-adic representation is base-changed to CK . More precisely, the Galois representation
coming from the étale cohomology is Hodge-Tate. It turns out that, among abundance of badly
behaving p-adic representations of GK = Gal(K/K), Hodge-Tate representations are all what
we “really care”; in particular, p-adic Galois representations coming from geometric objects
are Hodge-Tate. We will see that Hodge-Tate representations over CK are split as a sum of
CK [GK ]-modules one-dimensional over CK , known as Tate twists. Thus, among all others, it is
crucial to first understand the Galois cohomology of CK and its Tate twists.

We now explain what the Tate twists are. Recall that for any representation of a group can
be “twisted by a character.” To be more precise, given a topological group G and a topological
ring R with a continuous G-action, an R-representation of G is a finite free R-module M
with a G-semilinear action, i.e. an action of g ∈ G on M is g(αm) = g(α)g(m) for α ∈
R,m ∈ M . Then, given a continuous homomorphism η : G → R× (a “character”), M(η)
is another R-representation of G with the same underlying module with G-action defined by
g(αm) = g(α)η(g)m for g ∈ G,α ∈ R,m ∈ M . In particular, for a Zp-representation of GK ,
we have a very well-known character, the cyclotomic character χ : GK → Z×

p , defined by

g(ζpn) = ζ
χ(g)
pn for arbitrary n ≥ 0. Given a Zp-representation V of GK , the m-th Tate twist

V (m) is just V (χm).
We would like to understand the Galois cohomology H0(GK ,CK(n)) and H

1(GK ,CK(n)).
The main method is to approximate CK via K. The first result in this kind is the Ax-Sen-Tate
Theorem.

Theorem 2.2.19 (Ax-Sen-Tate Theorem, [BC, Proposition 2.1.2]). Let L/K be an algebraic
extension. Then, CGL

K = L̂. In particular, if L/K is finite, CGL
K = L.

Proof. Given x ∈ C
GL
K ⊂ CK , we choose a sequence αn ∈ K to approximate x. Using Krasner’s

lemma, one can find βn ∈ L such that v(αn − βn) ≥ ming∈GK
v(g(αn) − αn) − v(p)

(p−1)2
, where v

is a p-adic valuation. Then v(x− βn) goes to infinity as n goes to infinity.

To compute the Galois cohomology H i(GK ,CK(n)), one exploits an intermediate field
K(ζp∞), which we denote2 as K∞, as kerχ = GK∞ . Denote Kn = K(ζpn), HK = GK∞

and ΓK = Gal(K∞/K). Then, after n gets large enough, say n ≥ nK , the ramification be-
havior of Gal(Kn/Fn) becomes the same as Gal(K∞/F∞). For n ≥ nK , we can then define
the normalized trace pr : K∞ → K by pr(x) = 1

pn TrKn/K(x) for n satisfying x ∈ Kn; this is
independent of n. The normalized trace map is a continuous map from K∞ to K, and does not
deviate too much from the identity map, so that α = limn→∞ prn(α) (cf. [BC, Lemma 14.1.4]).

Extending this map to‘K∞, we have a decomposition L ∼= K⊕ker pr. Using this decomposition,
one computes that, for i = 0, 1,

H i(ΓK ,‘K∞(n)) =

{
K if n = 0

0 otherwise

(cf. [BC, Lemma 14.1.19]) A similar approximation argument shows that H i(H,CK(n)) = 0
for i ≥ 1 and any n (cf. [BC, Proposition 14.3.2]). Using the Ax-Sen-Tate for i = 0 and the
inflation-restriction sequence for higher degrees, we can finally get the Galois cohomology of
CK(n) by GK .

2This might be a confusing notation, but we do it only in this section for notational convenience.
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Proposition 2.2.10. For i = 0, 1,

H i(GK ,CK(n)) =

{
K if n = 0

0 otherwise

It turns out that all CK-representations of GK come from K∞. Thus, the above strategy
of analyzing problems over K∞ is actually a natural first thing to do. This is called the Sen
theory.

Theorem 2.2.20 [BC, Theorem 15.1.2]. Given V ∈ RepCK
(GK) a CK-representation of GK ,

there uniquely exists a ΓK-stable K∞-submodule DSen(V ) of V such that ‘K∞ ⊗K∞ DSen(V ) ∼=
V HK .

2.2.2.2 Hodge-Tate Representations

A Cp-representation V ∈ RepCp
(GK) of the absolute Galois group of a p-adic field K is Hodge-

Tate if it splits as a sum of Tate twists Cp(m). It is a perfectly good definition, but we would
like to have a more canonical way of checking if a representation if Hodge-Tate, since choosing
a basis of Cp(1) ∼= Cp and describing an action of the cyclotomic character χ involves with a
choice of compatible system (ζpn)n≥1 of p-power roots of unity.

Note that the χn-eigenspace of V can be identified more canonically via V {q} := V (q)GK ;
this is canonically a K-subspace of V (q), but not canonically in V . Upon choosing a basis, this
is isomorphic as a K-vector space to {v ∈ V | g(v) = χ(g)−qv for all v ∈ GK}. We then have a
natural GK-equivariant K-linear map

K(−q)⊗K V {q} →֒ K(−q)⊗K V (q) ∼= V,

where the last isomorphism is canonical. Extending scalars and adding all twists together, we
have the following natural map

ξV :
⊕

q

(CK(−q)⊗K V {q})→ V.

Lemma 2.2.1. The map ξV is injective. In particular, V {q} = 0 for all but finitely many q,
and dimK V {q} <∞ for all q, with

∑
q dimK V {q} ≤ dimCK

V . The equality holds if and only
if ξV is an isomorphism.

We will see that this statement is a formal consequence of the formalism of admissible
representation; the proof therefore can be found therein. Regarding this lemma, we can now
define a representation V ∈ RepCK

(GK) to be Hodge-Tate if the comparison map ξV is an
isomorphism. We define the Hodge-Tate weights of a Hodge-Tate representation V to be the
integers n such that V {n} 6= 0.

Remark 2.2.1. Note that this convention makes CK(1), the cyclotomic character, to have the
Hodge-Tate weight −1, not 1. There is another convention with all the signs flipped, making
CK(1) to have the Hodge-Tate weight 1; this is preferred in the realm of integral p-adic Hodge
theory.

We can similarly define V ∈ RepQp
(CK) to be Hodge-Tate if CK ⊗Qp V ∈ RepCK

(GK) is
Hodge-Tate. The Hodge-Tate Decomposition, which is proven in full generality by Faltings, says
that, for a smooth proper K-scheme X, the étale cohomology Hn

ét(XK ,Qp) is Hodge-Tate!
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Theorem 2.2.21 (Hodge-Tate Decomposition, cf. [BC, Theorem 2.2.3]). Let K be a p-adic
field, and X be a smooth proper K-scheme. Then, there is a canonical isomorphism

CK ⊗Qp H
n
ét(XK ,Qp) ∼=

⊕

q

(CK(−q)⊗K Hn−q(X,ΩqX/K))

in RepCK
(GK), where the cohomology on the right side is a sheaf cohomology, and the action

of g ∈ GK on both sides are g ⊗ g on the left and g ⊗ 1 on the right.

This is the starting point of comparison theorems, where all sorts of cohomology theories
are canonically identified after tensoring with some rings, p-adic period rings. In this section,
we try to make the characterization of Hodge-Tate representation as formal as possible. Notice
that the subcategory of Hodge-Tate representations is closed under direct sum, dual and tensor
product. In this regard, we can give the Hodge-Tate decomposition a Z-grading, so that V {q}
is of degree q ∈ Z. We define the covariant functor DHT : RepCK

(GK)→ GrK as

DHT(V ) = ⊕qV {q} =
⊕

q

(CK(q)⊗CK
W )GK ,

where GrK is the category of Z-graded vector spaces over K. Here, D stands for Dieudonné,
and we will in general call this kind of functor a Dieudonné functor. This is a direct sum of
invariants, so the functor is obviously left-exact. This definition can be once more simplified if
we define the Hodge-Tate period ring BHT :=

⊕
q CK(q); then DHT(V ) = (BHT ⊗CK

V )GK .
How do we compactify the left hand side of ξV ? Notice that

⊕
q CK(−q) ⊗K V {q} =⊕

q(BHT)−q⊗K (DHT(V ))q = (BHT⊗KDHT(V ))0, where the subscript means the degree in the
grading. Thus, we can define a functor VHT : GrK → RepCK

(GK) as

VHT(W ) = (BHT ⊗K W )0 = gr0(BHT ⊗K W ),

where gr0 comes from the filtration FiliBHT = ⊕q≤iCK(q), and then the map ξW is just the
0-th grade part of the comparison morphism αW , where

αW : BHT ⊗K DHT(W ) →֒ BHT ⊗K (BHT ⊗CK
W )→ BHT ⊗CK

W,

defined using the grading-respecting multiplication BHT⊗KBHT → BHT. Note that on the other
hand αW = ⊕qξW (q), the sum of Tate-twisted ξW ’s. Therefore, we deduce that αW is always
injective, and W ∈ RepCK

(GK) is Hodge-Tate if and only if αW is an isomorphism. Notice

that we can recover the complete information of DHT(W ) from αW , as BGK
HT = K. Taking

GK-invariants, for Hodge-Tate W , we have DHT(W ) ∼= (BHT ⊗K W )GK . This in particular
implies that, for any finite-dimensional D ∈ GrK , DHT(VHT(D)) ∼= D, as VHT(D) is always
Hodge-Tate in that case.

Definition 2.2.11 (Hodge-Tate Representations). Let RepHT(GK) be the full subcategory of
RepQp

(GK) consisted of Hodge-Tate objects (i.e. V ∈ RepHT(GK) if V ⊗Qp CK is Hodge-Tate).
Define the functor DHT : RepQp

(GK)→ GrK by DHT(V ) = DHT(CK ⊗Qp V ).

The Hodge-Tate Decomposition Theorem can be written in a more appealing form.

Theorem 2.2.21 (Hodge-Tate Decomposition). Let K be a p-adic field, and X be a smooth
proper K-scheme. Then, for n ≥ 0, V := Hn

ét(XK ,Qp) is in RepHT(GK), with DHT
∼=

Hn
Hodge(X/K) := ⊕qHn−q(X,ΩqX/K).

This is an archetype of comparison theorems, which can be called as the main objective of
p-adic Hodge theory. Namely, comparison theorems are mostly about asserting the following.
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• For certain types of schemes, the p-adic étale cohomology groups as Galois representations
are of some type (e.g. de Rham, crystalline, semi-stable).

• There is an analogue of Dieudonné functor, D, such that D applied to the p-adic co-
homology group is some other kind of cohomology group of the scheme (e.g. de Rham,
crystalline, log-crystalline).

The program is by now mostly settled by the help of many mathematicians. We will be surveying
comparison theorems in a later section.

2.2.2.3 Admissible Representations

We will define an abstract formalism, developed by Fontaine, that mimics the situation of
Hodge-Tate representations. Let F be a field and G be a group. Let B be an F -algebra domain
(which will be our period ring), equipped with a G-action as an F -algebra. Assume that E = BG

is a field. Our goal is to use B to construct an interesting functor from RepF (G), the category of
finite-dimensional F -representations of G, to VectE, the category of finite-dimensional E-vector
spaces.

Definition 2.2.12 ((F,G)-regular Ring). The algebra B is (F,G)-regular if the following con-
ditions are satisfied.

1. (FracB)G = E(:= BG).

2. If b ∈ B is nonzero and the F -linear span Fb is G-stable, then b is a unit in B.

Obviously, we want to make sure that we are going into a correct direction.

Proposition 2.2.11. The ring BHT is (Qp, GK)-regular.

Proof. By Ax-Sen-Tate, we know BGK
HT = K is a field. To show that (FracBHT)

GK = K, notice
that, after a choice of basis, BHT

∼= CK [T, T−1], where GK acts on T via g(T ) = χ(g)T . Then,
FracBHT can be GK-equivariantly embedded into the ring CK((T )) of formal Laurent series.
Thus, it is sufficient to show that CK((T ))GK = K. On the other hand, if f(T ) =

∑
n≥n0

anT
n

is GK-invariant, then an ∈ CK(n)GK so that f(T ) = a0 ∈ C
GK
K = K.

For the second condition, suppose that a nonzero
∑∞
n=0 anT

n = f(T ) ∈ CK [T ] = BHT gives
a GK-stable line f(T )Qp. This means that GK acts via a character η : GK → Q×

p . Thus,

g (
∑∞
n=0 anT

n) =
∑∞
n=0 η(g)anT

n, which gives an ∈ (CK(χnη−1))GK . The argument we used
in calculating the Galois cohomologies of CK(n) can be used in the same way to calculate the
Galois cohomologies of CK(ψ) for any character ψ; in particular, H0(GK ,CK(ψ)) is nonzero if
and only if ψ has a finite image (cf. [BC, Theorem 2.2.7]). This implies that there can only be
one n ≥ 0 with nonzero an, so that f(T ) = anT

n is indeed a unit in BHT
∼= CK [T, T−1].

Aside from BHT, we have one another easy example of (F,G)-regular ring: when B is a
field. Although it may seem very silly (and it is indeed), we will actually use a case where the
period ring is a field, e.g. BdR.

Now we define the Dieudonné functor.

Definition 2.2.13 (Dieudonné Functors and Admissible Representations). Suppose that B is
a (F,G)-regular ring. For V ∈ RepF (G), we define

DB(V ) = (B ⊗F V )G,
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to be the associated Dieudonné module. This is an E-vector space equipped with a canonical
map, the comparison morphism,

αV : B ⊗E DB(V )→ B ⊗E (B ⊗F V ) = (B ⊗E B)⊗F V → B ⊗F V.

We call V ∈ RepF (G) a B-admissible representation if αV is an isomorphism. We let RepBF (G) ⊂
RepF (G) be the full subcategory of B-admissible representations.

Example 2.2.4.

1. Hodge-Tate representations are precisely BHT-admissible representations.

2. In general, it is obvious that V = F with trivial G-action is B-admissible, with DB(F ) =
E.

As we have promised, the analogues of Lemma 2.2.1 hold true in general under this formal-
ism.

Theorem 2.2.22 [BC, Theorem 5.2.1]. For V ∈ RepF (G), the following are true.
(i) The map αV is always injective, and DB(V ) is always finite-dimensional with dimE DB(V ) ≤

dimF V . The equality holds if and only if V is B-admissible.
(ii) The covariant functor DB : RepBF (G)→ VectE is faithful and exact.
(iii) Any subrepresentation or quotient of a B-admissible representation is B-admissible.
(iv) If V1, V2 ∈ RepBF (G), then there is a natural isomorphism

DB(V1)⊗E DB(V2) ∼= DB(V1 ⊗F V2),

so that V1 ⊗F V2 ∈ RepBF (G).
(v) If V ∈ RepBF (G), then the F -dual V ∨ is B-admissible, and DB(V ) ⊗E DB(V

∨) →
DB(F ) = E is a perfect duality.

(vi) B-admissibility is preserved under the formation of exterior and symmetric powers, and
DB naturally commutes with both such constructions.

Proof. (i) Suppose not. Let d1, · · · , dn be linearly independent elements in DB(V ) such that
there exist bi 6= 0 with αV (

∑
bi ⊗E di) =

∑
bidi = 0. We can choose them so that n is

minimal among such sets. As di’s are G-invariant, for all g ∈ G, we have
∑
g(bi)di = 0. By

the minimality of n, we have bi
b1
∈ (FracB)G = BG = E. Then d1 +

∑n
i=2

bi
b1
di = 0 is a linear

dependence relation over E, which is a contradiction.
This actually shows that αV ⊗BFracB is injective, so that dimE DB(V ) ≤ dimF V . Suppose

that the equality holds. Let ei be an E-basis of DB(V ) and vj be an F -basis of V and let
αV (e) = Av, where A is a matrix with detA ∈ (FracB)×. As ei’s are G-invariant, detαV (e1 ∧
· · · ∧ ed) = detAv1 ∧ · · · ∧ vd is also G-invariant. As v1 ∧ · · · ∧ vd 6= 0, it follows that the F -line
F · detA is G-stable. By regularity, detA ∈ B×, and this implies that αV is an isomorphism.

(ii) Exactness follows from the fact that DB is already left-exact and that we know the
dimensions behave well with DB for B-admissible representations by (i). The same argument
shows that DB is faithful.

(iii) If 0 → V ′ → V → V ′′ → 0 is an exact sequence in RepF (G) with V ∈ RepBF (G), the
left-exactness of DB implies that dimE DB(V ) ≤ dimE DB(V

′) + dimE DB(V
′′). But the left

hand side is as large as possible, so V ′ and V ′′ are B-admissible.
(iv) The image of DB(V )⊗E DB(V

′)→ (B ⊗F V )⊗E (B ⊗E V ′)→ B ⊗F (V ⊗F V ′) is G-
invariantn, so it factors through DB(V ⊗F V ′). As dimE(DB(V )⊗EDB(V

′)) = dimF V dimF V
′

whereas dimE DB(V ⊗F V ′) ≤ dimF V dimF V
′ by (i), it is enough to show that the map

82



Gyujin Oh There is no abelian scheme over Z

DB(V ) ⊗E DB(V
′) → DB(V ⊗F V ′) we induced above is injective. On the other hand, after

tensoring this with B, it becomes an isomorphism. By dimensionality reason, it is thus injective.
(vi) This is immediate by realizing that symmetric powers and exterior powers are sub-

objects of tensor products.
(v) The pairing arises from utilizing a natural isomorphism det(V ∨)⊗F ∧dimF V−1V ∼= V ∨.

The perfectness of one-dimensional cases is trivial, and the perfectness of general cases follows
from the perfectness of one-dimensional cases via taking determinants.

2.2.2.4 De Rham Representations

The theory of Hodge-Tate representations are nice, but they are nice only because we are working
over Cp, over which many subtle Galois-theoretic informations are ignored and therefore many
things become nicer. Thus, we need a finer theory. We would like to construct a period ring
whose Dieudonné functor yields algebraic de Rham cohomology, which we will not discuss for
now. The de Rham period ring BdR, if exists, should be a refinement of BHT, so that it is
(Qp, GK)-regular, B

GK
dR = K and it has a descreasing filtration Fili(BdR) (which comes from

the Hodge filtration of algebraic de Rham cohomology) such that gr•(BdR) = BHT. This
motivation will be justified more detailedly in the later section on p-adic comparison theorems.

We briefly recall the construction called the ring of Witt vectors, which can be found for
example in [Se, II.§6]. Let R be a perfect ring of characteristic p > 0, which means that the
Frobenius x 7→ xp is bijective. Then there exists a unique strict p-ring W (R), called the ring
of Witt vectors over R, with residue ring R. Recall that a p-ring is a ring A complete and
separated with respect to a filtration of ideals A ⊃ I1 ⊃ I2 · · · such that A/I1 = R, the residue
ring, is of characteristic p, and In · Im ⊂ In+m. A p-ring is strict if p is not nilpotent. The ring
of Witt vectors comes with the Teichmüller lift [·] : R→W (R), which is a ring homomorphiism
and also a section of the reduction map W (R)→ R.

To construct BdR, the de Rham period ring, we want to start with an object that looks like
“W (OCK

/(p)),” for a p-adic field K. However, the ring OCK
/(p) is not perfect. Therefore, we

instead use the perfection R(OCK
/(p)). Recall that for an Fp-algebra A, the perfection R(A) is

defined by R(A) = lim←−x 7→xp
A. These are some ring-theoretic properties of R(OCK

/(p)), which
are very easy to be verified.

Proposition 2.2.12 [BC, 4.3]. Let R = R(OCK
/(p)), for a p-adic field K.

(i) The ring R can be described as {(x0, x1, · · · ) | xi ∈ OCK
, xpi+1 = xi}. It is therefore an

integral domain.
(ii) Let vR((x

(0), · · · )) = vp(x
(0)), where vp is the normalized p-adic valuation on CK (i.e.

vp(p) = 1). Then, vR is a valuation on R. With respect to vR, R is complete and separated.
(iii) If x, y ∈ R satisfies vR(x) ≥ vR(y), then there exists z ∈ R such that x = yz.
(iv) The action of GK on R is defined via g((x0, x1, · · · , )) = (g(x0), g(x1), · · · ), and the

Frobenius map ϕ on R is defined via ϕ((x0, x1, · · · )) = (xp0, x0, x1, · · · ). Then, Rϕ
r=1 = Fpr ,

and RGK = kK , the residue field of K.

A deeper fact is the following.

Theorem 2.2.23 [BC, Theorem 4.3.5]. The field FracR is an algebraically closed field of
characteristic p.

Proof. We know that FracR = {(x0, x1, · · · ) | xi ∈ CK , x
p
i+1 = xi}. Suppose we are given a

monic polynomial P (x) ∈ R[x], P (x) = xd+ad−1x
d−1+· · ·+a0. Each ak ∈ R has a representative

ak = (ak,0, ak,1, · · · ) where ak,n ∈ OCK
/(p). Let Pn(x) = xd + ad−1,nx

d−1 + · · · + a0,n ∈
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(OCK
/(p))[x] satisfies Pn(x)

p = Pn(x
p). Choose lifts ›Pn(x) ∈ OCK

[x], and let αn,1, · · · , αn,d be

roots of ›Pn(x). Then, we know flPn−1(α
p
n,i) ≡ 0(mod p) for all i. Thus,

d∏

j=1

(αpn,i − αn−1,j) ∈ (p).

Thus, for each i, there exists at least one j such that vp(α
p
n,i−αn−1,j) ≥ 1

d . Then, by the binomial

formula, it follows that, for all k ≥ 1, vp(α
pk

n,i − αp
k−1

n−1,j) ≥ k
d . This implies that (αp

d−1

n,i )p ≡
αp

d−1

n−1,j(mod p). Thus this correspondence i 7→ j is actually a one-to-one correspondence from

{1, · · · , d} to itself, so that after reording the roots, lim←−n a
pd−1

n,i (mod p) ∈ FracR for all 1 ≤ i ≤ d.
This implies that FracR is algebraically closed.

As R is a perfect ring of characteristic p, we can construct W (R). It inherits the Galois
action and the Frobenius so that g ∈ GK acts via g(

∑
pn[cn]) =

∑
pn[g(cn)] and ϕ(

∑
pn[cn]) =∑

pk[ϕ(cn)], for cn ∈ R. In particular, by our characterization of R, there is a GK-equivariant
surjective ring homomorphism θ :W (R)→ OCK

such that

θ(
∑

pn[cn]) =
∑

(cn)0p
n,

for cn ∈ R ([BC, Lemma 4.4.1]). This in turn induces a GK-equivariant surjective ring homo-
morphism

θQ :W (R)[1/p]→ OCK
[1/p] = CK .

We are now almost there, but there is one remaining problem, thatW (R)[1/p] is not a complete
discrete valuation ring. Thus, we shall replace W (R)[1/p] with its ker θQ-adic completion.

Definition 2.2.14 (B+
dR and BdR). The ring B+

dR is defined as lim←−n→∞
W (R)[1/p]/(ker θQ)

n.

The de Rham period ring BdR is defined by BdR = FracB+
dR.

We are yet to be done, as we have not verified some of the most important properties of
W (R).

Proposition 2.2.13. The ideal ker θ ⊂ W (R) is a principal ideal, and any α ∈ ker θ with
vR(α) = 1 generates ker θ.

Proof. As CK is torsion-free, ker θ ∩ pnW (R) = pn ker θ. If θ(x) = 0, then x0 ∈ (p) due to the
definition of θ. Therefore, vR(x) = vp(x0) ≥ vR(α) = 1, which implies that there is y ∈ R such
that x = αy. Thus x ≡ αy(mod p) for some y ∈ W (R). We can successively lift modulo pn so
that x is actually a multiple of α.

Example 2.2.5. There are two major examples we will use for a generator of ker θ.

• Let α = [p̃]− p, where p̃ = (p, p1/p, p1/p
2
, · · · ) ∈ R. Obviously θ([p̃]) = p and θ(p) = p, so

θ([p̃]− p) = 0. Also, the image of [p̃]− p in R is p̃, which has vR-valuation 1. We usually
denote this element as ξ.

• Let α = [ε]−1

[ε1/p]−1
, where ε = (1, ζp, ζp2 , · · · ) ∈ R. Note that vR(ε− 1) = limn→∞ pnvp(ζpn +

(−1)p) = limn→∞
pn

pn−1(p−1)
= p

p−1 , and vR(ε
1/p − 1) = limn→∞ pnvp(ζpn+1 + (−1)p) =

limn→∞
pn

pn(p−1) = 1
p−1 . Thus, vR(α) = 1, and θ([ε] − 1) = 0 whereas θ([ε1/p] − 1) =

ζp − 1 6= 0, so α generates ker θ. We usually denote this element as ω.

From this, it is clear that B+
dR is a complete discrete valuation ring.
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Proposition 2.2.14. The ring B+
dR is a complete discrete valuation ring with maximal ideal

ker θ, residue field Cp and uniformizer any choice of generator of the principal ideal ker θ.

Proof. It is a formal consequence from that W (R)[1/p] is separated with respect to ker θQ-adic
topology. Suppose x ∈ ∩n≥0(ker θQ)

n ⊂ W (R)[1/p]. For some k, we have pkx ∈ W (R). Note
that θQ|W (R) = θ, so this implies that pkx ∈ ∩n≥0(ker θ)

n. Thus, it is enough to show that
∩n≥0(ker θ)

n = 0. Any element x ∈ ∩n≥0(ker θ)
n is divisible by arbitrary powers of [p̃]− p. So,

x ∈ R is divisible by arbitrary powers of p̃. As R is vR-complete, x = 0. This implies that
x = px′ for some x′ ∈ W (R). On the other hand, x = ([p̃] − p)ny for some y ∈ W (R), and as
x = 0, y = 0, and y is divisible by p. Cancelling p’s out, we have x′ = ([p̃] − p)ny′ for some
y′ ∈W (R), or x′ ∈ (ker θ)n. Thus it follows that x′ ∈ ∩(ker θ)n. Thus x is divisible by arbitrary
powers of p, so is 0.

From this, we can define the filtration of BdR to be FilnBdR = mn
B+

dR

, which is GK-stable. To

show that BdR is a good refinement of BHT, we want to prove that the graded algebra gr•(BdR)
is, GK-equivariantly, BHT. This amounts to proving that mB+

dR
/m2

B+
dR

has a canonical copy of

Zp(1). The situation here is much more explicit, that we can identify a uniformizer t of B+
dR

in a very explicit way, which should be canonical up to Z×
p -multiple, so that GK acts by the

cyclotomic character. A uniformizer t is defined by

t = log([ε]) =
∑

n≥1

(−1)n+1 ([ε]− 1)n

n
∈ B+

dR.

Proposition 2.2.15. Let t be defined as above.
(i) The series defining t converges in the max-adic topolog on B+

dR to a uniformizer, which
we will call as t.

(ii) The Galois group GK acts by the cyclotomic character.
(iii) There is a canonical GK-equivarian isomorphism gr•BdR

∼= BHT.

Proof. (i) That it converges is obvious. To see that it is a uniformizer, note that t
1−[ε] ∈ (B+

dR)
×

by definition. Also, we already know that 1−[ε]

1−[ε1/p]
is a uniformizer and 1− [ε1/p] is a unit. Thus,

t is a uniformizer.
(ii) One can construct another topology on B+

dR so that the formal power series log((1 +
x)a) = log(1 + ((1 + x)a − 1)) converges and is equal to a log(1 + x) (cf. [BC, Exercise 4.5.3]).
Given the topology, we immediately get the conclusion, as

g(t) = g(log[ε]) = log(g([ε])) = log[g(ε)] = log[εχ(g)] = log([ε]χ(g)) = χ(g)t.

(iii) The discussion right before the statement of the proposition shows that (i) and (ii) will
show (iii).

Before studying de Rham representations, we study cohomology of B+
dR.

Lemma 2.2.2. Let i ∈ Z. Then,

H0(GK , t
iB+

dR) =

{
K if i ≤ 0

0 otherwise,

and
H1(GK , t

kB+
dR) = 0,

for k ≥ 1.
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Proof. We start with a GK-equivariant exact sequence

0→ ti+1B+
dR → tiB+

dR → Cp(i)→ 0,

for i ∈ Z. The cohomology long exact sequence gives

0 → H0(GK , t
i+1B+

dR)→ H0(GK , t
iB+

dR)→ H0(GK ,Cp(i))

→ H1(GK , t
i+1B+

dR)→ H1(GK , t
iB+

dR)→ H1(GK ,Cp(i)).

An immediate consequence is that Hj(GK , t
i+1B+

dR) = Hj(GK , t
iB+

dR) for i 6= 0. Thus, we only
need to calculate the Galois cohomology for i = 0, 1. Moreover, H0(GK , tB

+
dR) = (tBdR)

GK =
(tiBdR)

GK for any i ≥ 1, so in particular (tBdR)
GK ⊂ ∩i≥1t

iB+
dR = 0.

Next we calculate H1(GK , tB
+
dR). Let M ∈ H1(GK , tB

+
dR), we recursively get Mi ∈

H1(GK , t
iB+

dR) such that M1 = M and Mi+1(g) = Mi(g) + g(yi) − yi for some yi ∈ tiB+
dR;

this is possible by the cohomology long exact sequence. Letting y =
∑
yi, it converges in B

+
dR,

and we get M(g) = M1(g) + g(y) − y is in H1(GK , t
iB+

dR) for all i ≥ 0. As B+
dR is separated,

M = 0, so M1 = 0. Now (B+
dR)

GK = K also follows from the long exact sequence.

Now we briefly study de Rham representations, which should be obviously defined as BdR-
admissible representations. First of all, this makes sense as BdR is a field, which is au-
tomatically (Qp, GK)-regular. We already linear algebraic properties of Dieudonné functor
DdR : RepdR(GK)→ VectK by Theorem 2.2.22. However, our general philosophy is the follow-
ing: if the period ring has some structure, then Dieudonné modules also have similar structures,
so that the comparison isomorphism αV : B⊗EDB(V )→ B⊗F V respects all structures on both
sides. In our case, we have the filtration FiliBdR, and we would like to give a natural filtration
to DdR(V ) for V ∈ RepdR(GK).

Definition 2.2.15. Given V ∈ RepdR(GK), let FiliDdR(V ) = (tiB+
dR ⊗Qp V )GK . This makes

DdR a functor into FilVectK , the category of K-filtered vector spaces.

Remark 2.2.2. There is a subtle point lurking behind: the category FilVectK is in general not
an abelian category. Nevertheless we can do all basic linear-algebraic constructions, including
the notion of exact sequences. In particular, it is pre-abelian (i.e. has kernels and cokernels).

In particular, we can now make the statement that BdR is a refinement of BHT.

Proposition 2.2.16. For V ∈ RepdR(V ), then gr•DdR(V ) ∼= DHT(V ). In particular, de Rham
implies Hodge-Tate.

Proof. As the de Rham filtrations are Galois stable, we have FiliDdR(V )/Fili+1DdR(V ) ∼=
(griBdR ⊗Qp V )GK = griDHT(V ).

It is a tedious yet very straightforward process to check that the additional structure, filtra-
tion, behaves well with all other linear-algebraic constructions.

Proposition 2.2.17 [BC, §6.3]. Let V ∈ RepdR(GK).
(i) The functor DdR : RepdR(GK) → FilVectK is faithful, carries short exact sequences to

short exact sequences, and is compatible with the formation of tensor products and duals.
(ii) The comparison isomorphism αV : BdR ⊗K DdR(V ) ∼= BdR ⊗Qp V is GK-equivariant

and respects the filtrations.
(iii) If L/K is complete and discretely valued field extension in Cp, then the natural map

L ⊗K DdR,K(V ) → DdR,L(V ) is a filtration-respecting isomorphism. In particular, this holds

for L/K finite or L = ‘Knr.
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Example 2.2.6. It is automatic that Qp(n) is de Rham for n ∈ Z as DdR(Qp(n)) = Kt−n,
with its unique filtration jump in degree −n. Thus, V ∈ RepQp

(GK) is de Rham if and only if

V (n) is de Rham. More generally, a continuous character η : GK → Z×
p gives a de Rham twist

Qp(η) if and only if there exists n ∈ Z such that χnη is potentially unramified.

2.2.2.5 Crystalline and Semi-stable Period Rings

Recall that BdR was constructed as a refinement of BHT so that de Rham representations had
filtrations coming from the natural filtration structure of W (R)[1/p]. On the other hand, we
still have lost some information: Frobenius. As the Frobenius automorphism of W (R)[1/p] does
not preserve ker θQ, there is no natural Frobenius endomorphism on BdR. To remedy this, we
will introduce a subring A0

cris ⊂ W (R)[1/p] that is Frobenius-stable. Explicitly, A0
cris is defined

as the GK-stable W (R)-subalgebra of W (R)[1/p] generated by divided powers,

A0
cris =W (R)[

αm

m!
]m≥1,α∈ker θ.

It is clear that A0
cris is Z-flat. We define Acris to be the p-adic completion of A0

cris; it is p-adically
separated and complete, and is Zp-flat. It is also stable under ϕ, as

ϕ(ω) = ϕ(
p−1∑

i=0

[εi/p]) = p+
p−1∑

i=0

([εi]− 1) = p+ ωa,

for some a ∈W (R), which implies that

ϕ(
ωm

m!
) =

(p+ ωa)m

m!
=

m∑

k=0

pm−iai

(m− i)!
ωi

i!
,

which is in A0
cris as n!|pn in Zp.

The ring A0
cris is quite painful to analyze, so not many properties of Acris are immediate.

Nevertheless, one can prove that (cf. [BC, Exercise 9.4.1]) there is a unique continuous map
j : Acris → B+

dR lifting A0
cris →֒ W (R)[1/p] which is bound to be GK-equivariant and injective.

This gives a concrete description of Acris:

Acris =




∑

n≥0

an
ξn

n!
| an ∈W (R), an → 0 with respect to the p-adic topology



 ,

where ξ = [p̃]−p as before (or any generator of ker θ). Moreover, the p-adic topology on Acris is
generated by sets of form {∑n≥0 anξ

n/n! | |an| < ǫ, an → 0}. Although the divided power series
expansion is not unique, nonetheless this implies that the composite map Acris →֒ B+

dR → CK
is a surjective map onto OCK

. By an alternative GK-equivariant description of Acris, one can
show that its GK-action is p-adically continuous (cf. [BC, Proposition 9.1.2]). We then define
B+

cris = Acris[1/p] ⊂ B+
dR, and hope to define Bcris from B+

cris. Note that BdR = B+
dR[1/t], so

first attempt is to define Bcris = B+
cris[1/t]. This is indeed the right definition, modulo that we

do not know yet if t ∈ B+
cris. On the other hand, as we can use any generator of ker θ instead of

ξ for the concrete description of Acris,

t =
∑

n≥1

(−1)n−1 ([ε]− 1)n

n
=
∑

n≥1

(−1)n−1(n− 1)!([ε1/p]− 1)n
ωn

n!
,

and the coefficients converge to 0 with respect to p-adic topology, as n!→ 0. Thus, t ∈ Acris ⊂
B+

cris, and we can now define Bcris = B+
cris[1/t]. Also, we give the filtration on Bcris as the
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subspace filtration of BdR, i.e. FiliBcris = FiliBdR ∩ Bcris. Also, as we know A0
cris is ϕ-stable,

we can just let the Frobenius ϕ on B+
cris be the map induced from ϕ|A0

cris
. To check that it

extends to Bcris, we need to check that ϕ(t) goes to a unit in Bcris. Indeed,

ϕ(t) =
∑

n≥1

(−1)n−1 ([ε
p]− 1)n

n
= log[εp] = pt,

so ϕ extends to Bcris. A fundamental fact is that φ : Acris → Acris is injective ([BC, Theorem
9.1.8]).

A must-to-check is the following.

Proposition 2.2.18 [BC, Proposition 9.1.6]. The domain Bcris is (Qp, GK)-regular.

Proof. Notice first that K0 ⊂ BGK
cris ⊂ (FracBcris)

GK . As the natural map K⊗K0 Bcris → BdR is
an injection ([BC, Theorem 9.1.5]), we deduce that K⊗K0 FracBcris →֒ BdR is also an injection.
Thus, (K ⊗K0 FracBcris)

GK = K ⊗K0 (FracBcris)
GK →֒ (BdR)

GK = K, which implies that
(FracBcris)

GK = BGK
cris = K0.

Suppose that 0 6= b ∈ Bcris such that Qpb is GK-stable. As Qpt is GK-stable, we can multiply
or invert t so that we can assume b ∈ B+

dR−tB+
dR. Let b be the reduction in B+

dR/tB
+
dR = CK . Let

η : GK → Q×
p be the character acting on Qpb. Then η is continuous and should be Z×

p -valued,

so that CK(η−1)GK = 0. This implies that η has finite image, i.e. potentially unramified. On

the other hand, as the formation of Bcris is compatible with a base-change to ‘Knr (Proposition

2.2.17(iii)), we deduce that b is algebraic over ‘Knr. Such element uniquely lifts to β ∈ B+
dR by

Hensel’s lemma, so in particular b − β ∈ Fil1(B+
dR). As β is a unique lift, GK acts on β by η.

Thus, b − β spans a GK-stable Qp-line in Fil1(B+
dR). If this line is nonzero, then any nonzero

element will give an element in CK(χrη)GK for some r ≥ 1, which is impossible. Therefore,

b = β is algebraic over ‘Knr.
This implies that L = ‘Knr

0 (b) ⊂ Bcris is a finite extension of ‘Knr
0 . Let L0 be a maximal

unramified subfield, which must be ‘Knr
0 . As L ⊗L0 Bcris → BdR is injective, L = L0, or

b ∈ L×
0 ⊂ B×

cris, as desired.

There is a mild relation between filtration and Frobenius.

Theorem 2.2.24 (Fundamental Exact Sequence, [Fo3, Théorème 5.3.7]). The natural map
Bϕ=1

cris → BdR/B
+
dR is surjective, and its kernel is identified with Qp. Moreover,

0→ Qp(r)→ Filr B+
cris

p−rϕ−1−−−−−→ B+
cris → 0

is exact for all r ≥ 0 and

0→ Qp(r)→ Filr Bcris
p−rϕ−1−−−−−→ Bcris → 0

is exact for all r ∈ Z.

Now we can define crystalline representations to be Bcris-admissible representations. This is
meant to capture good reduction of smooth proper K-schemes. To capture semi-stable reduc-
tion, we would want to extend the period ring Bcris by allowing additional freedom to contain
singularities coming from semi-stable reduction. Motivated from the bad reduction by the Tate
curve, Bst should be generated over Bcris by the hypothetical element “log([p̃]).” Canonically
we can define Bst as follows: let λ : R× → B+

cris be the GK-equivariant logarithm, requiring it

to be trivial on k
×
and to be x 7→ log([x]) on x ∈ mR, which is well-defined as the formal series

converges. This induces a canonical GK-equivariant Q-algebra map SymQ(R
×) → B+

cris. With
a choice of variable, SymQ(Frac(R)

×) is a 1-variable polynomial ring over SymQ(R
×).
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Definition 2.2.16 (Semi-stable Period Ring). Let B+
st := SymQ(Frac(R)

×)⊗SymQ(R
×)B

+
cris with

the induced GK-action. Let λ+st : Frac(R)
× → B+

st be the canonical GK-equivariant homomor-
phism h 7→ h ⊗ 1. We define ϕ on B+

st to extend ϕ on B+
cris and ϕ(λ+st(x)) = pλ+st(x). Define

Bst = B+
st [1/t] with its evident GK-action and Frobenius.

As mentioned above, B+
st = B+

cris[X] and Bst = Bcris[X] non-canonically, upon choosing
y ∈ Frac(R)× −R× and setting X = λ+st(y). In this form, the Frobenius is

ϕ(
∑

anX
n) =

∑
ϕ(an)p

nXn,

and the Galois action is
g(
∑

anX
n) =

∑
g(an)(X + c(g)t)n,

where c(g) is defined by g(p̃) = p̃εc(g).
Note that we can also define the monodromy operator N = − d

dX as in the non-canonical
form. This in fact does not depend on the choice of X. Note that Nφ = pφN , and that N on
Bst is GK-equivariant.

Now it will be also nice if we can construct a filtration. Unfortunately, there is no canonical
filtration on Bst, and the crucial reason behind this is that there is no canonical embedding of Bst

into BdR, unlike Bcris. This embedding depends upon the choice of GK-equivariant logarithm
logK : K

× → K. It is well-defined on 1 + mK as well as Teichmüller lifts of k
×
, but one can

choose any c ∈ K so that logK(p) = c.
Given a logarithm, we construct a GK-equivariant B+

cris-algebra map B+
st → B+

dR as follows.
We need to construct a GK-equivariant homomorphism Frac(R)× → B+

dR whose restriction to
R× is theGK-equivariant homomorphism λcris : x 7→ logcris([x]) ∈ Acris, which is defined as usual

to be zero for Teichmüller representatives of K
×
and the converging value of the formal series on

1 +mR. As every coset Frac(R)×/R× has a representative in K
×
, for every y ∈ Frac(R)×, one

can find y(0) ∈ K×
such that y/y(0) ∈ R×. Let [y] ∈ (B+

dR)
× be the Teichmüller representative

of y. Then, using the canonical embedding K →֒ B+
dR, [y]/y

(0) ∈ B+
dR, and it has a canonical

value for logarithm. Thus, we define λ : Frac(R)× → B+
dR to be

λ(y) = log([y]/y(0)) + logK(y
(0)).

As B+
st = SymQ(Frac(R)

×) ⊗SymQ(R
×) B

+
cris, choice of λ gives a GK-equivariant B

+
st → B+

dR. It

turns out that K ⊗K0 B
+
st → B+

dR is injective regardless of choice of logK(p) ([BC, Theorem
9.2.10]), and thus we can give a non-canonical filtration on Bst as Fil

iBst = Bst ∩ FiliBdR and
similarly for B+

st . It is conventional to use logK(p) = 0.
Another must-check:

Proposition 2.2.19. The ring Bst is (Qp, GK)-regular.

Proof. As we are given a GK-equivariant injection K ⊗K0 Bst → BdR, the inclusion K0 ⊂ BGK
st

is an equality.
To check the second condition, let 0 6= b ∈ Bst such that Qpb is GK-stable. We use the

non-canonical expression of Bst. Write b = b0+ b1X+ · · ·+ brXr with br 6= 0. Let η : GK → Q×
p

be the character through which GK acts on Qpb. Then,

g(b) = η(g)
∑

i=0

biX
i =

r∑

i=0

g(bi)(X + c(g)t)i.
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As η(g)br = g(br), ψ is continuous. Also, Qpbr ⊂ Bcris is GK-stable, so ψ = χnψ′ for some
unramified ψ′. Replacing b by bt−n, we can assume that ψ is unramified. This implies that
br ∈ BIK

cris =
‘Knr

0 . Comparing coefficients of Xr−1, we have

η(g)br−1 = g(br−1) + rg(br)c(g)t.

If g ∈ IK , this becomes
br−1 = g(br−1) + rbrc(g)t,

or
br−1

rbr
− g
Å
br−1

rbr

ã
= c(g)t.

Note that g(X) − X = c(g)t. Thus, this means that X + br−1

rbr
∈ BIK

st = BIK
cris ⊂ Bcris. But

note that X /∈ Bcris yet br−1

rbr
∈ Bcris, so unless r = 0, we have a contradiction. This means

b = b0 ∈ Bcris. As Bcris is (Qp, GK)-regular, b is invertible, as desired.

We then define semi-stable representations to be Bst-admissible representations.

2.2.2.6 Filtered (ϕ,N)-modules

We now want to see the extra structures on the Dieudonné modules for crystalline and semi-
stable representations. We throw a plenty of definitions, motivated from the concept of crystals,
which will sum up to give us an algebraic description of the target category of Dcris and Dst.

Definition 2.2.17 (Isocrystals). An isocrystal over K0 is a finite-dimensional K0-vector space
D, equipped with a bijective Frobenius-semilinear endomorphism ϕD : D → D ( “Frobenius”).
Let the category of isocrystals be denoted as ModϕK0

.

An important example of an isocrystal is the following.

Example 2.2.7. For any integers r, s with r > 0, we can define the isocrystal

Dr,s := Dk[1/p]/Dk[1/p](F
r − ps),

where Dk is the Dieudonné ring (see Definition 1.2.4). A less tantalizing version is as a quotient
of a polynomial ring,

Dr,s = K0[φ]/K0[φ](φ
r − ps),

where φc = ϕ(c)φ for c ∈ K0.

We have a total classification of isocrystals over‘Qnr
p .

Theorem 2.2.25 (Dieudonné-Manin Classification, [BC, Theorem 8.1.4]). The category Modϕ”Qnr
p

is semisimple, and the simple objects are D”Qnr
p ,r,s

for (r, s) = 1.

We will denoteD”Qnr
p ,r,s

by ∆ s
r
, as the slope s

r is the most important invariant. An isocrystal is

called isoclinic if it has only one slope, and let the multiplicity of an isoclinic object D(α) be the

number of ∆α’s inside when base changed to‘Qnr
p . In general, the Dieudonné-Manin classification

gives us the slope decomposition D = ⊕α∈QD(α) of an isocrystal overK0, whereD(α) is isoclinic

of slope α [BC]8.1.1. This can be seen via Galois descent; if “D is the base change of D to‘Qnr
p ,

then the slope decomposition “D = ⊕“D(α) descends as (“D(α))GK/IK ⊗K0
‘Qnr
p
∼= “D(α).

Given an isocrystal D, we can draw a Newton polygon as follows. Let D = D(α0) ⊕ · · · ⊕
D(αn) be the slope decomposition with α0 < α1 < · · · < αn with multiplicities µ0, · · · , µn. The
Newton polygon PN (D) of D is the convex polygon starting at (0, 0) and that the i-th segment
has horizontal length µi and slope αi. Let tN (D) be the y-coordinate of the rightmost endpoint
of PN (D). As we know what ∆α explicitly is, direct calculations give the following.
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Proposition 2.2.20 [BC, §8.1]. Let D,D′ be isocrystals over K0.
(i) tN (D) is an integer.
(ii) If D and D′ are isoclinic of slopes α, β, respectively, then D⊗K0 D

′ is isoclinic of slope
α+ β.

(iiii) tN (D ⊗K0 D
′) = dimK0 D · tN (D′) + tN (D) · dimK0 D

′.
(iv) tN (D) = tN (detD).
(v) tN (D

∨) = −tN (D).
(vi) If 0 → D′ → D → D′′ → 0 is an exact sequence in ModϕK0

, then tN (D) = tN (D
′) +

tN (D
′′).

Somewhat differently, we can associate a polygon to an object in FilVectK , the category of
K-filtered vector spaces.

Definition 2.2.18 (Hodge Polygon). Given (D,FiliD) ∈ FilVectK , let i0 < i1 < · · · < in be
the integers such that griD 6= 0. The Hodge polygon PH(D) of (D,FiliD) is the convex polygon
starting from (0, 0) and whose k-th segment has horizontal length dimK grik D and slope ik. We
denote tH(D) the y-coordinate of the rightmost endpoint of PH(D).

A similar property holds for PH(D), and the verification is even easier.

Proposition 2.2.21. Let D,D′ ∈ FilVectK .
(i) tH(D ⊗K D′) = dimK D · tH(D′) + tH(D) · dimK D

′.
(ii) tH(D) = tH(detD).
(iii) tH(D

∨) = −tH(D).
(iv) If 0 → D′ → D → D′′ → 0 is an exact sequence in FilVectK , then tH(D) = tH(D

′) +
tH(D

′).
(v) If D′ ⊂ D, then PH(D

′) completely lies above PH(D).
(vi) If f : D′ → D is a morphism in FilVectK which is an isomorphism as a morphism of

K-vector spaces, then tH(D
′) ≤ tH(D). The equality holds if and only if f is an isomorphism

in FilVectK .

Now we can define a target category of Dcris and Dst.

Definition 2.2.19 (Filtered ϕ-modules). The category MFϕK of filtered ϕ-modules consists of
triples (D,ϕD,Fil

iDK) such that (D,ϕD) ∈ ModϕK0
and (DK ,Fil

iDK) ∈ FilVectK . Morphiisms
in the category are morphisms in the category ModϕK0

such that the base change to K gives a
morphism in FilVectK .

Definition 2.2.20 (Filtered (ϕ,N)-modules). The category MFϕ,NK of filtered (ϕ,N)-modules
consists of tuples (D,ϕD,Fil

iDK , ND) where (D,ϕD,Fil
iDK) ∈ MFϕK , and ND : D → D

( “monodromy”) is a K0-linear morphism such that NDϕD = pϕDND. Morphisms in the cate-
gory are morphisms in the category MFϕK which commute with ND.

The first thing to notice is that MFϕK can be embedded into MFϕ,NK , as (D,ϕ,FiliDK) ∈
MFϕK implies that (D,ϕ,FiliDK , ND = 0) ∈ MFϕ,NK . Thus, most things we will prove for
filtered (ϕ,N)-modules will be automatically true for filtered ϕ-modules. Also, even though
MFϕK and MFϕ,NK are not abelian categories, they are pre-abelian categories, as ModϕK0

is an
abelian category. In other words, one can think of kernels, cokernels, image, coimage, short exact
sequences, tensor product and duals. Note that ND⊗D′ = ND ⊗ 1 + 1⊗ND and ND∨ = −N∨

D.
The relation Nϕ = pϕN gives us the slope filtration as follows.

Proposition 2.2.22. Let (D,ϕD,Fil
iDK , ND) ∈ MFϕ,NK . Let D = ⊕D(α) be the slope decom-

position. Then, ⊕α≤α0D(α) is N -stable for any α ∈ Q. Also, ND is nilpotent.
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Proof. Note that N(∆ r
s
) ⊂ ∆ r

s
−1, since by relation Nφ = pφN ,

φrNv = p−rNφrv = ps−rNv.

Thus, ⊕α≤α0D(α) is N -stable as well as N is nilpotent.

We need a lemma to explain the essential image of Dcris, Dst.

Lemma 2.2.3. Let D ∈ MFϕ,NK . Then, the following two statements are equivalent.

(i) For all subobjects D′ ⊂ D in MFϕ,NK , the Netwon polygon PN (D
′) lies completely over

the Hodge polygon PH(D
′).

(ii) For all subobjects D′ ⊂ D in MFϕ,NK , we have tN (D
′) ≥ tH(D′).

The same is true for MFϕK .

Proof. As MFϕK →֒ MFϕ,NK by setting N = 0, we only need to prove for filtered (ϕ,N)-modules.
Also, the first statement obviously implies the second. Thus, we now assume that the second
statement is true and try to prove the first statement.

Suppose that there is some subobject D′ ⊂ D such that PN (D
′) does not sit above PH(D

′).
As tN (D

′) ≥ tH(D
′), there is some vertex (x, PN (D

′)(x)) of PN (D
′) that lies below PH(D

′).
Let α0 be the slope of the segment to the left of this vertex. Let D′′ = ⊕α≤α0D

′(α). This is a
subobject of D, so tN (D

′′) ≥ tH(D′′). Thus,

tH(D
′′) = PH(D

′′)(x) ≥ PH(D′)(x) > PN (D
′)(x) = tN (D

′′),

which is a contradiction.

Definition 2.2.21 (Weakly Admissible Modules). An object in D ∈ MFϕ,NK (MFϕK , respectively)

is weakly admissible if for all subobjects D′ ⊂ D in MFϕ,NK (MFϕK , respectively), we have
tN (D

′) ≥ tH(D
′), and the equality holds if and only if D = D′. Let the full subcategory

of weakly admissible objects of MFϕ,NK (MFϕK , respectively) be denoted as MFϕ,N,waK (MFϕ,waK ,
respectively).

By checking that all linear algebraic constructions behave well with weak admissibility con-
dition, we can see that MFϕ,N,waK and MFϕ,waK are abelian categories [BC, Theorem 8.2.11].

As promised, these categories are the essential images of Dcris and Dst.

Theorem 2.2.26 (Colmez-Fontaine, [BC, Theorem 9.2.14, Theorem 9.3.4]). The functors
Dcris : Repcris(GK) → MFϕK and Dst : Repst(GK) → MFϕ,NK are fully faithful, and they have

essential image MFϕ,waK and MFϕ,N,waK , respectively. In other words, those functors are equiv-

alence of categories between Repcris(GK) and MFϕ,waK , and between Repst(GK) and MFϕ,N,waK .
The quasi-inverses are given as

Vcris(D) := Fil0(Bcris ⊗K0 D)ϕ=1, Vst(D) := Fil0(Bst ⊗K0 D)ϕ=1,N=0.

2.2.2.7 Étale ϕ-modules

We so far have examined problems over a local field of mixed characteristic. On the other hand,
there is a very similar story for equal characteristic fields. The analogy between those two cases
is one of the central themes in number theory. As there are ways to translate a result in one
case to another, it is worthwile to briefly cover the problem of classifying p-adic representations
of GE for a field of charcateristic p > 0. In this section, we let E be a field of characteristic
p > 0, although the theory is geared towards the case when E is an equal characteristic local
field.
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As one case motivates another, in this equal characteristic case, we can expect to classify
representations in terms of a similar period ring formalism. It turns out that the “period ring”
for the analogue of Hodge-Tate represenatations is Es, the separable closure of E.

Definition 2.2.22 (Étale ϕ-modules over E). A ϕ-module over E is a pair (M0, ϕM0) whereM0

is a finite-dimensional E-vector space and ϕM0 : M0 → M0 is a ϕE-semilinear endomorphism.

It is an étale ϕ-module if the E-linearization E⊗ϕ,EM0
c⊗m 7→cϕM0

(m)−−−−−−−−−−→M0 is an isomorphism.
This is equivalent to that ϕM0(M0) spans M0 over E. The category of étale ϕ-modules over E,
denoted as ΦM ét

E , where the morphisms are E-linear morphisms respecting Frobenius structures.

Lemma 2.2.4 [BC, Lemma 3.1.3]. The category ΦM ét
E is abelian.

Proof. Given a morphism h :M →M ′ in ΦM ét
E , then we have a commutative diagram

ϕ∗
E(M

′)
ϕ∗
E(h)

//

∼=
��

ϕ∗
E(M)

∼=
��

M ′
h

//M

and this induces the corresponding isomorphisms between kernels, cokernels, images and coim-
ages, and as such formations coommute with ground field extension, by taking a base change
to ϕE : E → E, we get the étaleness of kernels, cokernels, images and coimages. Images and
coimages coincide as they do in the category of E-vector spaces.

Remember that the “period ring” in this case is Es. Thus it is natural to define a Dieudonné
functor as follows.

Definition 2.2.23. For V0 ∈ RepFp
(GE), a mod p representation of GE, define DE(V0) =

(Es⊗Fp V0)
GE as an E-vector space, equipped with the ϕE-semilinear endomorphism ϕDE(V0) =

ϕEs ⊗ 1.
Conversely, for anyM0 ∈ ΦM ét

E , we define VE(M0) = (Es⊗EM0)
ϕ=1, where ϕ = ϕEs⊗ϕM0.

It is just a linear algebra to check the following.

Proposition 2.2.23 [BC, Theorem 3.1.8]. The functors DE : RepFp
(GE) → ΦM ét

E and VE :

ΦM ét
E → RepFp

(GE) are rank-preserving quasi-inverse equivalences of categories, compatible
with tensor products and duality.

To improve this to RepZp
(GE), the category of continuous GE-representations on finitely

generated Zp-modules, we would like to lift E-coefficients to some characteristic zero ring with
Frobenius, so we would hope to have something like “W (E)”, which is again not a good idea
as E is imperfect. Thus, from now on, we assume that we are already given a complete discrete
valuation ring OE of charcateristic 0, uniformizer p, residue field E, and a Frobenius ϕ : OE →
OE . We let E = OE [1/p].

Example 2.2.8. For example, in our main case E = k((u)), OE can be set to be the p-adic
completion of the Laurent series ring W (k)((u)) over W (k).

Since OE is a complete discrete valuation ring, the ring of integers OEnr of the maximal
unramified extension Enr of E is unique up to unique isomorphism3. In particular, given a local
map f : OE → OE with a specified lifting f ′ : Es → Es of a reduction f : E → E, we get a

3More concise way to see this is that OEnr is a strict henselization of OE .
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unique local map f ′ : OEnr → OEnr . Applying this to f = ϕ and f ′ = ϕEs , we get a unique local
endomorphiism of OEnr , which will also be denoted by ϕ. As the formation of this lift is unique
up to unique isomorphism, we get an induced action of GE on OEnr . Thus, we can define the
same notion of étale ϕ-modules over OE .

Definition 2.2.24 (Étale ϕ-modules over OE). The category ΦM ét
OE

of étale ϕ-modules over OE

consists of pairs (M , ϕM ) where M is a finitely generated OE -module and ϕM is a ϕ-semilinear
endomorphism of M whose OE -linearization ϕ

∗(M )→M is an isomorphism.

Proposition 2.2.24 [BC, Lemma 3.2.3]. The category ΦM ét
OE

is abelian.

Clearly, ΦM ét
E is the full subcategory of p-torsion objects in ΦM ét

OE
. In this integral case, the

period ring should be “’OEnr , the p-adic completion of OEnr ; similarly, for Qp-representations of

GE , the period ring should be “Ênr.” Indeed, as with other period rings, these rings satisfy the
following basic structures.

• ’OEnr

GE ∼= OE .

• (Ênr)GE ∼= E .

• (’OEnr)ϕ=1 = Zp.

• (Ênr)ϕ=1 = Qp.

Theorem 2.2.27 [BC, Theorem 3.2.5, Theorem 3.3.4]. There is an equivalence of categories
between RepZp

(GE) (RepQp
(GE), respectively) and ΦM ét

OE
(ΦM ét

E , respectively) via period rings

’OEnr (Ênr, respectively). To be more precise, there are covariant naturally quasi-inverse equiv-
alences of abelian categories

DOE
: RepZp

(GE)→ ΦM ét
OE
,VOE

: ΦM ét
OE
→ RepZp

(GE),

DE : RepQp
(GE)→ ΦM ét

E ,VE : ΦM ét
E → RepQp

(GE),

defined by

DOE
(V ) =

(’OEnr ⊗Zp V
)GE

,VOE
(M) =

(’OEnr ⊗OE
M
)ϕ=1

,

DE(V ) =
Ä
Ênr ⊗Qp V

äGE
,VE(M) =

Ä
Ênr ⊗E M

äϕ=1
.

These functors preserve rank and invariant fanctors, and are compatible with tensor products
and duality.

Although we will not use this theory directly, the étale ϕ-modules for GE is highly motivating
for the analogous development in integral p-adic Hodge theory, e.g. see Section 2.2.3.3.

2.2.2.8 Comparison Theorems I: Generalities, de Rham Cohomology

Recall the statement of the Hodge-Tate decomposition.

Theorem 2.2.21 (Hodge-Tate Decomposition, cf. [BC, Theorem 2.2.3]). Let K be a p-adic
field, and X be a smooth proper K-scheme. Then, there is a canonical isomorphism

CK ⊗Qp H
n
ét(XK ,Qp) ∼=

⊕

q

(CK(−q)⊗K Hn−q(X,ΩqX/K))

in RepCK
(GK), where the cohomology on the right side is a sheaf cohomology, and the action

of g ∈ GK on both sides are g ⊗ g on the left and g ⊗ 1 on the right.
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Amore concise way to say this is thatHn
ét(XK ,Qp) is Hodge-Tate, and thatDHT(H

n
ét(XK ,Qp)) =

Hn
Hodge(X/K) := ⊕p+q=nHp(X,ΩqX/K). The general philosophy of comparison theorems is the

following.

• Let K be a p-adic field. For each period ring B, there is a class of smooth proper4 varieties
over K whose p-adic étale cohomology Hn

ét(XK ,Qp) is B-admissible.

• There is some appropriate cohomology theory HB applicable to those varieties, so that
DB(H

n
ét(XK ,Qp)) is canonically isomorphic to “Hn

B(X).” The cohomology Hn
B(X) has all

structures that the Dieudonné modules of B-admissible representation should have (e.g.
Frobenius, filtration, monodromy).

As we are in an advanced world, we already know all of the answers.

• BdR. All smooth proper varieties have de Rham p-adic étale cohomology. The Dieudonné
module is the algebraic de Rham cohomology, which has a natural filtration.

• Bcris. Smooth proper varieties with a smooth proper model over OK have crystalline p-
adic étale cohomology. The Dieudonné module is the crystalline cohomology, which has a
natural filtration and Frobenius.

• Bst. Smooth proper varieties with a proper semi-stable model over OK have semi-stable
p-adic étale cohomology. The Dieudonné module is the log-crystalline cohomology, which
has a filtration, Frobenius and monodromy operator.

• All proper smooth varieties have potentially semi-stable p-adic étale cohomology. This is
because de Rham representations are potentially semi-stable, by Berger-André-Kedlaya-
Mebkhout [Be, Théorème 0.7].

As they were all originally conjectures, we will call those comparison theorems as CHT, CdR,
Ccris, Cst. We will shortly see that Cst implies Ccris implies CdR implies CHT. For our applica-
tions, we will not explicitly use neither crystalline cohomology nor log-crystalline cohomology.
Thus, those cohomologies will only be reviewed very briefly.

As CdR is the next thing to study, we will review the construction of (algebraic) de Rham
cohomology. Let X be a variety over a field k. Note that we have a complex of sheaves

0→ OX d−→ Ω1
X/k

d−→ Ω2
X/k

d−→ · · · ,

and this is indeed a complex as formally d2 = 0. We define the algebraic de Rham cohomology

H i
dR(X/k) = Hi(Ω•

X/k),

the hypercohomology of Ω•
X/k. Recall that the hypercohomology can be computed by embedding

the complex into an injective resolution of the complex, i.e. there exist injective sheaves Ii,j for
4We require this to make sure that the étale cohomologies are finite-dimensional, see Section 2.2.1.6.
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i ≥ 0, j ≥ 1 such that they fit into a commutative diagram

· · · · · · · · ·

I0,1 //

OO

I1,1 //

OO

I2,1

OO

// · · ·

I0,0 //

OO

I1,0 //

OO

I2,0

OO

// · · ·

OX //

OO

Ω1
X/k

//

OO

Ω2
X/k

OO

// · · ·

0

OO

0

OO

0

OO

where the vertical complexes are exact. Then the hypercohomology can be computed as the
cohomology of the total complex of the above double complex minus the bottom row, the row
containing the original complex. It is a pure algebra (cf. [McC, Theorem 2.15])that, given a
cohomological double complex Ci,j , there is a convergent spectral sequence whose E1-page is

· · · · · · · · ·

h2(C0,•) // h2(C1,•) // h2(C2,•) // · · ·

h1(C0,•) // h1(C1,•) // h1(C2,•) // · · ·

h0(C0,•) // h0(C1,•) // h0(C2,•) // · · ·

Applying this, we have a spectral sequence converging to En∞ = Hn
dR(X/k) whose E1-page is

· · · · · · · · · · · ·

H2(X,OX) // H2(X,Ω1
X/k)

// H2(X,Ω2
X/k)

// · · ·

H1(X,OX) // H1(X,Ω1
X/k)

// H1(X,Ω2
X/k)

// · · ·

H0(X,OX) // H0(X,Ω1
X/k)

// H0(X,Ω2
X/k)

// · · ·

which means that we have the Hodge-de Rham spectral sequence

Ep,q1 = Hp(X,ΩqX/k)⇒ Ep+q∞ = Hp+q
dR (X/k).

Theorem 2.2.28 (Deligne, [Del, Théor‘eme 5.5]). If char k = 0 and X is proper, then the
Hodge-de Rham spectral sequence degenerates at E1.
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This implies that the de Rham cohomology has a Hodge filtration FiliHn
dR(X/k) such that

Fili+1Hn
dR(X/k)/Fil

iHn
dR(X/k) = H i(X,Ωn−iX/k).

We can now formulate the de Rham comparison theorem by Faltings.

Theorem 2.2.29 (CdR). Let K be a p-adic field, and let X be a smooth proper variety over
K. Then, Hm

ét (XK ,Qp) is, as a p-adic GK-representation, de Rham, and DdR(H
m
ét (XK ,Qp))

is canonically isomorphic to Hm
dR(X/K) which respects Galois action and filtrations. In other

words, we have a canonical isomorphism

BdR ⊗Qp H
m
ét (XK ,Qp) ∼= BdR ⊗K Hm

dR(X/K),

which respects Galois action and filtrations.

• A Galois element g ∈ GK acts by g ⊗ g on the left hand side and by g ⊗ 1 on the right
hand side.

• The filtration on the left hand side is Fili⊗Hm
ét whereas the filtration on the right hand

side is Fili =
∑
i=j+k Fil

j ⊗Filk.

If we take the graded quotient of the de Rham comparison isomorphism, we get Galois-
equivariant isomorphism

CK(n)⊗Qp H
m
ét (XK ,Qp) ∼= ⊕n=a+bCK(a)⊗Hb(X,Ωm−a

X/K),

or after Tate twist

CK ⊗Qp H
m
ét (XK ,Qp) ∼= ⊕bCK(−b)⊗Hb(X,Ωm−a

X/K),

which is CHT.

2.2.2.9 Comparison Theorems II: Crystalline and Semi-stable Conjectures

We now very briefly describe how to construct the crystalline cohomology.

Definition 2.2.25 (PD structure). For an ideal I ⊂ A, a PD structure over I is a collection
of maps γn : I → A for n ≥ 0 such that γn(x) “behaves like xn

n! ,” i.e. it satisfies the following
axioms.

• γ0(x) = 1, γ1(x) = x for every x ∈ I.

• γn(x) ∈ I if n ≥ 1.

• γn(x+ y) =
∑
i+j=n γi(x)γj(y).

• γn(λx) = λnγn(x) for λ ∈ A.

• γn(x)γm(x) =
(n+m

n

)
γm+n(x).

• γm(γn(x)) = (mn)!
m!(n!)m γmn(x).

Example 2.2.9. For a perfect field k of characteristic p > 0, the ideal (p) ⊂ W (k) has a PD
structure, simply because pn

n! always has p-adic valuation ≥ 0.
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Definition 2.2.26 (Crystalline Site, Crystalline Cohomology). Let k be a perfect field of char-
acteristic p > 0, and X be a k-scheme. Let Wn =Wn(k) =W (k)/pn be the ring of n-truncated
Witt vectors. We define the crystalline site (X/Wn)cris as follows.

• The objects of the underlying category are commutative diagrams

U �

� i //

��

V

��

Spec k // SpecWn

where U ⊂ X is a Zariski open subsets and i is a closed immersion of Wn-schemes such
that the ideal ker(OV → OU ) is endowed with a PD structure δ, compatible with the
canonical PD structure on pWn ⊂Wn. We denote an object by (U, V, δ).

• The morphisms of the underlying category are (U, V, δ) → (U ′, V ′, δ′) such that U ′ →֒ U ′

is an open immersion and V → V ′ is a morphism compatible with PD structures.

• The coverings are families of morphisms {(Ui, Vi, δi) → (U, V, δ)} such that {Vi → V } is
a topological covering consisted of open immersions.

The structure sheaf OX/Wn
is given by

(U, V, δ) 7→ OV .

The crystalline cohomology H i
cris(X/W ) is defined by

H i
cris(X/Wn) := H i((X/Wn)cris,OX/Wn

),

and
H i

cris(X/W ) := lim←−
n

H i
cris(X/Wn).

Note that it has an obvious Frobenius structure as well as Galois action, since Hm
cris(X/W )

is functorial in X. The filtration comes from the Berthelot-Ogus isomorphism.

Theorem 2.2.30 (Berthelot-Ogus, [BO, Corollary 2.5]). If Y is a smooth proper W -scheme
and K = FracW , then there is a canonical isomorphism

Hm
dR(YK/K) ∼= K ⊗W Hm

cris(Y/W ).

Now we state the Ccris developed by many people including Fontaine-Messing, Kato, Tsuji.

Theorem 2.2.31 (Ccris). Let K be a p-adic field, and X be a proper smooth variety over K
such that it admits a proper smooth model X over OK , i.e. (OX)K = X. Let k be the residue
field, W = W (k) and K0 = FracW . Then, Hm

ét (XK ,Qp) is, as a p-adic GK-representation,
crystalline, and Dcris(H

m
ét (XK ,Qp)) is canonically isomorphic to Hm

cris(Xk/W ), respecting Galois
action, filtrations and Frobenius. In other words, there is a canonical isomorphism

Bcris ⊗Qp H
m
ét (XK ,Qp) ∼= Bcris ⊗W Hm

cris(Xk/W ),

respecting Galois action, Frobenius and filtrations.

• A Galois element g ∈ GK acts by g ⊗ g on the left hand side and by g ⊗ 1 on the right
hand side.
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• The Frobenius endomorphism acts by ϕ⊗1 on the left hand side and by ϕ⊗ϕ on the right
hand side.

• The filtration is given by Fili = Fili⊗Hm
ét on the left hand side and by Fili =

∑
i=j+k Fil

j ⊗Filk

on the right hand side.

By taking BdR⊗Bcris (·) on the comparison isomorphism, we get BdR. Also, in this case you
can recover the whole p-adic étale cohomology from the crystalline and de Rham cohomology.
Namely, taking GK-invariants of the crystalline comparison isomorphism, we get

(Bcris ⊗Qp H
m
ét (XK ,Qp))

GK ∼= K0 ⊗W Hm
cris(Xk/W ).

By taking Fil0(BdR ⊗Bcris (·)) ∩ (·)ϕ=1, we get

Hm
ét (XK ,Qp) ∼= Fil0(BdR ⊗K Hm

dR(X/K)) ∩ (Bcris ⊗W Hm
cris(Xk/W ))ϕ=1,

which is the mysterious functor conjectured by Grothendieck.
One can also define a log-crystalline cohomology, which we will not review. We will just state

the semi-stable conjecture, Cst, which was settled through the help of many mathematicians,
most notably Fontaine-Jannsen, Hyodo-Kato, Tsuji.

Theorem 2.2.32 (Cst). Let K be a p-adic field, X be a proper smooth variety over K, admitting
a proper semi-stable model X over OK , i.e. XK = X. In other words, X is regular, proper
and flat over OK , and its special fiber Xk is a normal crossing divisor. Let MXk

be the natural
log-structure on Xk. Then, Hm

ét (XK ,Qp) is, as a p-adic GK-representation, semi-stable, and
Dst(H

m
ét (XK ,Qp)) is canonically isomorphic to Hm

log-cris((Xk,MXk
)/(W,O×

W )), respecting Galois
action, Frobenius endomorphism and monodromy operator. Upon the choice of uniformizer, it
is also compatible with filtrations, where the filtration on Hm

log-cris((Xk,MXk
)/(W,O×

W )) is given
by the Hyodo-Kato isomorphism

K ⊗W Hm
log-cris((Xk,MXk

)/(W,O×
W )) ∼= Hm

dR(X/K),

which is also dependent on the choice of uniformizer.
In other words, there is a canonical isomorphism

Bst ⊗Qp H
m
ét (XK ,Qp) ∼= Bst ⊗W Hm

log-cris((Xk,MXk
)/(W,O×

W )),

which is compattible with filtrations, Galois action, Frobenius endomorphism and monodromy
operator.

• A Galois element g ∈ GK acts by g ⊗ g on the left hand side and by g ⊗ 1 on the right
hand side.

• The Frobenius endomorphism acts by ϕ ⊗ 1 on the left hand side, and by ϕ ⊗ ϕ on the
right hand side.

• The monodromy operator acts by N ⊗ 1 on the left hand side, and by N ⊗ 1 + 1 ⊗N on
the right hand side.

• The filtrations are endowed by Fili = Fili⊗Hm
ét on the left hand side and by Fili =∑

i=j+k Fil
j ⊗Filk on the right hand side.

Note that we get Ccris from Cst by taking (·)N=0. Also, by taking GK-invariant and then
Fil0(BdR ⊗Bst (·)) ∩ (·)ϕ=1,N=0, we get a complete recovery of p-adic étale cohomology from de
Rham and log-crystalline cohomology.
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2.2.3 Integral p-adic Hodge Theory

2.2.3.1 Fontaine-Laffaille Theory

The theory of filtered (ϕ,N)-modules provides us an alternative of seeing crystalline and semi-
stable representations using only semi-linear algebraic data. On the other hand, there are many
reasons that one wants to develop such theory for integral Galois representations; one reason
might be that the p-adic étale cohomology is constructed from an integral representation, not
the other way around.

Let V be a crystalline GK0-representation; recall that K0 =W (kK)[1/p]. Let D = Dcris(V ),
with a decreasing filtration FiliD and a ϕ-semilinear ϕ : D → D. We would like to classify
GK0-stable Zp-lattices of V , which morally should correspond to W = W (kK)-lattices of D.
Fontaine-Laffaile theory succeeds in solving this problem in a restricted setting by using ideas
coming from crystalline cohomology. As the theory uses the idea of divided powers, it is quite
inevitable that we need to restrict ourselves to those with nonpositive Hodge-Tate weights in
[−r, 0], where er ≤ p−1; in particular, if one is interested in GK0-representations, the condition
becomes r ≤ p − 1. Therefore, we lay an extra assumption on V that it is of Hodge-Tate
weights in [−(p− 1), 0]. Also, the integral versions of admissibility conditions for ϕ,Di and M
can be motivated from crystalline cohomology as well. Based on this discussion, we define the
Fontaine-Laffaille modules as follows.

Definition 2.2.27 (Fontaine-Laffaille Modules). Let the notations be the same as above. A
Fontaine-Laffaille module over W is a W -module M with an exhaustive and separating de-
creasing filtration FiliM (i.e. ∪iM i = M and ∩iM i = 0) and a family of ϕ-semilinear maps5

{ϕiM :M i →M}i∈Z which satisfies pϕi+1(x) = ϕi(x) for x ∈ FiliM . A morphism of Fontaine-
Laffaille modules are W -linear maps respecting filtrations and ϕi’s. A sequence of Fontaine-
Laffaille modules is exact if the underlying W -module sequence is exact and the sequence of the
i-th filtrations is exact for all i ∈ Z. We denote this category as MFW .

For any integers a ≤ b, we denote by MF
[a,b]
W the full subcategory of MFW consisting of

M with FilaM = M , Filb+1M = 0. Another full subcategory MFW,tf (MF
[a,b]
W,tf , respectively)

of MFW is consisted of a W -module M (with M ∈ MF
[a,b]
W , respectively) of finite length, with∑

i∈Z ϕ
i(M i) =M .

It is very surprising that the category MF
[a,b]
W,tf is very nice.

Proposition 2.2.25 [BM, Proposition 3.1.1.1]. Let f : M → N be a morphism in MF
[a,b]
W,tf .

Then, f is strict with respect to the filtration, i.e. for all i, f(FiliM) = FiliN ∩ f(M).

Proof. For any M ∈ MF
[a,b]
W , we define an injective map θM :

⊕b
j=a+1 Fil

jM →⊕b
j=a Fil

jM by

(xa+1, xa+2, · · · , xb) 7→ (xa+1,−pxa+1 + xa+2, · · · ,−pxb−1 + xb,−pxb).

LetM be the cokernel of this map. Then, the map
∑
ϕj :

⊕b
j=a Fil

jM →M induces aW -linear

map ψM :M →M . This construction is functorial in M , and it is easity to check that M 7→M
is exact and, if lgW (M) < ∞, we have lgW (M) = lgW (M), where lgW denotes the W -length.

Such M is contained in MF
[a,b]
W,tf if and only if ψM is surjective, and by the length equality, if

and only if ψM is injective or bijective.
Now we go back to the setting of the proposition. We first assume that f is injective, so

that M is identified with a submodule of N . As ψM , ψN are isomorphisms, M → N is also

5Morally ϕi =“ ϕ
pi
”.
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injective. Suppose that there is x ∈ (FiliN ∩M)\FiliM . Take j < i such that x ∈ Filj but
x /∈ Filj+1M . As M , a finite length W -module, is of p-power torsion, we have psx /∈M j+1 and
ps+1x ∈M j+1 for some integer s ≥ 0. Replacing x by psx, we may assume px ∈M j+1. Now let
y = (0, · · · , 0, x,−px, 0, · · · , 0) ∈ ⊕b

k=a Fil
kM , where x is at the j-th entry. Then y /∈ im(θM )

whereas y ∈ im(θN ). Thus, the image of y in M is nonzero, whereas it is zero in N . This
contradicts with the injectivity of M → N .

For a general f , we let L = f(M) with Fili L := f(FiliM). As ker(FiliM → Fili L) =
ker f ∩ FiliM and f commutes with ϕi’s, we get an induced map ϕiL : Fili L → L for every i.
Note that L is automatically of finite W -length, and the commutative diagram

M //

∼
��

L

ψL

��

M // // L

makes ψL : L → L surjective. This eventually makes L ∈ MF
[a,b]
W,tf . As L → N is an injection,

we already know that it respects with filtrations, giving us f(FiliM) = f(M) ∩ FiliN .

This proof makes MF
[a,b]
W,tf an abelian category. More specifically, if f :M → N is a morphism

in MF
[a,b]
W,tf , the kernel is given by

(ker f, (ker f) ∩ FiliM,ϕi|(ker f)∩FiliM ),

whereas the cokernel is given by

(coker(f),FiliN/f(FiliM), ϕiN ).

That f(M) ∩ FiliN = f(FiliM) is exactly encoding the fact that the coimage is equal to the
image.

A hope is that MF
[a,b]
W,tf corresponds to torsion crystalline representations, i.e. subquotients

of Galois-stable integral lattices inside a crystalline representation. To make this precise, we
need a concept in the Dieudonné module side that corresponds to Galois-stable integral lattices,

so that every object in MF
[a,b]
W,tf is a quotient of those objects.

Definition 2.2.28 (Strongly Divisible Module). A strongly divisible module is a freeW -module
M of finite type, equipped with a decreasing filtration of sub-W -modules (FiliM)i∈Z and a σ-
semilinear map ϕ :M →M , such that Fil≪0M =M , Fil≫0M = 0, M/FiliM has no p-torsion
for all i, and ϕ(FiliM) ⊂ piM and

∑
i∈Z

ϕ
pi
(FiliM) =M . Such module is of weights in [a, b] if

FilaM =M and Filb+1M = 0.

It is obvious that, if M is a strongly divisible module of weights in [a, b], then M/pnM ∈
MF

[a,b]
W,tf for any n by defining ϕi =

ϕ
pi
|Fili .

The main theorem of the Fontaine-Laffaille theory is the following.

Theorem 2.2.33 [BM, Theorem 3.1.3.2]. Let M be a strongly divisible module of rank d of
weights in [0, p − 1]. Then, Hom(M,Acris), the group of W -linear maps respecting filtrations
and ϕ’s, is a Zp-lattice in a d-dimensional crystalline representation of GK0 with Hodge-Tate
weights in [−(p− 1), 0]. Moreover, all such Zp-lattices arise in this way.

By taking quotients, we get the following analogous result for torsion crystalline represen-
tations; note that we lose r = p− 1 case as we are literally requiring ϕi’s to be divided powers.
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Theorem 2.2.34 [BM, Theorem 3.1.3.3]. Let 0 ≤ r ≤ p−2. Define the functor T ∗
cris : MF

[0,r]
W,tf →

Repcris(GK) as
T ∗
cris(M) = Hom(M,Acris/p

nAcris),

where n is chosen6 so that pnM = 0, and the homomorphisms are W -linear maps respecting

filtrations and ϕ’s. Then, this functor is an anti-equivalence of categories between MF
[0,r]
W,tf

and the category of torsion crystalline representations of GK0 of Hodge-Tate weights in [−r, 0],
i.e. finite representations of GK0 which are subquotients of two integral GK0-stable lattices in
crystalline representations of GK0 with Hodge-Tate weights in [−r, 0].

2.2.3.2 Breuil Modules

An immediate generalization of the theory of Fontaine-Laffaille modules is to generalize it to
semi-stable representations; indeed, in terms of (ϕ,N)-modules, the only difference in classifying
semi-stable representations is that there is an extra monodromy operator. Therefore, we can try
to mimic the construction of (ϕ,N)-modules here, so that one is led to introduct a monodromy

operator N on MF
[0,r]
W,tf . The compatibility Nϕ = pϕN from the (ϕ,N)-modules should translate

into Nϕi = ϕi−1N , as ϕi’s should be ϕ
pi
’s. On the other hand, this is applicable only when

N(Fili) ⊂ Fili−1, which is called the Griffiths transversality condition. However, this is not really
always the case, as there is no direct relation of N and filtration other than weak admissibility
condition.

A way to resolve this, by Breuil in [Br1], is to work on a “PD-completed” ring instead of W
so that we can actually obtain the Griffiths transversality. For simplicity, we work mostly for
K0. Define S to be the p-adic completion of

W 〈u〉 =W [
ui

i!
]i∈N,

where u is an indeterminate. Choose a uniformizer π of W , and define Fili S, ϕ,N on S to be

Fili S = 〈{(u− π)
j

j!
}j≥i〉∧,

ϕ(
∑

i

wi
ui

i!
) =

∑
ϕ(wi)

up
i

i!
,

N(
∑

i

wi
ui

i!
) =

∑
(−1)iiwi

ui

i!
,

where the completion is the p-adic completion, and wi ∈ W . Note that we are really just
requiring ϕ and N to satisfy N(u) = −u and ϕ(u) = up, and that Fili S is the natural divided
power filtration of S, which in particular does not depend on the choice of π. One checks that
Nϕ = pϕN , ϕ(Fili S) ⊂ piS, and most notably N(Fili+1 S) ⊂ Fili S. We let SK0 = K0⊗W S to
have the same kind of structures inherited from S. Surprisingly, it turns out that the functor
D 7→ D⊗K0 SK0 gives an equivalence of categories from the category of positively filtered (ϕ,N)-
modules in the usual sense to the category of positively filtered (ϕ,N)-modules over SK0 , which
is the notion we will define now.

Definition 2.2.29. Let MFϕ,N,+K0
be the category of finitely generated free SK0-modules D

equipped with FiliD, ϕ,N such that the following hold.

6It is clear that the definition of T ∗
cris does not depend on the choice of n.
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1. FiliD is a descreasing filtration by sub-SK0-modules with FiliD = D, Filj SK0 · FiliD ⊂
Filj+iD and, for i≫ 0, FiliD = Fil1 SK0 · Fili−1D + Fili SK0 · D.

2. ϕ : D → D is a SK0-semilinear map such that det(ϕ) ∈ S×
K0

.

3. N : D → D is a K0-linear map such that N(sx) = N(s)x + sN(x) for s ∈ SK0 , x ∈ D,
Nϕ = pϕN and N(FiliD) ⊂ Fili−1D.

The morphisms in this category are the SK0-linear maps respecting the structures.

Let MFϕ,NK0
be the subcategory of filtered (ϕ,N) modules D with Fil0D = D (“positively

filtered (ϕ,N)-modules”). Then, D 7→ D ⊗K0 SK0 is an equivalence of categories MFϕ,N,+K0
→

MFϕ,N,+K0
in the following precise sense.

Theorem 2.2.35 [BM, Theorem 4.2.1]. Let π be a uniformizer of W . Let fπ : SK0 → K0 be

defined by fπ(
∑
iwi

ui

i! ) =
∑
iwi

πi

i! . Given a positively filtered (ϕ,N)-module D ∈ MFϕ,N,+K0
, we

can endow a structure of (ϕ,N)-module on D := D ⊗K0 SK0 by the following.

1. ϕD = ϕD ⊗K0 ϕSK0
.

2. ND = ND ⊗K0 id+ id⊗NSK0
.

3. Fil0D, and inductively FiliD = {x ∈ D | N(x) ∈ Fili−1D, fπ(x) ∈ FiliD}.
Then, the above functor D 7→ D⊗K0 SK0 is an equivalence of categories MFϕ,N,+K0

→MFϕ,N,+K0
.

Thanks to this equivalence of categories, we can try to find integral structures inside
MFϕ,N,+K0

, in which we also have the Griffiths transversality. In particular, we can try to

define an analogue of MF
[0,r]
W,tf here, so that the new subcategory is also abelian. On the other

hand, in this case we have a problem in lifting elements ([BM, Example 4.3.1]), so that we only

keep track of the “last filtration” Filr. In view of this, we can define the analogue of MF
[0,r]
W,tf

forMFϕ,N,+K0
.

Definition 2.2.30. Let 0 ≤ r ≤ p− 2, and π be a uniformizer of W . The category MF [0,r]
π is

consisted of an S-module M abstractly isomorphic to ⊕i∈I(S/piS)di , where I is a finite set of
integers and di ∈ N. The extra data we keep track of are as follows.

• A sub-S-module FilrM containing Filr S · M.

• A σ-semilinear map ϕr : Fil
rM→M such that ϕ1(u−π)rϕr(sm) = ϕr(s)ϕr((u−π)rm)

for s ∈ Filr S and x ∈M. Also, ϕr(Fil
rM) generatesM over S.

• A map N :M→M such that N(sm) = N(s)m+ sN(m) for s ∈ S,m ∈M.

The morphisms are S-linear maps respecting these structures.

We will see shortly that this definition does not depend on the choice of π. A similar dévissage
argument as in the proof of Proposition 2.2.25 gives us the following analogous statements.

Proposition 2.2.26 [BM, Theorem 5.1.1.1]. For a morphism f : M → N in MF [0,r]
π ,

f(FilrM) = FilrN ∩ f(M). In particular,MF [0,r]
π is an abelian category.

Note that our definition of MF [0,r]
π does not make it to be a subcategory of MFϕ,N,+K0

, as

we gave up tracking the whole filtration. We thus separately define a functor relatingMF [0,r]
π

and MF
[0,r]
W,tf .
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Proposition 2.2.27 [BM, Proposition 5.1.1.3]. Let Frπ : MF
[0,r]
W,tf →MF

[0,r]
π be functor sending

(M,FiliM,ϕi) to the object Fr(M) = S ⊗W M with the structure

Filr Fr(M) =
r∑

j=0

Filr−j S ⊗W FiljM,

ϕr =
r∑

j=0

ϕr−j ⊗ ϕj ,

N = N ⊗ id .

It is a fully faithful and exact functor which gives a one-to-one correspondence between the

simple objects of MF
[0,r]
W,tf andMF [0,r]

π .

We can now see thatMF [0,r]
π does not depend on π.

Proposition 2.2.28 [BM, Proposition 5.1.1.5]. For each choice w ∈ W ∗, there is a canonical

equivalence of categories MF [0,r]
π

∼−→ MF [0,r]
πw , such that via this equivalence Frπ is identified

with Frπw.
To get a similar equivalence of torsion semi-stable representations andMF [0,r]

π , we need an
analogue of Acris for this setting.

Definition 2.2.31. The ring Âst is an S-algebra defined as the p-adic completion of Acris〈u〉 =
Acris[{u

i

i! }i∈N], with a Galois action, Frobenius ϕ, filtration Fili Âst and monodromy N defined
as follows.

1. The Galois action extends that of Acris, and g ∈ GK0 acts on u via g(u) = [χ(g)]u+[χ(g)]−
1, where χ is the cyclotomic character and [χ(g)] is the corresponding Teichmüller element
in Acris.

2. ϕ extends that of Acris and ϕ(u) = (1 + u)p − 1.

3. N extends that of Acris and a continuous Acris-derivation such that N(u) = 1 + u.

4. The filtration is defined as

Fili Âst = {
∞∑

j=0

aj
uj

j!
| aj ∈ Fili−j Acris, aj → 0}.

As with Acris, we have ϕ(Fili Âst) ⊂ piÂst for 0 ≤ i ≤ p− 1, and we can define ϕi =
ϕ
pi
|Fili for

such i.

All these structures extend obviously to Âst/p
nÂst for all n ≥ 0. Thus, we define a functor

T ∗
st :MF [0,r]

π → Rep(GK0) as

T ∗
st(M) = Hom(M, Âst/p

nÂst),

for n ∈ N with pnM = 0. The analogous main result is that this functor is fully faithful.

Theorem 2.2.36 [BM, Theorem 5.2.2.1]. For 0 ≤ r ≤ p− 2, the functor T ∗
st is exact and fully

faithful. Its essential image contains the category of torsion semi-stable representations of GK0

with Hodge-Tate weights in [−r, 0].
This is proven via first establishing an equivialence of integral structures with strongly

divisible modules. Note that in this case we do not know the essential image of this functor.
For our application, however, we just need torsion semi-stable representations can be recast in
another form, so this will suffice.
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2.2.3.3 Kisin Modules

The limitation r < p− 1 for the Fontaine-Laffaille theory and the Breuil’s theory is inevitable,
as we were developing a theory using a divided power envelope. Another breakthrough on
integral p-adic Hodge theory also started from Breuil by using a classification over W [[u]], not
W 〈u〉. This was subsequently extended by Kisin in [K], and in particular was able to completely
classify GK∞-stable Zp-lattices in semi-stable GK-representations, where K∞ = K(π1/p

∞
) for

a K-uniformizer π. As we will observe, this theory is parallel to the theory of étale ϕ-modules
via Fontaine-Wintenberger’s theorem.

Let k be a perfect field of characteristic p > 2, K0 = W (k)[1/p], K/K0 a finite totally
ramified extension, e = e(K/K0) the absolute ramification index, π ∈ K a uniformizer and
E(u) the corresponding Eisenstein polynomial over K0. Define S = W (k)[[u]], with Frobenius
ϕ : u 7→ up. A ϕ-module over S is an S-module M equipped with a ϕ-semilinear map ϕ : M→
M.

Definition 2.2.32 (Kisin Modules). The category Modϕ/S (Modϕ,r/S , respectively), called the

category of ϕ-modules (of E(u)-height r, respectively), is a ϕ-module M which is finite free
over S and the cokernel of ϕ∗ = 1 ⊗ ϕ : S ⊗ϕ,S M → M is killed by some power of E(u)
(E(u)r, respectively). An object in Modϕ/S (Modϕ,r/S , respectively) is also called a Kisin module

(of height ≤ r, respectively).

This so far is very much the same as the theory of étale ϕ-modules. The new idea is that we
can recast the whole picture inside W (FracR), where R = R(OCK

/(p)) as in the construction
of BdR.

Choose a compatible system of pn-th roots of unity πn ∈ K, and let [(πn)] ∈ W (R) be the
Teichmuller representative, corresponding to the choice of pn-th roots of π. We can then embed
S into W (R) so that u 7→ [(πn)]. It is easy to see that this embedding respects Frobenius
structures, and is also GK∞-invariant, as GK∞ is the isotropy subgroup of (πn) in GK . As
[(πn)] ∈ FracR is nonzero, we can extend this embedding to S[1/u] →֒ W (FracR). Let OE be
the p-adic completion of S[1/u]. It is a discrete valuation ring with residue field k((u)). As p
is a uniformizer of W (FracR), we still maintain an embedding OE →֒W (FracR) whose residue
field homomorphism is k((u))→ FracR sending u to [(πn)]. The embedding is still compatible
with Frobenius structures, where ϕOE

is induced by ϕS.
Let E = Frac(OE), so that it embeds into E →֒ W (FracR)[1/p]. Let Enr be the maximal

unramified extension of E inside W (FracR)[1/p]. As FracR is algebraically closed, Theorem
2.2.23, the residue field OEnr/pOEnr of OEnr is the separable closure of k((u)). Let Ênr be the
closure of Enr in W (FracR)[1/p], which is just the p-adic completion. The connection to the
theory of étale ϕ-modules starts from the following, which uses the theory of field of norms.

Theorem 2.2.37 [BC, Theorem 11.1.2]. The natural action of GK∞ on OEnr via the inclusion
OEnr →֒W (FracR) induces an isomorphism of topological groups GK∞

∼−→ Gk((u)).

In particular, we can see that the theory of étale ϕ-modules gives a classification of OE -
modules. Our objective is to adapt this theory to instead study S-modules. In place of OEnr , let‘Snr = O”Enr∩W (R) andSnr = OEnr∩W (R). Our constructions have been GK∞-equivariant, and
in particular, the embeddings OEnr →֒W (FracR) and Snr →֒W (FracR) are GK∞-equivariant.
Now we can state the equivalence of categories for integral lattices.

Theorem 2.2.38 ([BC, §11.2], [Li, T3, Theorem 2.1.1]). For M ∈ Modϕ/S, define

V∗
S(M) = HomS(M,‘Snr),
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the collection of S-linear maps respecting Frobenius structures. Then V∗
S(M) is a continu-

ous linear GK∞-representation on a finite free Zp-module. As a functor, V∗
S : Modϕ/S →

RepfreeZp
(GK∞) is fully faithful. Furthermore, it classifies GK∞-stable Zp-lattices of a p-adic

GK∞-representation in the following sense: given M ∈ Modϕ/S, let V = V∗
S(M)⊗Zp Qp be a d-

dimensional p-adic GK∞-representation. Then, the functor V∗
S restricts to a bijection between

rank d objects N ⊂M⊗S E and GK∞-stable Zp-lattices L ⊂ V of rank d.

This basically comes from the fact that we already have a theory of étale ϕ-modules and
that V∗

S can be fit into the picture.

Theorem 2.2.39 [BC, §11.2]. Let ΦM ét,tor
OE

and ΦM ét,free
OE

be the categories of étale ϕ-modules
over OE whose underlying OE -modules are finite free and torsion, respectively. Define the con-
travariant functors

V∗
OE

: ΦM ét
OE
−→ RepfreeZp

(GK∞), M 7→ HomOE
(M,‘Onr

E ),

D∗
OE

: RepfreeZp
(GK∞)→ ΦM ét

OE
, V 7→ HomZp[GK∞ ](V,’OEnr),

Vtor ∗
OE

: ΦM ét,tor
OE

−→ ReptorZp
(GK∞), M 7→ HomOE

(M, Enr/Onr
E ),

Dtor ∗
OE

: ReptorZp
(GK∞)→ ΦM ét,tor

OE
, V 7→ HomZp[GK∞ ](V, Enr/OEnr),

which are duals of the originally defined Dieudonné functors for étale ϕ-modules over OE . Then,
these are quasi-inverse equivalences between the categories of finite free objects as well as between
the categories of torsion objects.

Moreover, for any M in Modϕ/S, the extension of scalars map V∗
S(M) → V∗

OE
(M ⊗S OE)

is an isomorphism.

One consequence is that the notion of a GK∞-representation having a E(u)-height ≤ r is
well-defined. This is the analogue of Hodge-Tate weights in this case.

Theorem 2.2.40 [Li, T3, Theorem 2.1.1]. A semi-stable representation with Hodge-Tate weights
in [−r, 0] is of finite E(u)-height ≤ r.

2.2.3.4 (ϕ, “G)-modules

The remaining problem for classifying GK-lattices is that K∞/K is not Galois. To remedy
this, Liu developed a theory of (ϕ, “G)-modules, where it additionally keeps track of the action
of “G = Gal(K∞(ζp∞)/K). This gives an anti-equivalence of a category of (ϕ, “G)-modules and
the category of GK-stable Zp-lattices in semi-stable GK-respresentations. We review this theory
from now on.

We continue to use the notation as in the previous section on Kisin modules. Let S be as
defined in the theory of Breuil modules, the p-adic completion of the divided power envelope
of W (k)[u]. Here, we have no assumption like K = K0, so the correct definition of S would be

the p-adic completion of W [E(u)i

i! ]i∈N. Define a continuous K0-linear derivation N : S → S such
that N(u) = −u. We denote S[1/p] by SK0 .

Recall that via u 7→ [(πn)], we could embed W (k)[u] into W (R). As Acris is the p-
adic completion of the divided power envelope of W (R) with respect to ker θ, the embedding
W (k)[u] →֒ W (R) extends to an embedding S →֒ Acris, where θ|S sends u to π. Note that this
embedding is compatible with Frobenius endomorphisms.

The key idea is that K∞,p∞ = ∪∞n=1K(πn, ζpn) is Galois over K. Let Kp∞ := ∪∞n=1K(ζpn),
and

G0 := Gal(K∞,p∞/Kp∞),
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HK := Gal(K∞,p∞/K∞),

“G := Gal(K∞,p∞/K).

For completeness, we define Kn = K(πn) and Fpm = F (ζpm) for any field F .
We get some results on these groups via class field theory.

Lemma 2.2.5 [Li, T2, Lemma 5.1.2]. The following hold.
(i) Kp∞ ∩K∞ = K.
(ii) Gal(Kp∞/K) ∼= HK and G0

∼= Zp(1).

(iii) “G = G0 ⋊HK , and HK acts on Zp(1) ∼= G0 via the cyclotomic character.

Proof. (ii) and (iii) is immediate from (i), once one realizes that (i) also impliesG0
∼= Gal(K∞/K).

Thus, we only need to prove (i). Let Fn = K(πn) ∩ Kp∞ and Kn = K(πn). We prove that
Fn = K by an induction on n. The base case is trivial. Suppose Fn = K and Fn+1 6= K. We first
show that ζp ∈ K. Note that as [Kn+1 : Kn] = p, Fn+1 6= K implies that [Fn+1 ·Kn : Kn] = p,
or Fn+1 ·Kn = Kn+1. As Fn+1/K is abelian and Fn+1 ∩Kn = K, it follows that Kn+1/Kn is
Galois and Gal(Kn+1/Kn) ∼= Gal(Fn+1/K). Let σ ∈ Gal(Kn+1/Kn) be a nontrivial element.
Then, σ(πn+1)/πn+1 ∈ Kn+1 is a nontrivial p-th root of unity, hence ζp ∈ Kn+1. As Kn+1/Kn

is of degree p, there is no intermediate extension in between, and as [Kn(ζp) : Kn] ≤ p − 1, it
follows that Kn(ζp) = Kn. As Fn = K, we have ζp ∈ K.

As ζp ∈ K, Gal(Kp∞/K) is a closed subgroup of Gal(Qp,p∞/Qp(ζp)) ∼= 1+pZp, whose closed
subgroups are of form 1+ pnZp (here we use p > 2). As [Fn+1 : k] = p, there exists m such that

Gal(Kp∞/K) ∼= 1 + pmZp = Gal(Qp,p∞/Qp(ζpm))

whereas
Gal(Kp∞/Fn+1) ∼= 1 + pm+1Zp = Gal(Qp,p∞/Qp(ζpm+1)).

This implies that ζpm ∈ K whereas ζpm+1 /∈ K. Thus, Fn+1 = K(ζpm+1). In particular,
Gal(Kn+1/Kn) = Z/pZ. Choose σ ∈ Gal(Kn+1/Kn) such that σ(ζpm+1) = ζpζpm+1 . Then,
σ(πn+1) = ζbpπn+1 for some b 6≡ 0(mod p). As ζpm+1 ∈ K(πn+1), we can write ζpm+1 =
∑p−1
i=0 aiπ

i
n+1 for some ai ∈ OKn . Then,

ζpζpm+1 = σ(ζpm+1) =
p−1∑

i=0

aiζ
bi
p π

i
n+1,

which means that a0 = ζpa0 and a0 = 0. This means that ζpm+1 is not a unit in OKn , which is
a contradiction.

Let ε : GK → A×
cris be defined as ε(g) = g([(πn)])/[(πn)]. This is a cocycle; thus, fixing a

topological generator τ of G0, ε(τ) = [(εi)i≥0] ∈ W (R) with ε a primitive pi-th root of unity.
Thus, tπ,τ := − log(ε(τ)) ∈ Acris is well-defined; the Galois group GK acts on t as g(t) = χ(g)t.

Let γi(x) = xi/i!, and let

t{n} = tr(n)γq̃(n)

Ç
tp−1

p

å
,

where n = (p− 1)q̃(n) + r(n) with 0 ≤ r(n) < p− 1. We then define a subring RK0 ⊂ B+
cris as

RK0 =

{
x =

∞∑

i=0

fit
{i} | fi ∈ SK0 , fi → 0

}
,

and “R := RK0 ∩W (R). By [Li, T3, Lemma 2.2.1], “R is a S-subalgebra of W (R) which is both
ϕ-stable and G-stable. Furthermore, the G-action on “R factors through “G.

Now we can define the notion of (ϕ, “G)-modules.
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Definition 2.2.33 ((ϕ, “G)-modules). A (ϕ, “G)-module (of height ≤ r) is a triple (M, ϕ, “G)
where

(i) (M, ϕ) is a Kisin module (of height ≤ r),
(ii) there is a “R-semilinear “G-action on M̂ := “R ⊗ϕ,S M which commutes with ϕ“M :=

ϕ
R̂
⊗ ϕM, and

(iii) M ⊂ M̂HK , when M is regarded as a ϕ(S)-submodule.

Given a (ϕ, “G)-module M̂ = (M, ϕ, “G), we can associate a Zp[GK ]-module

“V∗
(M̂) := Hom

R̂,ϕ
(“R⊗ϕ,S M,W (R)),

where g ∈ G acts via g(f)(x) = g(f(g−1(x))). It turns out that this is an equivalence of
categories classifying integral lattices in semi-stable representations:

Theorem 2.2.41 [Li, T3, Theorem 2.3.1]. Let M̂ = (M, ϕ, “G) be a (ϕ, “G)-module. Then, as a

Zp[G∞]-module, “V∗
(M̂) coincides with V∗

S(M) as a Kisin module. Moreover, the functor “V∗

induces an anti-equivalence from the category of (ϕ, “G)-modules of height ≤ r to the category of
GK-stable Zp-lattices in semi-stable representations with Hodge-Tate weights in [−r, 0].

2.2.3.5 Torsion Kisin Modules and Torsion (ϕ, “G)-modules

We use the same notation as the previous section. As the ramification bounds will be proved for
torsion representations, we will need the torsion analogue of Kisin modules and (ϕ, “G)-modules.
We define a Kisin module to be torsion if it is killed by a power of p. Hereby we define some
categories using this definition.

• Modϕ,r/S∞
is the category of all torsion Kisin modules of height ≤ r.

• Modϕ,r/Sn
is the category of Kisin modules of height ≤ r killed by pn.

• Freeϕ,r/Sn
is the category of Kisin modules of height ≤ r killed by pn and finite free over

Sn = S/pnS.

We briefly remark the properties of torsion Kisin modules. First of all, a torsion Kisin module
is always a quotient of two free Kisin modules of the same rank [Li, T1, .] Similar to the functor
V∗

S, one can also define a functor V∗
Sn

: Modϕ,r/Sn
→ ReptorZp

(G∞) for torsion Kisin modules by

V∗
Sn

(M) := HomS,ϕ(M,Snr
n ),

where the homomorphisms are S-linear and respects Frobenius structures. It is notable that
one can use Wn(R) instead of Snr

n via the embedding Snr
n →֒Wn(R) [CL, Lemma 2.2.1].

Inspired by the Fontaine’s converse to Krasner’s lemma, one defines the following: we define
a>cR = {x ∈ R | vR(x) > c} and [a>cR ] to be the ideal of Wn(R) generated by all [x] with x ∈ a>cR ,

and similarly we define a≥cR and [a≥cR ]. As [a>cR ] is stable under ϕ and Galois action, the quotient
Wn(R)/[a

>c
R ] inherits a Frobenius action. Thus, we can now define

Jn,c(M) := HomS,ϕ(M,Wn(R)/[a
>c
R ]),

which has a naturalG∞ action. For convenience, we define Jn,∞ = V∗
Sn

(M) = HomS,ϕ(M,Wn(R)).
Then, for c ≤ c′, we get a natrual G∞-equivariant morphism ρc′,c : Jn,c′(M) → Jn,c(M). From
now on, let N be a positive integer such that uN = 0 in Wn[u]/E(u)r; it is always true that
uern = 0 in W [u]/E(u)r ([CL, Lemma 2.3.2]), so we can for example let N = ern. Also, for the
rest of the section, b = N

p−1 and a = pN
p−1 .
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Proposition 2.2.29 [CL, Proposition 2.3.3]. The morphism ρ∞,b : V∗
Sn

(M) → Jn,b(M) is
injective, and its image is ρa,b(Jn,a(M)).

Proof. Injectivity can be seen by just checking valuations. To see that the image is ρa,b(Jn,a(M)),
note that certainly the image is contained inside ρa,b(Jn,a(M)). To see the converse, what we
need to prove is that, given f : M → Wn(R)/[a

>a
R ] a ϕ-morphism, there is a ϕ-morphism

g : M → Wn(R) such that g ≡ f(mod[a>bR ]). This can be seen first for M ∈ Freeϕ,r/Sn
by

successive lifting and then for general object in Modϕ,r/Sn
by using the fact that any such object

is a quotient of two finite free torsion Kisin modules.

To get an information on Jn,c(M), we first need to analyze the structures of Wn(R)/[a
>c
R ].

Here we summarize some facts regarding those quotients; the proofs are all done by checking
valuations, and are very straightforward. Define θs : R→ OK/(p) by (x0, x1, · · · ) 7→ xs.

• For c > 0 a real number and s > logp(c/e) an integer, the map θs induces a Galois
equivariant isomorphism of k-algebras

R/a>cR → k ⊗k,ϕs OK/a
>c/ps

K
.

• For c > 0 a real number and s > n−1+logp(c/e) an integer, θs induces a Galois equivariant
isomorphism of Wn(k)-algebras

Wn(R)/[a
>c
R ]→Wn(k)⊗Wn(k),ϕs Wn(OK/(p))/[a

>c/ps

K
].

• Define s0(c) = n− 1 + logp(c/e) and s1 = n− 1 + logp(c(p− 1)/ep) = s0(c) + logp(1− 1
p),

and smin = s1(a) = n − 1 + logp(N/e). Let M ∈ Modϕ,r/Sn
. Then, for any nonnegative

integer s > s1(c), the natrual action of Gs on Wn(R) makes Jn,c(M) a Zp[Gs]-module.
This action is compatible with ρc′,c’s.

• In particular, for any integer s > smin, V
∗
Sn

(M) is canonically endowed with a Gs-action.

The proofs are found in [CL, §2].
We would like to extend the above theory of torsion Kisin modules to the theory of (ϕ, “G)-

modules to define Ĵn,c(M̂). Firstly, for a (ϕ, “G)-module (M, ϕ, “G) which is of pn-torsion, we
define

V̂n
∗
(M̂) := Hom

R̂,ϕ
(M̂,Wn(R)).

In particular, if we let θ : V∗
S(M)→ “V∗

(M̂) and θn : V∗
Sn

(M)→ V̂n
∗
(M̂) be

θ(f)(a⊗ x) = aϕ(f(x)) for a ∈ “R, x ∈M,

θn(f)(a⊗ x) = aϕ(f(x)) for a ∈ “R, x ∈M,

then it gives a natural isomorphism of Zp[G∞]-modules. As GK-stable Zp-lattice of semi-stable

representations are classified by (ϕ, “G)-modules (Theorem 2.2.41), it follows that any torsion

semi-stable GK-module is in the essential image of V̂n
∗
([CL, Theorem 3.1.3]).

Thus, we may know the ramification behavior on a torsion representation from the ramifi-
cation behavior on lattices. Given a lattice L̂, if we let s2(c) = s1(c)+1, then for any s > s2(c),
g ∈ Gs and x ∈ L, g(x)− x is in

Äî
a
>pc
R

ó
+ pnW (R)

ä
⊗

R̂
L̂ ([CL, Lemma 3.2.1]).

Using this, we can now analyze the relation between Jn,c(M) and

Ĵn,c(M̂) := Hom
R̂n,ϕ

(M̂,Wn(R)/[a
>pc
R ]),

and Ĵn,∞(M̂) := V̂n
∗
(M̂).
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Theorem 2.2.42 [CL, Proposition 3.3.2]. For any nonnegative integer s > s2(c), θn,c : Jn,c(M)→
Ĵn,c(M̂) is an isomorphism of Zp[Gs]-modules.

Thanks to this theorem, the results from the Kisin modules case direcly translates as follows.

Corollary 2.2.4 [CL, 3.3]. The morphism ρ̂∞,b : “V∗

n(M̂)→ Ĵn,b(M̂) is injective and its image

is ρ̂a,b(Ĵn,a(M̂)). Also, θn : V∗
Sn

(M)
∼−→ “V∗

n(M̂) is an isomorphism of Zp[Gs]-modules for all
integers s > smin.

2.3 Vanishing of Low-Degree Hodge Cohomologies: Good Re-

duction Case

2.3.1 Results of Fontaine

We now explain the general strategy on how to deduce vanishing of Hodge cohomologies from
discriminant bound on torsion crystalline. This will also apply to the semi-stable representation
case in the later chapter as well. What one eventually proves from the discriminant bound is the
following kind of result: for an appropriate choice of p and r, if V is p-adic GQ-representation
which is unramified outside p and crystalline (or semi-stable) at p of Hodge-Tate weights in
[−r, 0], there is a Qp[GQ]-filtration of V by

V = V0 ⊃ V1 ⊃ · · · ⊃ VN ⊃ VN+1 = 0,

such that for all 0 ≤ i ≤ N , Vi/Vi+1
∼= Qp(i)

si for si ≥ 0.

Proposition 2.3.1 [Ab5, Proposition 5.3]. If such thing is true, for any smooth proper variety
X over Q with good reduction everywhere (semi-stable reduction at p and good reduction ev-
erywhere else, if the result is about semi-stable representation), H i(X,ΩjX/Q) = 0 if i 6= j and
i+ j ≤ r.
Proof. We put V = H i+j

ét (X
Q
,Qp)

∨. We can apply the above result to V by various comparison
theorems, asserting that V is crystalline (or semi-stable) at p, and has Hodge-Tate weights in
[−r, 0] because nontrivial Hodge-Tate weight can only occur when the de Rham cohomology
jumps, by CdR. Choose ℓ 6= p, then X has good reduction modulo ℓ, which means that

H i+j
ét (X

Q
,Qp) ∼= H i+j

ét (X
Fℓ
,Qp),

as GQℓ
-represetations (which really uses some kind of base change theorem, e.g. our version

of Smooth Base Change Theorem will suffice, Theorem 2.2.10). By the Riemann Hypothesis,
Theorem 2.2.17, the Frobenius ϕℓ acts on V with eigenvalues of modulus ℓ−(i+j)/2. On the
other hand, ϕℓ acts on Qp(k) via the multiplication by ℓ−k. Therefore, the subquotients of the
filtration should be zero except possibly at one place. Thus, we have

H i+j
ét (X

Q
,Qp) =

{
Qp(− i+j

2 )s if i+ j ≡ 0(mod 2)

0 otherwise

By CdR, we have Ä
H i+j

ét (XQ,Qp)⊗Qp BdR

äGQp ∼= H i+j
dR (XQp/Qp).

Taking filtration subquotient, we have

H i(XQp ,Ω
j
XQp/Qp

) = (Qp(
i− j
2

)s)GK ,

which is necessarily zero if i 6= j. As H i(XQp ,Ω
j
XQp/Qp

) = H i(X,ΩjX/Q) ⊗Q Qp, we get the

desired result.
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Recall that what we want to prove is the following.

Theorem 2.1.3 (Fontaine, [Fo2, Théorème 1], [Ab2, 7.6]). Let X be a smooth proper variety
over Q with everywhere good reduction. Then, H i(X,ΩjX) = 0 for i 6= j, i+ j ≤ 3.

Specifically, we choose p = 7, r = 3. Thus, we would like to prove the following.

Theorem 2.3.1 [Fo2, Proposition 2]. Let V be a 7-adic GQ-representation coming from geom-
etry, crystalline at 7 and unramified outside 7, with Hodge-Tate weights in [−3, 0]. Then, there
is a filtration V = V0 ⊃ V1 ⊃ V2 ⊃ V3 ⊃ V4 = 0 such that, for all 0 ≤ i ≤ 3, Vi/Vi+1

∼= Q7(i)
si

for some si ≥ 0.

On the other hand, ramification bounds we will get are about torsion crystalline (or semi-
stable) representations. Thus, we need a way to relate this result from torsion crystalline
representations. However, note that p-adic étale cohomology groups are defined as

Hm
ét (X,Qp) = lim←−

n

Hm
ét (X,Z/p

nZ).

In particular, if W = Hm
ét (X,Qp), then there are Zp-lattices W = W (p0) ⊃ W (p1) ⊃ · · · such

that W (pi)/W (pi+1) is a torsion representation killed by p. Note also that the above theorem
can be rewritten in the following form.

Theorem 2.3.1 [Fo2, Proposition 2]. Let V be a 7-adic GQ-representation coming from ge-
ometry, crystalline at 7 and unramified outside 7, with Hodge-Tate weights in [−3, 0]. Suppose
V4 = 0, and inductively Vi = {v ∈ V | gv − χi(g)v ∈ Vi+1 for all g ∈ GQ}. Then, V0 = V .

Thus, we can show that the torsion crystalline version will imply the above version as follows:
V0 is consisted of v ∈ V where

(g3 − χ3(g3))(g2 − χ2(g2))(g1 − χ1(g1))(g0 − χ0(g0))v = 0

for all g0, g1, g2, g3 ∈ GQ. On the other hand, the torsion crystalline version to V (p0)/V (p1)
implies that

(g3 − χ3(g3))(g2 − χ2(g2))(g1 − χ1(g1))(g0 − χ0(g0))v ∈ V (p1).

The torsion crystalline version to V (p1)/V (p2) implies that

(g3 − χ3(g3))(g2 − χ2(g2))(g1 − χ1(g1))(g0 − χ0(g0))v ∈ V (p2).

Subsequently, the element in the left hand side lies in ∩nV (pn) = 0, which implies that V0 = V .
Thus, what we really will show is the following.

Theorem 2.3.2 [Fo2, Proposition 1’]. Let V be a 7-adic F7[GQ]-module, crystalline at 7 and
unramified outside 7, with Hodge-Tate weights in [−3, 0]. Then, there is a filtration V = V0 ⊃
V1 ⊃ V2 ⊃ V3 ⊃ V4 = 0 such that, for all 0 ≤ i ≤ 3, Vi/Vi+1

∼= F7(i)
si for some si ≥ 0.

We prove this by proving series of lemmas. Let C
[−3,0]
cris be the category of torsion 7-adic

representations of GQ, crystalline at 7 and unramified elsewhere, with Hodge-Tate weights in
[−3, 0] and killed by 7.

Lemma 2.3.1 [Fo2, Lemme 1]. If 0→ U ′ → U → U ′′ → 0 is an exact sequence in C
[−3,0]
cris such

that GQ acts trivially on U ′ and U ′′, then G acts trivially on U .
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Proof. This is clear. For example, by sending this exact sequence to Fontaine-Laffaille modules,
we have 0→ M ′ → M → M ′′ → 0 of Fontaine-Laffaille modules where Fil1M ′ = Fil1M ′′ = 0,
as U ′, U ′′ had the only Hodge-Tate weight 0. This implies that Fil1M = 0, or GQ acts trivially
on U .

Lemma 2.3.2 [Fo2, Lemme 2]. In the category C
[−3,0]
cris , F7(i) for i = 0, 1, 2, 3 are the only

simple objects, up to isomorphism.

Proof. Let U be a simple object, and let E be the field of definition (i.e. the field generated
by the kernel of the representation over Q). Let F = E(ζ7), and n = [F : Q]. It is a multiple
of 6 as n/6 = [F : Q(ζ7) =: n′. Note that F is the field of definition of U ⊕ F7(1). By the
discriminant bound, Theorem 2.1.1, we have a discriminant bound

|dF |1/n < 71+
3
6 < 18.52026,

which means that, by the Odlyzko discriminant bound [Mar], n ≤ 208. If F/Q is wildly ramified,
then n′ = 7n′′, so n′′ ≤ 7. Therefore, the 7-Sylow group of Gal(F/Q(ζ7)) is unique and a normal
subgroup; let F ′ be the field fixed by the 7-Sylow sbugroup. Then, F ′/Q is tamely ramified at
7 and unramified outside 7. Thus, the discriminant bound becomes sharper, |d′F |1/[F

′:Q] < 7,
as uL/K = 1. Thus, the Odlyzko discriminant bound implies that 6n′′ = [F ′ : Q] ≤ 10, or
n′′ = 1. But a conjugacy class counting implies that a group of order 42 cannot simply act on
a F7-vector space.

Thus, F/Q must be tamely ramified, and we get the same degree bound [F : Q] ≤ 10. Thus,
n′ = 1 and F = Q(ζ7). This implies that U is a 1-dimensional vector space, and U = F7(i) for

0 ≤ i ≤ 6. As U ∈ C [−3,0]
cris , we get the desired result.

Lemma 2.3.3 [Fo2, Lemme 3]. In C
[−3,0]
cris , all extension, annihilated by 7, of F7(i) by F7(j) is

split, except when i = 0, j = 3.

Proof. If i = j, then after Tate-twisting by F7(−i), we get i = j = 0 and this is Lemma 2.3.1.
Suppose i > j. Then, after passing to the Fontaine-Laffaille modules, we have an extension 0→
M ′ →M →M ′′ → 0 such that T ∗

cris(M
′) = F7(−j), T ∗

cris(M
′′) = F7(−i). Note however that the

filtration jump happens only at i for M ′′ and j for M ′, respectively. Thus, FiljM = FiljM ′′,
and in particular, one can find a section M ′′ →֒ M . This means that the original sequence
splits, if seen as GQ7-representations. As there is no cyclic everywhere unramified extension of
Q(ζ7) of degree 7, this implies that the original splits as GQ-representations.

If i < j, then after Tate-twisting by F7(−i) we can suppose that i = 0. Then the extension
is a Galois representation in GL2(F7) of type

Ç
χj ∗
0 1

å
.

Let E be the field of definition, and F = E(ζ7). If this extension is not split, then F/Q(ζ7) must
be cyclic of degree 7 by the above form. It is unramified outside 7. As there is no everywhere
unramified extension of Q(ζ7) of degree 7, it follows that F/Q(ζ7) is totally ramified, with
ramification number j. Thus, |dF | = 7(42−7)+6(j+1) = 741+6j . If j ≤ 2, then |dF | ≤ 753, so
|dF |1/[F :Q] ≤ 753/42 < 11.66, which means that [F : Q] ≤ 28. As we already have [F : Q] = 6[F :
Q(ζ7)] = 42, this is a contradiction.

Lemma 2.3.4 [Fo2, Lemme 4]. If U is an object in C
[−3,0]
cris with no quotient isomorphic to F7,

then U = ⊕3
i=0giU , where

giU = {u ∈ U | gu = χi(g)u for all g ∈ G}.
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Proof. The problem is clear as C
[−3,0]
cris is a pre-abelian category. By forming the Jordan-Hölder

composition series, thanks to Lemma 2.3.2 and Lemma 2.3.3, it is immediate that U is an
extension of Fs7 by F7(1)

s1 ⊕F7(2)
s2 ⊕F7(3)

s3 for some s, s1, s2, s3 ≥ 0. However, as U does not
have a quotient isomorphic to F7, we are done.

Now we can finish the proof.

Proof of Proposition 2.3.2. We proceed by an induction on the order of U . By Lemma 2.3.4,
we are supposed to deal with the case when U has a quotient isomorphic to F7. So, U is fit into
the exact sequence

0→ U ′ → U → F7 → 0.

By the induction hypothesis, U ′ = U ′
0, using the notation of Proposition 2.3.2. Let U = U/U ′

1.
As it fits into the exact sequence

0→ U ′/U ′
1 → U → F7 → 0,

it followws that, by Lemma 2.3.3, U = Fs7 for some s ≥ 1. Thus, U0 = U , as desired.

2.3.2 Ramification Bounds for Crystalline Representations

In this section, we will prove the following discriminant bound for torsion crystalline represen-
tations.

Theorem 2.1.1 (Fontaine, [Fo2, Théorème 2]). Let k be a perfect field of characteristic p > 0,
W = W (k), K = FracW and G = GK . Let X be a proper smooth scheme over O. Let
0 ≤ m < p − 1 be an integer. Then, the ramification subgroups G(v) ⊂ G acts trivially on any
subfactor in Hm

ét (XK ,Qp) which is annihilated by p if v > 1 + m
p−1 .

Note that, as r < p−1, this falls into the realm of Fontaine-Laffaille theory by taking the dual

of the étale cohomology group. LetM ∈ MF
[0,m]
W,tf be the Fontaine-Laffaille module corresponding

to the dual of the étale cohomology Hm
ét (XK ,Qp). Let L be the field of definition, i.e. the field

generated by the kernel of the representation over K. As the theorem only concerns about
the action of the inertia group on T ∗

cris(M), we may take the maximal unramified extension
and assuume the residue field k is algebraically closed. We would like to use the Converse
to Krasner’s Lemma, Theorem 1.3.1. Thus, let m > 1 + r

p−1 , and let η : OL → OE/amE/K a

W -algebra homomorphism, for any algebraic extension E/K. We would like to show that this
is liftable to L→ E.

Before proceeding, we need to simplify the functor T ∗
cris. Namely, Acris/pAcris is isomorphic

to (OK/pOK)[Y1, · · · ]/(Y
p
1 , · · · ) via sending Yk to δk([p̃]), where δ(x) = (p − 1)!γp(x) ([Hat,

Lemma 4.1]). One can then subsequently cut down the divided power ring to obtain that

T ∗
cris(M)

∼−→ Hom(M,OK/bK),

where bK = {x ∈ OK | vp(x) > r
p−1} with the obvious divided power structures, and the

filtration is given by (OK/bK)i = {x ∈ OK | vp(x) ≥ i
p}/bK ([Hat, Lemma 4.5]).

Now let P (X) be the minimal polynomial over W of a uniformizer πL of L, which is written
as

P (X) = XeL/K +

eL/K−1∑

s=0

pcsX
s,

with some cs ∈ W such that c0 ∈ W×. Let x̂ be a lift of η(πL) in OE . As P (η(πL)) = 0
in OE/amE/K , we have P (x̂) + δ = 0 for some δ ∈ OE satisfying vp(δ) > 1 + r

p−1 . From the
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Newton polygon of the polynomial P (X) + δ, it follows that vp(x̂) =
1

eL/K
= vp(πL). Thus, η

induces an injection η : OL/bL → OE/bE . As the filtration is determined by valution at vp,
this also respects filtrations. If we show that this respects divided power structures, then by
Fontaine-Laffaile theory, we get an injection T ∗

cris,L(M) → T ∗
cris,E(M), and since the action is

trivial for T ∗
cris,L(M), the same holds for E, or, GE acts trivially on T ∗

cris(M); this implies that
GE ⊂ GL or L ⊂ E, and we are done.

Therefore, it only remains to prove that the injection η : OL/bL → OE/bE respects divided
powers. For each j, let pj = eL/K0

i+ l be the division by eL/K0
so that 0 ≤ l < eL/K0

. Then,

ϕi(πjL) =
πpjL
pi

mod bL = πlL

Ñ
eL/K0

−1∑

s=0

csπ
s
L

éi

mod bL,

whereas

ϕi(η(πjL)) = ϕi(x̂j) =
x̂pj

pi
mod bE = x̂l

Ñ
eL/K0

−1∑

s=0

csx̂
s +

δ

p

éi

mod bE .

As vp(δ) > 1 + r
p−1 implies δ

p ∈ bE , this proves that η(ϕi(πjL)) = ϕi(η(πjL)), as desired. This
proves the discriminant bound, Theorem 2.1.1.

Remark 2.3.1. Note that a similar bound holds for torsion crystalline representations annihi-
lated by pn; see [Ab3].

2.4 Vanishing of Low-Degree Hodge Cohomologies: Semi-stable

Reduction Case

2.4.1 Ramification Bounds for Semi-stable Representations

We will prove the following discriminant bound.

Theorem 2.1.2 (Caruso-Liu, [CL, Theorem 1.1]). Let p > 2 be a prime number and k be a
perfect field of characteristic p. Let W =W (k), and K be a totally ramified extension of W [1/p]
of degree e. Let G = GK , and vK be the discrete valuation on K noramlized by vK(K

×) = Z.
Consider a positive integer r and V a semi-stable representation of G with Hodge-Tate

weights in [−r, 0]. Let T be the quotient of two G-stable Zp-lattices in V , which is again a
representation of G annihilated by pn for some integer n. Denote by ρ : G → AutZp(T ) the
associated group homomorphism and by L the finite extension of K defined by ker ρ. If we write
nr
p−1 = pαβ with α ∈ N and 1

p < β ≤ 1, then

1. if µ > 1 + e(n+ α) + max(eβ − 1
pn+α ,

e
p−1), then G

(µ) acts trivially on T ;

2. vK(DL/K) < 1 + e(n+ α+ β)− 1
pn+α ,

where DL/K is the different of L/K.

We will just prove the bound for the valuation of the different, as it is standard to go
back and forth from the valuation of different and the upper ramification number, as seen in
Fontaine’s first proof. The idea is as follows. For any integer s ≥ 0, we have vK(DLs/K) =

1 + es − 1
ps + vK(DLs/Ks

). If we take s high enough, we can use compatibilities of Jn,c(M)
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and Ĵn,c(M̂) with Gs-action. Specifically, we take s > s0(a). Then, s > smin, and for all
c ∈ [0, eps−n+1[, we have a Gs-equivariant isomorphism

Jn,c(M) = HomS,ϕ

Ñ
M,Wn(k)⊗Wn(k),ϕs

Wn(OK/(p))
[a
>c/ps

K
]

é
,

where Wn(OK/(p)) is a S-module via u 7→ 1⊗ πs.
Now we start with a proof. Let T be a torsion semi-stable representation annihilated by pn,

so that T = Λ/Λ′ be a quotient of two lattices in a semi-stable representation. Since Λ/pnΛ→ T
is surjective, it is sufficient to bound ramification for Λ/pnΛ. Thus, we can assume that T is free
over Z/pnZ. We know from Section 2.2.3.5 that T should come from a (ϕ, “G)-module (M, ϕ, “G)
so that M ∈ Freeϕ,rSn

by our assumption. By Corollary 2.2.4, we have T |Gs
∼= im ρa,b where

ρa,b : Jn,a(M)→ Jn,b(M),

is the usual morphism. Let L be the field of definition of T , i.e. the field fixed by the kernel of
the representation, and let Ln = KnL.

By Theorem 1.3.1, we need to prove the following: for some small givenm, given an algebraic
extension E/Ks and an OKs-algebra homomorphism f : OLs → OE/a>mE , f extends to an
inclusion Ls ⊂ E. To establish this, we need a final ingredient about analyzing how Jn,c(M)
changes via base field extensions. Let E be an algebraic extension of Ks inside K. For c ∈
[0, eps−n+1[, we define

J (s),E
n,c (M) := HomS,ϕ

(
M,Wn(k)⊗Wn(k),ϕs

Wn(OE/(p))
[a
>c/ps

E ]

)
.

If E/K is Galois, then they are endowed with an action of Gs. Also, if 0 ≤ c ≤ c′ ≤ eps−n+1,

we have a natural morphism ρ
(s),E
c,c′ : J

(s),E
n,c′ (M) → J

(s),E
n,c (M). Also, J

(s),E
n,c (M) →֒ J

(s),K
n,c (M) =

Jn,c(M). It turns out that this compatibility can capture the containment of field.

Theorem 2.4.1 [CL, Theorem 4.1.1]. The natural injection ρ
(s),E
a,b (J

(s),E
n,a (M)) →֒ ρa,b(Jn,a(M))

is bijective if and only if Ls ⊂ E.

Proof of Theorem 2.1.2. We will use the Fontaine’s converse to Krasner’s lemma for m =
apn−1−s. Suppose we are given an OKs-algebra homomorphism f : OLs → OE/a>mE . For
any real number c ∈ [0,m], f induces a map fc : OLs/a

>c
Ls
→ OE/a>cE . This map is injective, by

the same reason we have seen in the proof of Proposition 1.3.1; we can characterize kernel. On

the other hand, if c ≤ a, one easily sees that the natural maps OLs/(p) → OLs/a
>cpn−1−s

Ls
and

OE/(p)→ OE/a>cp
n−1−s

E induces isomorphisms

Wn(OLs/(p))/
[
a
>c/ps

Ls

] ∼=Wn(OLs/a
>cpn−1−s

Ls
)/
[
a
c/ps

Ls

]
,

Wn(OE/(p))/
[
a
>c/ps

E

] ∼=Wn(OE/a>cp
n−1−s

E )/
[
a
c/ps

E

]
,

by evaluating valuations. Thus, as fcpn−1−s is an injection, we also get an injection

Wn(OLs/a
>cpn−1−s

Ls
)/
[
a
>c/ps

Ls

]
→Wn(OE/a>cp

n−1−s

E )/
[
a
>c/ps

E

]
.

Applying this injection to the construction of J
(s),E
n,c (M), we get a successive composition of

injections

T ∼= ρ
(s),Ls

a,b (J (s),Ls
n,a (M)) →֒ ρ

(s),E
a,b (J (s),E

n,a (M)) →֒ ρa,b(Jn,a(M)) ∼= T.
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As T is a finite set, this is an isomorphism. Thus, ρ
(s),E
a,b (J

(s),E
n,a (M)) →֒ ρa,b(Jn,a(M)) is bijective,

which means that Ls ⊂ E. Thus, we can now apply the converse to Krasner’s lemma, Theorem
1.3.1, and deduce that vK(DLs/Ks

) < apn−1−s. Now, we pick α′ ∈ N, 1
p < β′ ≤ 1 such that

N
e(p−1) = pαβ. Then, we have

vK(DLs/K) = 1 + es− 1

ps
+ vK(DLs/Ks

) < 1 + es− ps

+
apn−1−s

= 1 + es− 1

ps
+ epα

′+n−sβ′ = 1 + e(n+ α′ + β′)− 1

pn+α′′ .

As vK(DL/K) ≤ vK(DLs/K), taking N = ern, we get the desired bound.

2.4.2 Results of Abrashkin

Now, we briefly review the following result by Abrashkin.

Theorem 2.1.4 (Abrashkin, [Ab4, Theorem 0.1]). If Y is a smooth projective variety over Q

having semi-stable reduction at 3 and good reduction outside 3, then h2(YC) = h1,1(YC).

Proof. We will in particular use the ramification bound, Theorem 2.1.2 for p = 3, r = p − 1,
e = 1, α = 0, β = 1, which gives the bound v(DL/K) < 3− 1

3 . The main upshot is the following
— given a torsion semi-stable representation V of GQ killed by 3 and having Hodge-Tate weights
in [−2, 0], the field of definition L is totally ramified over Q at p. This is via the discriminant
bound, Theorem 2.1.2, and the Odlyzko discriminant bound, [Mar], the [L : Q] < 230. As
F3(1) as well as the semi-stable singularity from a Tate curve contributes enlarging the field of
definition, we can assume that K contains K1 = Q( 3

√
3, ζ9). Note that, for K0 = Q(ζ9), K1/K0

as well as K0/Q are abelian. Thus, Gal(L/Q) is solvable. Now Abrashkin [Ab4] proceeds by
extensively using SAGE, a computing program for number theory, to deduce that L ⊂ Q( 3

√
3, ζ9).

Therefore, L/Q is totally ramified at 3. Then, Gal(L/Q) = Gal(LQ3/Q3). Thus, one only needs
to deduce structural restrictions locally at 3.

Now observe that the i ≥ j case of Lemma 2.3.3 verbatim translates to this case, as for
Breuil modules (the theory of Breuil modules is applicable to this problem) Hodge-Tate weights
are also reflected on filtrations. As the category of torsion semi-stable representations of GQ3

killed by 3 is pre-abelian, the same consideration of Jordan-Hölder composition series gives us
the desired result, modulo that there are no other simple objects. However, there is another
simple object, based on the fact that order 6 group can act simply transitively on one-dimesional
F3-vector space. It is denoted as L(1/2, 1/2) in [Ab4], and its definition is very explicit, so that
one can calcalate Ext values of the object [Ab4, Proposition 5.4]. This in particular shows
that the subquotient corresponding to the Hodge-Tate weight -1 is a direct sum of F3(1) and
the object L(1/2, 1/2). This may rise to a 3-adic (rational) semi-stable representation of GQ3 ,
but such representation does not exist by explicit consideration of 2-dimensional non-crystalline
semi-stable representations in [Br2, 6.1]. Thus, we get the usual structure theorem, and by the
same argument as usual, the theorem is proved.
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(2002), 219-284.

[BK] A. Brumer, K. Kramer, Non-existence of certain semistable abelian varieties.
Manuscripta Math. 106, 291-304.

[BLR] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models. Ergebnisse der Mathematik
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2002.

[BO] P. Bertholot, A. Ogus, F -Isocrystals and De Rham Cohomology I. Invent. Math. 72
(1983), 159-199.

[Br1] C. Breuil, Représentations p-adiques semi-stables et transversalité de Griffiths, Math.
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[Fo2] J.-M. Fontaine, Schémas propres et lisses sur Z, in S. Ramanan, A. Beauville, Pro-
ceedings of the Indo-French Conference on Geometry (Bombay 1989). National Board
for Higher Mathematics, Hindustan Book Agency, 1993.

[Fo3] J.-M. Fontaine, Le corps des périodes p-adiques, in Périodes p-adiques. Astérisque
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