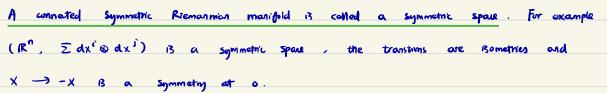


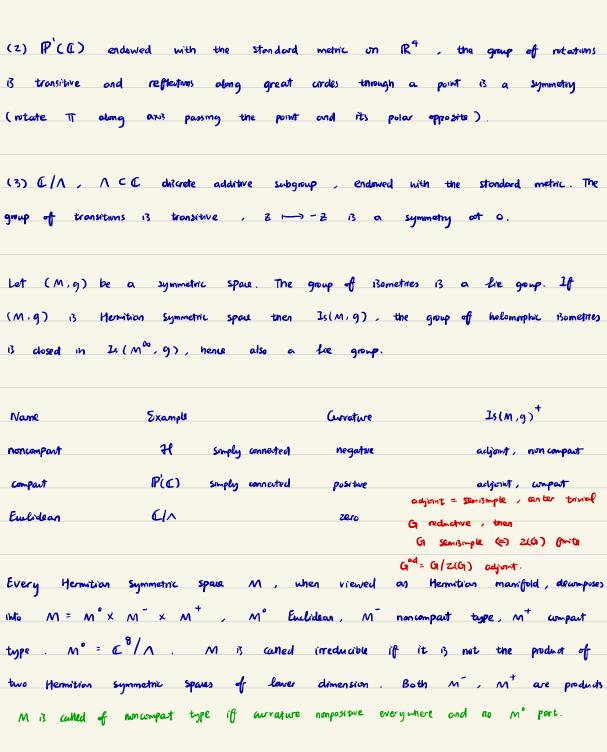
 $\mathcal{J} \frac{\partial}{\partial x'} = \frac{\partial}{\partial y'}, \quad \mathcal{J} \frac{\partial}{\partial y'} = -\frac{\partial}{\partial x'}$

A	Hermitian	metric	എ	a	complex	manifo	ld M	ß	a	Riemannian	metric	9	s. t.
ge	JX, JT)	= 9()	(, 7)		(M,g)	ß	called	a	Hermi	tian manifold.			

A manif	old B	Called	homogene	an if	its	automorphism	group	auts t	ransitively.	i-e.
¥ P, S.	. э ү с	Awt	s.t.	φφ>= γ .	A	manifold 13	Called	symmet	inic iff i	it 13
homogeneou	o and	∃(∀	13 P ,	∃ Sp €	Aut	, Sp ² = 1	, P	is the	only fix	ed point
for Sp	ih a	nbhd.	The	involution	Sp	is calle	d the	symmetry	at p.	



$$\begin{aligned} & \sum_{x \in \mathcal{X}} \\ & (1) \quad \mathcal{H}, \quad g = \frac{d_{x} \otimes d_{x} + d_{y} \otimes d_{y}}{y^{2}} & Sl_{2}(\mathbb{Z}) \quad \text{auts on } \mathcal{H}, \quad SL_{2}(\mathbb{Z}) \subset A_{w}t(\mathcal{H}), \\ & \forall \quad x + i \cdot y = \left(\begin{array}{ccc} J_{y} & \times (J_{y}) \\ & \circ & \cdot / J_{y} \end{array}\right) i & \text{and} \quad \mathcal{E} \longmapsto -\frac{1}{2} \quad i \cdot s \quad a \quad \text{symmotry} \quad ot \quad i \, , \end{aligned}$$



of irreducible Hermitian symmetric spaces, each having a simple iterating group.

$$\Rightarrow 25(m, 9)^2$$
 converted
Hermitian symmetric spaces of nonicorpart type: Hermitian symmetric domains.
 $simply converted$
Six. Siegel apper hulf plane $H_g = \{2 \equiv X + iY \in M_g(C) | Z = symmetric, Y > 0 \}$.
 $H_g \subset C$ apen $H_g = \{2 \equiv X + iY \in M_g(C) | Z = symmetric, Y > 0 \}$.
 $H_g \subset C$ apen $S_{Fig}(R) = \{\binom{A}{c} \binom{B}{c} \in C \in A = A^{\frac{1}{2}} c^{-\frac{1}{2}} \binom{A^{-\frac{B}{2}}{c} - c^{\frac{1}{2}} \binom{A^{-\frac{B}{2}}{c} - c^{\frac{1}{2}} \binom{A^{-\frac{B}{2}}{c} - c^{\frac{1}{2}} \binom{B^{-\frac{1}{2}}{c} - c^{\frac{1}{2}} \binom{B^{-\frac{1}{2}}{c} \binom{B^{-\frac{1}{2}}{c} \binom{B^{-\frac{1}{2}}{c} \binom{B^{-\frac{1}{2}}{c} - c^{\frac{1}{2}} \binom{B^{-\frac{1}{2}}{c} \binom{B^{-\frac{1}{2}}}{c} \binom{B^{-\frac{1}{2}}{c} \binom{B^{-\frac{1}{2}}{c} \binom{B^{-\frac{1}{2}}{c} \binom{B^{-\frac{1}{2}}{c} \binom{B^{-\frac{1}{2}}{c} \binom{B^{-\frac{1}{2}}{c} \binom{B^{-\frac{1}{2}}}{c} \binom{B^{-\frac{1}{2}}{c} \binom{B^{-\frac{1}{2}}}{c} \binom{B^{-\frac{1}{2}}{c} \binom{B^{-\frac{1}{2}}{c} \binom{B^{-\frac{1}{2}}{c} \binom{B^{-\frac{1}{2}}}{c} \binom{B^{-\frac{1}{2}}{c} \binom{B^{-\frac{1}{2}}{c} \binom{B^{-\frac{1}{2}}}{c} \binom{B^{-\frac{1}{2}}{$

Set
$$k(2,3) = \sum_{m} e_m(2) e_m(3)$$
.
Assume P bounded, $k(2,2) \ge 1$, log $k(2,2)$ is smooth.
Let $n = \sum h_{13} dz^{1} d\overline{z}^{1}$ where $h_{13}(z) = \frac{z^{3}}{zz^{1}z\overline{z}^{3}}$ log $k(2,2) = \frac{1}{11} \frac{1}{(1-2\overline{z})^{2}}$.
Ex. $D = P, C C$, $k(2,3) = \frac{1}{11} \frac{1}{(1-2\overline{3})^{2}}$, $h = \frac{z^{3}}{zz^{2}\overline{z}}$ log $k(2,2) = \frac{1}{11} \frac{2}{(1-2\overline{z})^{2}}$
 \Rightarrow the metric is $\frac{1}{(1-\overline{z}\overline{z})^{2}} d\overline{z} d\overline{z}$.
Cor. Bounded symmetric domain is Hermitian symmetric domain.
Fait Every Hermitian symmetric domain.
Fait Every Hermitian symmetric domain.
Fait Every Hermitian symmetric domain.
 $Gr = R_{q} - \frac{1}{2} C \in M_{q}(C)/2$ symmetric domain.
 $Gr = R_{q} - \frac{1}{2} C \in M_{q}(C)/2$ symmetric domain.
 $Gr = \frac{1}{2} C \in M_{q}(C)/2$ symmetric domain.
 $Gr = \frac{1}{2} C = \frac{1}{2} C = \frac{1}{2} (2 - \frac{1}{2}) (2 + \frac{1}{2})^{-1}$ this is an isomorphism.
 N_{ext} we consider autoimplyings.
 $Iemma.$ Let (M, g) be a symmetric space , $p \in M$. Then the subgroup kp of $15(M, g)^{1/2}/Kp \rightarrow M$ is Bomorphism.
 $(a - 1) \rightarrow a \cdot p$

Prop. Let
$$(M, g)$$
 be a Herm. Sym. Rom. The mediations $Is(M^{\infty}, g) \supseteq Is(M, g) \subseteq Hol(M)$
induces $Is(M^{\infty}, g)^{+} = Is(M, g)^{+} = Hol(M)^{+}$, i.e. they have the same
connected component of identity. In particular $Hol(M)^{+}$ and $transitively on M$,
Stabp($Hol(M)^{+}$) compart and $Hol(M)^{+}/Stobp \cong M^{\infty}$.

(*) G is adjoint orld G(R) not compar.
Prip. Let (M, g) be a Herm. Sym. Dam, and
$$h = Le(Hd(M)^{+})$$
. There is a unique
connected algebraic subgroup G of GL(h) s.t. $G(R)^{+} = Hol(M)^{+} \subset GL(h)$
and $G(R)^{+} = G(R) \cap Hol(M) \subset GL(h)$ therefore $G(R)^{+} = Stab_{M} (G(R))$.
 $Hol(M)^{+}$ adjoint \Rightarrow $Hol(M)^{+} \subset GL(h) \Rightarrow \exists G \subset GL(h)$, $Le(G = [h, h] = h =) G(R)^{+} = Hol(M)^{+}$.
Ex. The map $Z \longrightarrow \overline{Z}^{+}$ is an antiholomorphic isometry of H, so every
isometry of H is either holo. or differs from $\overline{z} \longrightarrow \overline{Z}^{+}$ by a holo. one.
 $G = PG_{LZ}$, $P(hLZ(R))$ arts holo. on $C - R$ with $P(hLZ(R))^{+}$ stab. of H.

Let
$$U_{1} = \{ Z \in C \mid |Z| = 1 \}$$

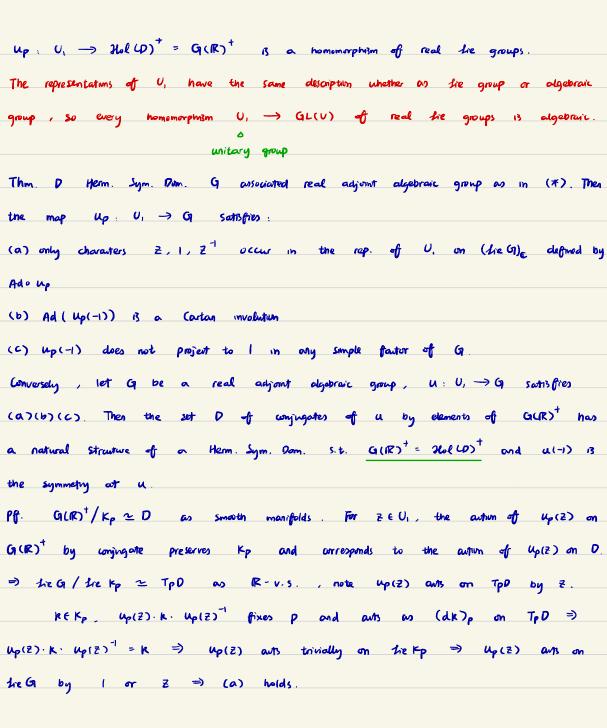
Thm. Let D be a Herm. Sym. Dom. For each
$$p \in D$$
, $\exists !$ homomorphism $U_p : U_1 \rightarrow Hol(D)$
S.t. $U_p(z)$ fixes p and cuts on TpD as Ξ . $\Rightarrow U_p : U_1 \rightarrow I_s(M,q)^{\dagger} = Hol(D)^{\dagger} = G(IR)^{\dagger}$

$$\begin{split} & \sum_{k=1}^{n} \mathbb{E}_{k} = \mathcal{H}_{k} = \mathcal{H}$$

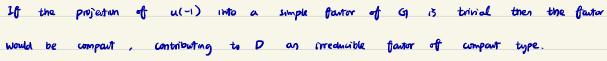
A Riemannian manifold is called (gaudesically) complete iff every maximal goodesic
is defined on R.
Pape. (M, g) summetric space.
i) perm, Sp ands as -1 on TpM, seads
$$Y(t)$$
 is $Y(-t)$ for every geodesic Y
with $Y(s) = P$
2) (M, g) B complete.
Pf of Thm.
Fix $p \in D$, each $2 \in U_1$ defines an automorphism of TpD preserving $\frac{g}{2}p$. Let
 $U_p(2)(e^{X}) = e^{\frac{\pi}{2}X}$, this B defined levely but extends to M.
 $u_p(2)(e^{X}) = e^{\frac{\pi}{2}X}$, this B defined levely but extends to M.
 $u_p(2)(e^{X}) = e^{\frac{\pi}{2}X}$, this B defined levely but extends to M.
 $u_p(2)(e^{X}) = e^{\frac{\pi}{2}X}$, this B defined levely but extends to M.
 $u_p(2)(e^{X}) = e^{\frac{\pi}{2}X}$, this B defined levely but extends to M.
 $u_p(2)(e^{X}) = e^{\frac{\pi}{2}X}$, this B defined levely but extends to M.
 $u_p(2)(e^{X}) = e^{\frac{\pi}{2}X}$, this B defined levely but extends to M.
 $u_p(2)(e^{X}) = e^{\frac{\pi}{2}X}$, this B defined levely but extends to M.
 $u_p(2)(e^{X}) = e^{\frac{\pi}{2}X}$, this B defined levely but extends to M.
 $u_p(2)(e^{X}) = e^{\frac{\pi}{2}X}$, the complex any operation of the second levely operations.
For a model model of B control ($\frac{\pi}{2}$) as compart.
 $u_p(2)(R) = \frac{1}{2}e^{\frac{\pi}{2}}(C) = \frac{1}{2}e^{\frac{\pi}{2}}(C) = \frac{1}{2}e^{\frac{\pi}{2}}(C)$
 $S_{L_2}^{(0)}(R) = \frac{1}{2}(\frac{\pi}{2}^{N}) \in S_{L_2}(E)$ $d = \overline{a}$, $c = -\overline{b}$ = $SU_2(R)$ compart

Ex. 9 connected adaptries group over R.
(a) idq is a Carton involution
$$(\textcircled{o})$$
 $G(R)$ compart
(b) $G \hookrightarrow GL(V)$, G reductive iff G stable under $g \mapsto g^{\pm}$ for some
basis of V , and $g \mapsto (g^{\pm})^{\pm}$ is a Carton involution on G . All Carton
involutions of G anse in this way from the choice of a basis for V .
(c) Let O be an involution on G . There is a unique real form $G^{(0)}$ of
 G_{E} s.t. the complex angugate on $G^{(0)}(E)$ is $g \mapsto O(\bar{g})$. O is carton
iff $G^{(0)}$ compart. All compart real forms of G_{E} axis in this way.
Prop. G connected adgebraic group are R . If G compart, every finite dimensional
real representation $Q \rightarrow GL(V)$ carries a $G = invariant positive - definite symmetric
biblinear form. Conversely if one faithful f.d. R -rep. carries such a form, G opti-
let G be a real algebraic group i $C \in G(R)$, C^2 central. A C -p-closection
on a R -rep V of G is a G -invariant biblinear form Ψ s.t.
 $P_{C}: (U, V) \longmapsto \Psi(U, (V))$ is symmetric , positive - definite.$

Prop. If Ad(C) is a Cartan involution of G , then every f.d. R-rep of G
has a C-polarization. (Onvoisely iff one fluitifiel f.d. R-rep of G carries a
C-polarization, then Ad(C) is Cartan involution.
Pff. Let P:
$$Q \rightarrow QL(U)$$
 be a R-rep of G. For any $Q -$ invariant biblinear
Darm Q on V, Q_{L} is $Q(L) -$ invariant, $Q'(U, V) = Q_{L}(U, \overline{V})$. Then
 $Q'(LQU, \overline{Q}V) = Q'(U, V)$, $V \in Q \in Q(L), U, V \in V(L)$
 $=) Q'(LQU, C C^{-1} \overline{Q}C V) = Q'(U, CV)$
 $=) Q'_{L}(QU, C C^{-1} \overline{Q}C V) = Q'_{L}(U, V)$
If P flowbybul and Q is a C-polarization, then Q_{L}' is positive adjusts Hamilton
form $=$ $\overline{Q} (RA^{CS}) (R)$ compart \Rightarrow Ad C Cartan involution.
If $Q(RA^{CS}) (R)$ compart \Rightarrow P carries a $Q(RA^{CS}) (R)$ invariant positive - definite
symmetric biblinear form $Q \xrightarrow{-2} Q_{C^{-1}}$ is a C-polarization.
(As the first of Hermitian Symmetric domains).
Representation of Hermitian Symmetric domains.
Representation theory for split turus \Rightarrow every irreducible R-rep of U, S of
the firm :
i) $V = R$, U_1 and trivially
 $2V = R^2$, $x + iy \in U_1(R)$ adving as $(x, y, y)^{-1}$, $n > 0$.



The symmetry Sp at p and $u_p(-1)$ both fix p and aut as -1 on TpD .
here they equal. Let $h = he(G(R)^{\dagger})$, by construction $G(R)^{\dagger} \hookrightarrow G(L(h))$. The
twilling from B on h is nondegenerate. Let $k = ke = k \oplus k^{\perp}$. The
$S_p = u_p(-1)$ aution on $G_1(\mathbb{R})^+$ induces an involution S_p on the preserving k
and auting as -1 on k^+ . Now $\psi = -B$ is G_1 - invariant bilinear symmetric
form on h hence 4_{5p} is also symmetric. As Kp compart, B/K is
negative definite hence Ysp _K is positive definite. Claum all sectional acruature ≤0
Implies Blik positive definite, herve 4sp positive definite and Adsp is a
Cartan involution.
Clearly $k^{\star} \simeq TpD$. Let SC TpD be a 2-dimensional subspace and X, T an
orthonormal basis of S under 9p. Then k(s) = 9p([[x,Y],X],Y). As
9p Symmetric bilinear positive definite on K and B symmetric bilinear, we
can find a basis {Xi} of kt, {βi} s.t. if u= ∑ XiXi then
$9_{p}(u, u) = \sum \lambda_{i}^{2}$ and $B(u, u) = \sum \beta_{i} \lambda_{i}^{2}$
The values $\{\beta_i\}$ are eigenvalues of $b \in End(k^+)$, $9p(bu, v) = B(u, v)$.
Write $X = \Sigma X_i$, $T = \Sigma T_i$ where X_i , $T_i \in k_i^-$, the eigenspace of β_i .
Then if $i \neq j$, $[X_i, X_j] \in k$ and $B(k, [X_i, X_j]) = 0 \implies [X_i, X_j] = 0$
$\Rightarrow K(S) = \sum \frac{1}{B_i} B([X_i, Y_i], [X_i, Y_i]) AS K(S) \leq 0, [X_i, Y_i] \in K, by$
varying S, we see Bi 70 herve B K+ positive definite.



Conversely
$$P$$
 the set of $G(\mathbb{R})^+$ unjugates of u .
 $K_n = C_u (G(\mathbb{R})^+) \subset \{g \in G(\mathcal{L}) \mid g = u(-1) \ \overline{g} \ u(-1)^{-1} \}$ compart by (b).
 K_n dosed \Rightarrow K_u compart.
 $P = (G(\mathbb{R})^+/K_n) \cdot u \Rightarrow P$ smooth manifold.
 $T_n D = tre G(\mathbb{R})^+ / tre K_n$ is the subspace of $(tre G)_{\mathcal{L}}$ on which $u(\mathbb{Z})$ acts by
 \mathbb{E} by $(a) \Rightarrow$ $T_n D$ has a $\mathbb{C} - v \cdot s$. structure \implies P has an admost
complex structure \implies P is a complex manifold.
 K_n auts on $D \Rightarrow$ K_n auts on $T_n D \implies$ there is $K_n - invariant$ positive
definite bilinear form an $T_n D$ which is Hermitian since $J = u(i) \in K_n \implies$ U
 $W(-1)$ symmetry P Hermitian symmetric space \implies D them. Sym. Own.
 W
 $Gree is a bijective correspondence$

$$\left\{ \simeq \text{ class off pointed Herm. Sym. Dom.} \right\} \longrightarrow \left\{ (G, u), G \text{ real adjoint free group} \\ u: u_i \rightarrow G(IR) \text{ homomorphism } (a)(b)(c) \right\}$$

 $\begin{aligned} & \{X, U_1 \rightarrow PSL_2(\mathbb{R}), U(-1) = \begin{pmatrix} \circ & 1 \\ 1 & \circ \end{pmatrix}, & \text{Ad } U(-1) \text{ is a Contan involution of} \\ & \text{St-2 hence } PSL_2, & \text{the corresponding Herm. Sym. Rim. is } & H_1. \end{aligned}$

Ad (U(-1)) Cartan involution, G is inner form of its Let (G_1, U) , G simple adjoint the group over \mathbb{R} , $U: U_1 \rightarrow G_1$ homomorphism with (a)(b). $G_1 \subset B$ also simple adjoint the group , $U = U \subset B$ a cocharanter of $G_2 \subset B$ (**) in the action of G_m on the $(G_1 \subset B)$ defined by $Ad_0 \cup B$, only the characters $E_1, E^{-1} \cap Cart$.

Prop. (G1, u) \rightarrow (G1c, u) defines a bijection between the sets of \sim class of pairs $\begin{cases} G_{i} \quad \text{simple } \text{ adjoint / } R & , & G_{i} \quad \text{simple } \text{ adjoint / } C & , \\ u \quad \text{conjugacy } \text{ aloss } : u_{i} \rightarrow G_{i} \quad (a) \quad (b) \quad , & , & , \\ u \quad \text{conjugacy } \text{ class } \text{ of } cocharacter \quad s.t. \quad \# \# \end{cases} \end{cases}$

Pff. Given (G_1, μ) , let $g \rightarrow \overline{g}$ be the complex conjugate of G(C) relative to a maximal compart subgroup of G_1 containing $\mu(U_1)$. There is a real from H off G_1 s.t. the complex conjugate on H(C) is $g \longmapsto \mu(-1) \cdot \overline{g} \cdot \mu(-1)^{-1}$ and $u = \mu_1 u_1$ values in H(IR). Then (H, μ) is s.t. $(H_C, U_C) \cong (G_1, \mu)$.

Let G be a simple algobraic group /C, $T \subset G$ a maximal torus, $(\alpha_i)_{i \in I}$ a base for the noots of $(G_i, T) \Rightarrow$ the nodes of Dynkin diagram of (G_i, T) is indexed by 1. The highest not $\tilde{\alpha} = \sum n_i \alpha_i$. An α_i is called special if $n_i = I$.

Thm. The isom dayses of irreducible Herm. Sym. Dom. are dassified by special nodes
M connected Dynkin diagram.
Pft. Let M be a conjugary class of nontrivial cocharacters of G satisfying **
then M has a representative with image in T. As the Wenel group airs simply
transitively on the Weyl chambers there is a unique μ for M s.t. (α_i , μ) 30 for all $i \in I$.
Here the pairing is $Him(G_m, T) \times Him(T, G_m) \rightarrow Him(G_m, G_m) = Z$ and the
mots as anthally come from Hom (T, Gm) -> Hom (h, C) = h.
The condition $\#$ implies $(\alpha_i, \mu) \in \{0, \pm 1\}$, as μ nontrivial, there is
exant one of: s.t. (or; u)=) and this or; is special.
Conversely let a be a special simple root. Then consider in s.t.
(a, n)=1 and (a, n)=0 for all other simple mots a. Then (b, n)= to, ±1]
for all poots β . Then $\mu \in Hom(Hom(T, G_m), \mathbb{Z}) = Hom(G_{Tm}, T)$. ///
$\alpha \in Hom(T, Gm), \Im_{\alpha} \sim \{x \in \mathcal{G} \mid Ad(t) \times = \alpha(t) \times, \forall t \in T \}$
(α, μ) $M \in Hom(G_m, T), Z \in G_m, x \in G_n, Ad(\mu(Z)) x = \alpha(\mu(Z)) x = Z x$
⇒ (X*) < (a, µ) ∈ {o, ±1}, ∀a
Given $(\alpha, \mu) = 1 \Rightarrow \alpha_{1m} = \alpha_{1s} = \alpha_{1s} = \beta_{\alpha} = \beta_{\alpha} = \beta_{\gamma} = 2$

Type	ž	speural mots	#	
A _n	A1+ + Qn	x ₁ ,, x _n	n	
B,	x1+2x2++2xn	ø ć ,	(
C _n	201+ + 201+ + 0n	×n		
0 _n	$\alpha_1 + 2\alpha_2 + \cdots + 2\alpha_{n-2} + \alpha_{n-1} + \alpha_n$	al, and, an	3	
Eb	a1+202+203+304+205+a6	∝, <i>∝</i> ,	Z	
E7	Za1+ Za2+3a3+ 4a4+ 3a2+ 3a6	,+ <i>«</i> , <i>«</i> ,		
E8, F4, G2			0	