Complex multiplication: the Shimwa - Tariyama formula.

SV defined over number field $E \ll$ action of $\operatorname{Ant}(\mathbb{C} / E)$ on SU(C)
Hodge type : $\sigma \in \operatorname{Aut}(\mathbb{C}(E), \quad \sigma[A, \cdots]=[\sigma A, \cdots]$
Goal: \exists action of $A \omega T(\mathbb{C} / E)$ and it arises from models over E

Ex. $\{$ elliptic curves $\mid \mathbb{C}\} \rightarrow r(1) \backslash H$
$\sigma \in \operatorname{Ant}(\mathbb{C} / Q),[A]=p \in \Gamma(1) \mid H, \quad \sigma \cdot p=[\sigma A]$ and $j(\delta \cdot p)=\sigma j \varphi)$.
$\sigma \in A u t\left(\mathbb{C}(E)\right.$ preserves \bar{E} in $\left.\left.\mathbb{C} \Rightarrow \sigma\right|_{\bar{E}} \in \operatorname{Gal}^{(E} \mid E\right) \quad x \in E^{a b}, \sigma|\bar{E} \cdot x=\sigma|_{\bar{E}}^{a b} \cdot x$. Although the action of fut $(\mathbb{C}(E)$ is not explicit. for special points whose coordinates are in $E^{a b}$, the action factors through $\operatorname{Gal}\left(E^{a b} / E\right)$ and could be described wing class field theory.
Goal: the explicit action on special points determines the "canonical" model.

Review of $A V$.
$A / K \quad A V, a$ endomorphism of A, \exists ! manic polynomial $P_{a}(T)$ with integer coefficients s.t. $\left|P_{a}(n)\right|=\operatorname{deg}(n-a), \quad n \in \mathbb{Z}$.
Pa is the char. poly. of a outing on $V l A, \& \neq$ chark.
A. B $A \vee / K, \operatorname{Hom}_{A V}(A, B)$ is torsion free \mathbb{Z}-mod of finite rank. $A V^{\circ}(K)$ the category of $A V / K, \operatorname{Hom}_{A V^{\circ}}(A, B)=\operatorname{Hom}_{A V}(A, B) \otimes_{z} \mathbb{Q}$ Bogenies become $B \mathrm{~cm}$. in $A V^{\circ}(k)$.

Alk simple AV if A nonzero and contains no nonzero proper abelian subvariety. Every AV is Brgeneus to a product of simple AV.
A, B simple $A V, \forall f: A \rightarrow B$ nonzero homomonpluism is an isogeny.
End ${ }^{\circ}(A)$ division algebra if A simple $A V$ semisimple algebra if A AV.

CM fields.
E number field is called CM if it is a quadratic totally imaginary extension of a totally real field $F . a \longmapsto a^{*}$ the nontrivial involution of E fixing $F, p\left(a^{*}\right)=\overline{p(a)}$ for any $p: E \longleftrightarrow \mathbb{C}$.

$$
\begin{aligned}
& E \otimes_{\mathbb{Q}} \mathbb{R} \xrightarrow{\sim} \prod_{\sigma: F \longrightarrow \mathbb{R}} \mathbb{C}_{\sigma}, \quad \mathbb{C}_{\sigma}=E \underset{F, \sigma}{ } \mathbb{R} \simeq \mathbb{C} \\
& \uparrow \uparrow \\
& F \otimes_{Q} \mathbb{R} \xrightarrow{\sim} \prod_{\sigma: F \longrightarrow \mathbb{R}} \mathbb{R}_{\boldsymbol{v}} \\
& (a \otimes r) \longmapsto(\sigma a \cdot r)_{v}
\end{aligned}
$$

The involution $* B$ positive as $\operatorname{tr}_{E \otimes_{Q} \mathbb{R} / F \Theta_{\mathbb{Q}} \mathbb{R}}\left(b^{*} b\right)=\operatorname{tr}_{\mathbb{C} / \mathbb{R}}(\bar{z} z)>0$
$\sigma: F \hookrightarrow \mathbb{R}$ extends to two conjingate embedangs of E into \mathbb{C} A CM type Φ for E B $\Phi \subset \operatorname{Hom}(E, \mathbb{C})$ s.t. $\operatorname{Hom}(E, \mathbb{C})=\Phi \Perp \bar{\Phi}$.

We can find $\alpha \in E, E=F[\alpha], \quad \alpha^{2} \in F^{x}, \quad \alpha^{*}=-\alpha$.

AV of CM type.
Let E be a CM field, $[E: Q]=2 \mathrm{~g}$.
$A / \mathbb{C} A V$ of dim $g, i: E \rightarrow$ End ${ }^{\circ} A$.
We say (A, i) is of $C M$ type (E, Φ) if I is a CM type for E s.t. $T_{0} A \simeq \mathbb{C}^{\Phi}$ as $E \otimes_{\mathbb{C}} \mathbb{C}-\bmod$.

ROK. (A, i) B always of CM type for some Φ.

$$
\begin{aligned}
& A(\mathbb{C}) \simeq T_{0} A / \wedge, \wedge=H_{1}(A, \mathbb{Z}) \\
& \wedge \otimes \mathbb{R} \simeq T_{0} A, \wedge \otimes Q \simeq H_{1}(A, Q) \\
& \wedge \otimes \mathbb{C} \simeq H_{1}(A, \mathbb{C}) \simeq H^{-1,0} \oplus H^{c,-1} \simeq T_{0} A \oplus \overline{T_{0} A} \\
& \operatorname{dim}_{\in} H_{1}(A, Q)=1 \Rightarrow H_{1}(A, \mathbb{C}) \simeq \underset{\varphi, \in \hookrightarrow \mathbb{C}}{ } \mathbb{C}_{\varphi}
\end{aligned}
$$

φ occurs in $T_{0} A \Leftrightarrow \bar{\varphi}$ occurs in $\overline{T_{0} A}$
$T_{0} A \simeq \underset{\varphi \in \Phi}{\oplus} \mathbb{C}_{\varphi}$ for some $C M$ type Φ.
In particular. (A, i) is of $C M$ type $(E, \Phi) \Leftrightarrow \operatorname{tr}\left(i(a) \mid T_{0} A\right)$ $=\sum_{\varphi \in \Phi} \varphi(a)$.

Let Φ be a CM type for E, Φ gives a map

$$
O_{E} \rightarrow \mathbb{C}^{\Phi}, \quad \Phi(a)=(\varphi(a))
$$

Prop. $\Phi\left(O_{E}\right)$ B a lattice in \mathbb{C}^{Φ} and $A_{\Phi}=\mathbb{C}^{\Phi} / \Phi\left(O_{E}\right)$ B $A V$ of CM type (E, Φ) for the natural map $i_{\Phi}: E \longrightarrow E_{n}{ }^{\circ}\left(A_{\Phi}\right)$. Moreover any other (A, i) of $C M$ type (E, Φ) B E Bogenous to $\left(A_{\Phi}, i \bar{\Phi}\right)$. Pf.

$$
O_{E} \otimes_{\mathbb{Z}} \mathbb{R} \simeq E \otimes_{\mathbb{R}} \mathbb{R} \xrightarrow{\Phi} \mathbb{C}^{\Phi} \Rightarrow \Phi\left(O_{E}\right) \subset \mathbb{C}^{\Phi} \text { is a lattice. }
$$

Let $E=F[\alpha], \alpha^{2} \in F$. By weak approximation, we may find $f \in F$ s.t. $a^{\prime}=f \alpha, \quad E=F\left[\alpha^{\prime}\right] . \quad\left(\alpha^{\prime}\right)^{2} \in F, \quad \forall \varphi \in \Phi . \quad \operatorname{lm} \varphi\left(\alpha^{\prime}\right)>0 . \quad$ Moreover we can assume α^{\prime} is an algebraic integer.

Define $\psi(u, v)=\operatorname{tr}_{E / G}\left(\alpha^{\prime} u v^{*}\right), u, v \in O_{E}$.
Then $\quad \psi(u, v) \in \mathbb{Z}$.
$\psi_{\mathbb{R}}=\sum_{\varphi \in \Phi} \psi_{\varphi}$ where $\psi_{\varphi}(u, v)=\operatorname{tr}_{\mathbb{C} / \mathbb{R}}\left(\alpha_{\varphi}^{\prime} \cdot u \cdot \bar{v}\right), \alpha_{\varphi}^{\prime}=\varphi\left(\alpha^{\prime}\right), u, v \in \mathbb{C}$

$$
\begin{aligned}
& =\alpha_{\varphi}^{\prime} u \bar{v}+\overline{\alpha_{\varphi}^{\prime} u \bar{v}} \\
& =\alpha_{\varphi}^{\prime}(u \bar{v}-\bar{u} v) \in \mathbb{R}
\end{aligned}
$$

and $\psi_{\varphi}(u, u)=0, \psi_{\varphi}(i u, i v)=\psi_{\varphi}(u, v), \psi_{\varphi}(u, i u)>0$ if $u \neq 0$.
Hence ψ is a Riemann form and A_{Φ} is $A V$.
$\alpha \in O_{E}$ ats on \mathbb{C}^{Φ} by multiplying $\Phi(\alpha)$, this preserves $\bar{\Phi}\left(O_{E}\right)$ and induce $i_{\Phi}: E \simeq O_{E} \otimes_{\mathbb{E}} Q \rightarrow$ End A_{Φ}.
Clearly $\mathbb{C}^{\Phi} \simeq T_{0} A_{\Phi}$ compatible with the anion of E. Hence (A_{Φ}, is) is of $(M$ type (E, Ψ).

Let (A, i) be of $C M$ type (E, Φ). Then $\exists \mathbb{C}^{\bar{\Phi}} \sim T_{0} A$ as $E Q_{Q} \mathbb{C}$ modules $\Rightarrow A(\mathbb{C}) \simeq \mathbb{C}^{\Phi} / \wedge, \mathbb{Q}$ stable under the action of E via Φ

$$
\Rightarrow Q Q=\Phi(E) \cdot \lambda, \quad \lambda \in\left(E \otimes_{Q} \mathbb{R}\right)^{x}
$$

$\Rightarrow \mathbb{C}^{\underline{I}} \xrightarrow{\lambda} \mathbb{C}^{\Phi} \Longrightarrow T_{0} A, \quad Q \Lambda=\Phi(E), \Lambda=\Phi\left(\Lambda^{\prime}\right)$ for some lattice
$\Rightarrow N N^{\prime} C O E$ for some N and $n^{\prime} C E$. $\mathbb{C}^{\Phi} / \wedge \xrightarrow{\sim} \mathbb{C}^{\Phi} / N \cap \leftarrow \mathbb{C}^{\Phi} / \Phi\left(O_{E}\right)$ are all O_{E} - Bogeries. \#II
$K \subset \mathbb{C}$ subfield, $A / K \quad A V$ of $\operatorname{dim} g, i: E \rightarrow$ End ${ }^{\circ} A, E C M$ of deg $2 g / \mathbb{Q}$. $T_{0} A$ is g - $\operatorname{dim} K$-v.s. on which E ats k-linearly. If k contains an conjugates of E. $\operatorname{Hom}(E, k) \simeq \operatorname{Hom}(E, \mathbb{C})$ and To will again decompose into 1-dim k-v.s. indexed by $\bar{\Phi} \subset \operatorname{Hom}(E, k)$, I is CM type for E and (A, i) B also called of $C M$ type (E, Φ).

Prop. (A, i) $A V / \mathbb{C}$ of $C M$ type (E, Φ), then (A, i) has a model over $\overline{\mathbb{Q}}$ unique up to Bon.

Pf. Let $k \subset \Omega$ be alg. closed fields of char 0 . For A A $/ k$, $A(k)_{\text {to }}$ is Zariski dense in $A(k)$ and the map $A(k)_{\text {tor }} \rightarrow A(\Omega)_{\text {tor }}$ B Dijective. Thus for $A V A, B / K$, any regular map $A_{\Omega} \rightarrow B_{\Omega}$, the action of fut (Ω / k) on $A(\Omega) \longrightarrow B(\Omega)$ is trivial, hence the map descends to a map over K. In particular $A V / K \rightarrow A \cup / \Omega$ is fully faitenful. This proves the uniqueness.
$A \longmapsto A \Omega$

The polynomials defining A and i have coefficients in some subning R of (1) finitely generated over \bar{Q}. For any maximal ideal m in $R, R / m=\overline{\mathbb{Q}}$. The reduction $\left(A^{\prime}, i^{\prime}\right)$ of $(A, i) \bmod m$ with A^{\prime} nonsingular is still of $C M$ type (E, Φ) as the $C M$ type is determined by the set of eigenvalues of a generator e of E over Q acting on the tangent space and the set B uncharged whether the ground $\operatorname{Bing} B \mathbb{C}, \mathbb{R}$ or $\overline{\mathbb{Q}}$. Thus \exists Bogeny $\left(A^{\prime}, i^{-1}\right) \mathbb{C} \rightarrow(A, i)$ whose kernel B a subgroup of $A^{\prime}(\mathbb{C})_{\text {tor }}=A^{\prime}(\bar{Q})_{\text {tor }}$ and $\left(A^{\prime} / \operatorname{Rer}, i^{\prime}\right)$ is a model of (A, i) over \bar{Q}.

RMK. Any elliptic curve over \mathbb{C} of CM type must have algebraic j-inv.
$O_{K, q} D V R, A V$ over $O_{K} / q s$ can always be lifted to $O_{K, q}$.
K number field, A / K AV, P prime ideal of O_{K}.
(abdias) smooth proper group scheme A has good reduction at p if it has a model over O_{K}, P.

Embed A as a dosed subvariety of \mathbb{P}_{k}^{n}, for each $P\left(x_{0}, \ldots x_{n}\right)$ in the homogeneous ideal defining A, multiply P by element in K so that $p \in O_{k, p}\left[x_{0}, \ldots, x_{n}\right]$. Let $k=\tilde{O}_{k} / p, \bar{p}$ reduction of p in $k\left[x_{0}, \ldots, x_{n}\right]$ and \bar{A} the zero locus of these \bar{P} inside \mathbb{P}_{k}^{n}. Then A has good reduction at $A P$ if we can choose the embedding sit. $\bar{A} B \quad A V / K$. In this case, up to canonical Bum. $\bar{A} 13$ independent of choices and for $l \neq$ chark, $V e A \leadsto V_{k} \bar{A}, \quad$ End $A \longrightarrow$ End \bar{A}.

Prop. ($A, i) A V$ of $C M$ type (E, Φ) over number field $K \subset \mathbb{C}$, ip pome in O_{K}. Then $\exists L / K$ finite extension s.t. A_{L} has good reduction at ip.

Pf. Recall Neron-Ogg- Shafarevich criterion:
A $A \vee / K$ number field has good reduction at p if for some $\ell \neq \operatorname{char}\left(O_{K} / \varnothing\right)$, the inertia group 1 at 8 cuts trivially on TeA.

Av over a finite field.
v / \mathbb{F}_{q} variety, $\pi_{v}: V \rightarrow V$ the absolute firbenius. If $V=\operatorname{spec} A$, the map is just $a \longmapsto a^{8}$. For any $u \xrightarrow{\alpha} \omega, \quad \alpha \circ \pi_{v}=\pi_{w} \circ \alpha$.

Thy. (Wail) $A /$ Fr $A V$, End ${ }^{\circ} A$ is finite dimensional semisimple Q - algebra with π_{A} in the center and for every embedding $\left.\rho: Q \in \pi_{A}\right] \rightarrow \mathbb{C},\left|\rho\left(\pi_{A}\right)\right|=8^{\frac{1}{2}}$.

In case A simple, End ${ }^{\circ} A$ simple, $\mathbb{Q}\left[\pi_{A}\right]$ fired, π_{A} algebraic integer.

An algebraic integer π is a wail of -integer if for all embeddings $p:(\pi[\pi] \rightarrow \mathbb{C}$ $|p(\pi)|=8^{\frac{1}{2}}$. Then $p(\pi) \cdot \overline{p(\pi)}=8=p(8)=p(\pi) \cdot p\left(\frac{8}{\pi}\right) \cdot p\left(\frac{8}{\pi}\right)=\overline{p(\pi)}$ hence $P(Q[\pi])$ is stable under complex conjugation and the automorplusim sending π to $\frac{8}{\pi}$ maced by complex conjugation 13 independent of ρ.
$\Rightarrow Q[\pi]$ is a $C M$ field or $Q[\pi]=Q(\sqrt{8})$

Lemma. Let $\pi, \pi^{\prime} \in E$ be Well q-integers. If ord $\pi=\operatorname{ord}_{v} \pi^{\prime}$ for all v / p then $\pi^{\prime}=3 \pi$ for some not of unit $3 \mathrm{in} E$.
pf. $\frac{8}{\pi}$ is also an alg. integer as it $B \quad \pi \Rightarrow \operatorname{ord}_{v} \pi=0$, \forall pinite ut p. Hence ord $\pi=\operatorname{ood}_{v} \pi^{\prime}, \forall v \Rightarrow \frac{\pi}{\pi^{\prime}}$ is a root of unity.

The Shimura - Taniyama formula.

Lemma. (A, i) $A V / K$ number field of $C M$ type (E, Φ) with good reduction at p to $(\bar{A}, \bar{i}) / K, K=O_{K} / C p=\mathbb{F}_{q}$. Then $\pi_{\bar{p}} \in \bar{i}(E)$.

Pf. Write $\pi=\pi_{\bar{A}}$. As Ye $A B$ free $E \otimes_{Q} Q_{l}-\bmod$ of $\operatorname{rank} 1$, so $B \quad V_{l} \bar{A}$. Hence the caution of π on $V_{e} \bar{A}$ commutes with the action of $E \otimes Q_{p}$. π itself lies in $E \otimes G_{l}$ hence $\bar{i}(E) \otimes_{Q} Q_{l} \cap E_{n}{ }^{\circ} \bar{A}=\bar{i}(E)$.

Tho. Assume further that K / Q Gobs and $E \subset K$. Then for $\forall v / p$ of E

$$
\frac{\operatorname{ord}_{v} \pi_{\bar{A}}}{\operatorname{ord}_{v} 8}=\frac{\left|\Phi \cap_{v}\right|}{\left|H_{v}\right|}
$$

(1) E / \mathbb{Q} Gains, $K=E, \quad Q=v_{0}, H v_{0}=D v_{0}$
$H_{v}=\sigma D v_{0}, \sigma^{-1} v_{0}=v$, all H_{v} have same size.
where $H_{v}=\left\{\rho: E \rightarrow K \mid p^{-1} p=P_{v}\right\}$.
(2) v comes from a nonsplit place of F $\Rightarrow v=\bar{v},\left|\Phi \cap H_{v}\right|=\frac{1}{2}\left|H_{v}\right|$.

RMS.
(a) The theorem determines π up to a root of unity and depends only on the $C M$ type (E, Φ). Thus different pairs over K of $C M$ type (E, Φ) could give different π, but they differ only by a root of unity.
(b) * complex conjugation on $Q[\pi]$. As $\pi \pi^{*}=8 \quad \operatorname{ord}_{v} \pi+\operatorname{ord}_{v} \pi^{*}=\operatorname{ord}_{v} 8$. Also $\operatorname{ord}_{v} \pi^{*}=\operatorname{ord}_{v^{*}} \pi$ and $\overline{\Phi \cap H_{v^{*}}}=\overline{\bar{\Phi}} \cap H_{v}$. Thus

$$
\frac{\operatorname{ord}_{v} \pi}{\text { ord } 8}+\frac{\operatorname{ord}_{v} \pi^{*}}{\text { ord } d_{v}}=\frac{\left|\Phi \cap H_{v}\right|+\left|\bar{\Phi} \cap H_{v}\right|}{\left|H_{v}\right|}=1 \text {. }
$$

Pf. Assume P unranified in E.
$K p / Q_{p}$ finite extension, bare change A to $K_{p p}, E$ sill ants on A.
Let $T=T_{0} A$, it B an $E \otimes_{Q} K_{Q}$ space, as K_{q} contains all conjugates of $E, T \simeq \bigoplus_{\varphi \in \Phi} K_{\varphi, \varphi}$.
A has good reduction at ip, \exists model A over $O_{K i p}$.

$$
T=T_{0} A, T \otimes_{O_{K_{q}}} K_{\phi} \simeq T, T / \phi T \simeq T_{0} \bar{A}=T_{0}
$$

(p) urranified in $O_{E} \Rightarrow O_{E} \otimes_{\mathbb{Z}} Z_{p}$ ede over $\mathbb{Z}_{p} \Rightarrow O_{E} \otimes_{\mathbb{Z}} O_{K p}$ etale over $O_{K_{p}} \Rightarrow O_{E} \otimes_{Z} O_{K_{q}} \simeq \prod_{\sigma: E \rightarrow K_{p}} O_{\sigma}$. where $O_{\delta} \simeq O_{K_{p}}$ with O_{E} at by δ. The finitely generated projective $O E \otimes_{Z} O_{K_{i p}}$ module T is direst sum of O_{σ}, and from $T \simeq \bigoplus_{\varphi \in \Phi} K \varphi, \varphi$ we see $T \simeq \bigoplus_{\varphi \in \Phi} O_{\varphi}$.

As $\pi \bar{\pi}=q, \quad(\pi)=\pi_{v / p} P_{v}^{m_{v}}$.
For n class number of $E, \quad P_{v}^{m_{v} h}=\left(\gamma_{v}\right), \quad \gamma_{v} \in O_{E}$.

$$
\Phi_{v}=\Phi \cap H_{v}=\left\{\varphi \in \Phi \bar{\Psi} \mid \quad \varphi^{-1} p=p_{v}\right\}, \quad d_{v}=\left|\Phi_{v}\right| .
$$

The kernel of $\gamma_{v}: T_{0} \rightarrow T_{0}$ is the span of e_{φ} for which $\varphi\left(\gamma_{v}\right) \in \varphi$, ie. $\quad \varphi^{-1} P=P_{v}$
As $\pi^{n}: A_{0} \rightarrow A_{0}$ factors through $\gamma_{v}, K_{0}\left(A_{0}\right)^{8^{n}}=\left(\pi^{n}\right)^{*} k_{0}\left(A_{0}\right) \subset\left(\gamma_{v}\right)^{*} K_{0}\left(A_{0}\right)$

$$
\begin{aligned}
& \Rightarrow \operatorname{deg}\left(A_{0} \xrightarrow{r_{v}} A_{0}\right) \leq q^{n d v} \\
& \operatorname{deg}\left(A_{0} \xrightarrow{\gamma_{v}} A_{0}\right)=N_{m_{E / Q}}\left(\gamma_{v}\right)=N_{m \in / Q}\left(P_{v}^{h m_{v}}\right) \\
& N_{m_{E \mid Q}}(\pi) \leq q^{g} \\
& \quad \| \stackrel{\rightharpoonup}{\|} \mid=g \\
& \left.\operatorname{deg}\left(A_{0} \xrightarrow{\pi}\right) A_{0}\right)=8^{g}
\end{aligned}
$$

$$
\operatorname{ord}_{v} \pi=\sum_{\varphi \in \Phi} \operatorname{ord}_{v} \varphi^{-1} N_{m}{ }_{K / \varphi E} \varphi=\sum_{\varphi \in \Phi} \operatorname{ord}_{\varphi v} N_{m}{ }_{K / \varphi E} p=\sum_{\varphi \in \Psi_{v}} f(\varphi / \varphi v)
$$

p unramified in $E, \quad \operatorname{ord} p=1, \quad \operatorname{crd}, q=f(p / p)$

$$
\frac{o r d_{v} \pi}{o r d v g}=\frac{\sum_{\varphi \in \Phi_{v}} f\left(P P / \varphi_{v}\right)}{f(P / P)}=\sum_{\varphi \in \Phi_{v}} \frac{1}{f\left(P_{v} \mid P\right)}=\frac{\left|\Phi \cap H_{v}\right|}{\left|H_{v}\right|}
$$

Alternative proof.
Let A model over $O_{k w}$, w place of K corresponding to $c p$.
After a possible Bogeny, assume $\pi \in O_{E}$.
The p-divisible group $\left\{A\left[p^{n}\right]\right\}$ over $O_{K_{w}}$, O_{E} arts on $A\left[p^{n}\right]$ factoring through $O_{E} / P^{n} \simeq \prod_{v / p} O_{E v} / P^{n}$. correspondingly $\mathcal{A}\left[P^{n}\right]=\prod_{v / p} G_{v, n}$ and each $G_{v}=\left\{G_{v, n}\right\}$ is agar p-divisible group over $O_{k_{w}}$ of height $\left[E_{v}: Q_{p}\right]$. $=\left|H_{v}\right|$.

$$
\begin{aligned}
& \left(N_{m}{ }_{K / Q} p\right)^{d v}=\prod_{\varphi \in \Phi_{V}}\left(N_{m_{K / Q}} q\right)=\prod_{\varphi \in \Phi_{V}} N_{m_{E / Q}}\left(\varphi^{-1} N_{m} / \varphi E q\right) \\
& =N_{m_{E / Q}}\left(\prod_{\varphi \in \Phi,} \varphi^{-1} N_{m / \varphi E} \varphi\right) \\
& \Rightarrow P_{v}^{m_{v}}=\prod_{\varphi \in \Phi_{v}} \varphi^{-1} N_{m}{ }_{K / \varphi E} q \\
& \Rightarrow(\pi)=\prod_{\varphi \in \Phi} \varphi^{-1} N_{m_{K / \varphi E}} p
\end{aligned}
$$

Recall Serre-Tate tum:
(R, m) complete local Noetherian ing with residue char p
G connected p-divisible group over R of height n, then $O_{G}=\lim O G_{n}$ is topologically Bum. to RI $x_{1}, \ldots, x_{d} \mathbb{\text { with }}(m, x)$-adic topology. hence a commutative formal se group for which $[P]$ is finite flat of deg p^{n}.
$\left\{\Omega\left[p^{n}\right]^{0}\right\} \leadsto \hat{\mathcal{A}_{0}}$

$$
\left\{G_{v, n}^{0}\right\} \leadsto \hat{G}_{v}
$$

$$
\prod_{v \mid p} \hat{G}_{v}=\hat{\not{A}}_{0}
$$

$\operatorname{dim} \hat{A}_{0}=\operatorname{dim} A=|\bar{\Psi}| \Rightarrow \sum_{v \mid p} \operatorname{dim} \hat{G}_{v}=|\Phi|$.

Claim $\quad \operatorname{dim} \hat{G}_{v}=\left|\Phi_{v}\right|$.
$\prod_{v \mid p} T\left(\hat{G}_{v}\right)=T\left(\hat{A}_{0}\right), T\left(\hat{G}_{v}\right)$ is $\partial_{E_{v}} \otimes_{Z_{p}} O_{K_{w}}$ component of $T\left(\hat{A}_{0}\right)$ as $O_{E} \otimes_{\mathbb{Z}} O_{K_{w}} \simeq O_{E, p} \otimes_{Z_{p}} O_{K_{w}}$ - module. Compute the dimension at generic fibre of Spec $O_{k w}$ and base change to $\bar{Q}_{p}, T_{0}\left(A_{\bar{Q}_{p}}\right) \simeq \prod_{\varphi \in \Phi}\left(\bar{Q}_{p}\right)_{\varphi}$ hence the dimension correspond to v component is exactly $\left|\Phi_{v}\right|$.

Write $\left[E_{v}: Q_{p}\right]=h,\left|\Phi_{v}\right|=d, \frac{o r d v \pi}{o r d v q}=\frac{d}{h} \Leftrightarrow \frac{\pi^{h}}{8^{d}}$ is a unit. Consider the connoted - etale sequence

$$
0 \rightarrow G_{v}^{0} \rightarrow G_{v} \rightarrow G_{v}^{a+} \rightarrow 0
$$

Pass to generic fibre then take Tate module

$$
0 \rightarrow T_{p}\left(G_{v}^{0}\right) k_{w} \rightarrow T_{p}\left(G_{v}\right)_{k_{w}} \rightarrow T_{p}\left(G_{v}^{e t}\right) k_{w} \rightarrow 0
$$

and the middle term 13 free E $_{v}$-module of rank 1 . As each term is finite free $O E_{v}$-module, either $G_{v}^{0}=0$ or $G_{v}^{e t}=0$.

Suppose $G_{v}^{0}=0$ so G_{v} is etale. Then $d=0$. From outs as an out $\Rightarrow \pi$ is a unit in $O E_{\nu} . \pi^{n} / 8^{d}$ is a unit.

Suppose $G_{v}^{e t}=0$ so G_{v} is connoted. Note that the map $[p]$ on G_{v} is finite flat of order $P^{n}=|P|_{E_{u}}$ thus the map

$$
\begin{aligned}
O_{E v}-\{0\} & \longrightarrow p^{2} \\
x & \longrightarrow \operatorname{deg}\left([x]_{a_{v}}\right)
\end{aligned}
$$

agrees with $1 \cdot I_{E_{V}}$.
CTS π^{n} and 8^{d} have the same degree.

$$
\operatorname{deg}\left[8^{d}\right]_{G_{v}}=q^{d n} \text {. }
$$

To show $\operatorname{deg}[\pi]_{G_{v}}=q^{d}$, look at the closed fibre where π alts via
Prob. Note that the q-power map on $k\left[x_{1}, \ldots, x_{d} B\right.$ has degree q^{d} and as G_{v} connected. $\quad \operatorname{deg}[\pi]_{G_{v}}=\operatorname{deg}[\pi] G_{v}^{0}$

$$
\begin{aligned}
& \stackrel{\text { Serre-Tate }}{=} \operatorname{deg}(\cdot)^{8} k \mathbb{x}, \ldots, x_{d} \boxtimes \\
& =q^{d}
\end{aligned}
$$

