

Let	Ð	be	a	CM	type	for	Ε,	<u>ē</u>	gives	a	map		
	O _E	\rightarrow	E E	,	ر ع (م) =	• ()	4(a)		U		·		

Prop. $\overline{\Psi}(O_E)$ is a lattice in $\mathbb{C}^{\underline{\Sigma}}$ and $A_{\underline{\Sigma}} = \mathbb{C}^{\underline{\Psi}}/\overline{\Psi}(O_E)$ is AV of (M) type $(E, \overline{\Phi})$ for the notural map $i\overline{\Phi}$; $E \longrightarrow End^{\circ}(A\overline{\Phi})$. Moreover any other (A, i) off (M type (E,)) is E-Bogenous to (A, i). Pf ē $\mathcal{D}_E \otimes_{\mathbb{Z}} \mathbb{R} \cong E \otimes_{\mathbb{Q}} \mathbb{R} \xrightarrow{\overline{\mathcal{I}}} \mathbb{C}^{\underline{\mathbb{Q}}} \Longrightarrow \overline{\mathbb{Q}}(\mathcal{D}_E) \subset \mathbb{C}^{\underline{\mathbb{Q}}}$ is a lattice. Let E=F(a], a² EF. By weak approximation, we may find f EF s.t. $a' = f \alpha$, E = F[a'], $(a')^2 \in F$, $\forall \varphi \in \Phi$, $\lim \varphi(a') > 0$. Moreover we can absume at 13 an algebrair integer. Perfine $\Psi(u,v) = tr_{E/6}(a'uv^*), u, v \in O_E$. Then 4(u,v) & Z. $\Psi \mathbf{R} = \Sigma \Psi \phi$ where $\Psi \phi (u, v) = tr c_{IR} (\alpha' \phi \cdot u \cdot v), \quad \alpha \phi' = \Psi(\alpha'), \quad u, v \in C$ = ayuv + ayuv = α_{v}^{\dagger} ($u\bar{v} - \bar{u}v$) $\in \mathbb{R}$ and $\Psi_{\varphi}(u, u) = 0$, $\Psi_{\varphi}(iu, iv) = \Psi_{\varphi}(u, v)$, $\Psi_{\varphi}(u, iu) > 0$ iff $u \neq 0$, Hence 4 is a Riemann from and Az is AV.

 $a \in O_E$ and $a \in \mathbb{Z}$ by multiplying $\overline{\Psi}(a)$, this preserves $\overline{\Psi}(O_E)$ and induce $i \overline{\Phi} : E \cong O_E \otimes_{\mathbb{Z}} \otimes \longrightarrow$ End $A_{\overline{\Phi}}$. Glearly $\mathbb{C}^{\overline{\Phi}} \cong T_{\sigma} A_{\overline{\Phi}}$ compatible with the advisor of E. Hence $(A_{\overline{\Phi}}, i_{\overline{\Phi}})$ is of CM type $(E, \overline{\Phi})$.

Let
$$(A, i)$$
 be off $(M$ type $(E, \overline{\Phi})$. Then $\exists \mathbb{C}^{\overline{\Phi}} \xrightarrow{\sim} T_{0}A$ as $E \Theta_{\Theta} \mathbb{C}$
modules $\Rightarrow A(\mathbb{C}) \stackrel{\sim}{\rightarrow} \mathbb{C}^{\overline{\Phi}} / \Lambda$, $Q\Lambda$ stable under the autium of E via $\overline{\Phi}$
 $\Rightarrow Q\Lambda = \overline{\Phi}(E) \cdot \lambda$, $\lambda \in (E \Theta_{V_{\Theta}} R)^{\times}$
 $\Rightarrow \mathbb{C}^{\overline{\Phi}} \xrightarrow{\sim} \mathbb{C}^{\overline{\Phi}} \xrightarrow{\sim} T_{0}A$, $Q\Lambda = \overline{\Phi}(E)$, $\Lambda = \overline{\Psi}(\Lambda')$ for some lattice
 $= N\Lambda' \subset O_{E}$ for some N and $\Lambda' \subset E$.
 $\mathbb{C}^{\overline{\Phi}} / \Lambda \xrightarrow{\sim} \mathbb{C}^{\overline{\Phi}} / N\Lambda \leftarrow \mathbb{C}^{\overline{\Phi}} / \overline{\Phi}(O_{E})$ are all O_{E} - isogenies. If

KCC subfield, A/K AV of dam g, i: E -> End[®]A, E CM of deg 29/02. To A is g-dim k-v.s. on which E auts K-linearly. If K contains all conjugates of E, Hom (E, K) = Hom (E, C) and To A will again decompose into 1-dam K-v.s. indexed by I C Hom (E, K), I is also called off CM type (E, 重).

Prop. (A, i) AV/C of ⊂n type (E, E), then (A, i) has a model over
Q unique up to Bom.
Pf. Let KCS2 be alg. closed fields of char o. For A AV/K,
$A(k)$ tor is Zaniski dense in $A(k)$ and the map $A(k)$ tor $\rightarrow A(\mathcal{L})$ tor
B bijective Thus for $A \vee A$, B / κ , any regular map $A_{\Omega} \longrightarrow B_{Z}$,
the action of Aut (Ω/k) on $A(\Omega) \longrightarrow B(\Omega)$ is trivial, hence the map
descends to a map over K. In particular AV/K -> AV/2 is fully
forthful. This proves the uniqueness. A -> Ar
The polynomials defining A and i have coefficients in some subring R of
(five tely generated over \overline{a} . For any maximal ideal m in R , $R/m = \overline{a}$.
The reduction (A', i') of $(A, i) \mod m$ with A' nonsingular is still
off CM type (E, $\overline{\Phi}$) as the CM type is determined by the set of
eigenvalues of a generator e of E over Q aving on the tangent space
and the set is unchanged whether the ground ring is C.R or C.
Thus \exists Bogeny $(A', i')c \longrightarrow (A, i)$ whose premel is a subgroup off
$A'(C)_{tor} = A'(\overline{C})_{tor}$ and $(A'/\text{rec}, i')$ is a model of (A,i) over \overline{C}_{ii}
RMK, Any elliptic curve over C off CM type must have algebraic j-inv.

OK, & DVR, AV over OK/qs can always be lifted to OK, q.

K number field,
$$A/K$$
 AV , P prime ideal of O_K .
(abdicen) smooth proper group scheme
A has good reduction at P if it has a model over O_K , P .
Embed A as a closed subvariety of P_K , for each $P(X_0, ..., X_n)$ in
the homogeneous ideal defining A, multiply P by demant in K so that
 $P \in O_K$, $P(X_0, ..., X_n)$. Let $K = O_K / P$. P reduction of P in $K(X_0, ..., X_n)$
and \overline{A} the zero locus of these \overline{P} inside P_K . Then A has good
reduction at P if we can choose the embedding s.t. \overline{A} is AV/K . In
this case, up to consistent from \overline{A} and \overline{A} the \overline{P} $Ve \overline{A}$, $End A = \overline{P}$ $End \overline{A}$.

Lemma. (A, i) AV / K number field of CM type $(E, \overline{\Phi})$ with good reduction of \$ to (A, i)/K, K= UK/P= Fg. Then π_A ∈ i(E). Pf. Write $\pi = \pi \overline{a}$. As VeA is free $E \otimes_{ia} \otimes_{ia} \otimes_{ia} - mad$ of rank I, so is $Ve\overline{A}$. Mence the aution of T on VeA commutes with the aution of EQQe, T itself lies in $E\otimes G_{\ell}$ here $\overline{i}(E)\otimes_{Q} G_{\ell} \cap End^{\circ}\overline{A} = \overline{i}(E)$. III

Thm.	Assune	further	that	K/Q	Gabos	and	E	c K	. Then	for	V VI	> of	ε
		· or	d ., π_	1 4	ан. I	0	e10	Galens	K⁼E,	₽= V.	- Hvo	= D _{V0}	
		<u>ح</u>	rd _v 8	= (2)	H-	Hu San	e st	v, (1 V0 = V	, all	Ην	have	
where	Hv =	SPE -	→ K P ¹ P	2 ⁻¹ 42 = 19	$P = Pv^2$	છ	v a	omes f	nom a r	wnsplit	place	A	F
				•	···) ·	ラ	v = V	<u>ب</u> (ع	VH2 11.	2 Hv	•		

RMK.
(a) The theorem determines
$$\pi$$
 up to a root of unity and depends only on
the CM type (E, $\overline{\Phi}$). Thus different pairs over K of CM type (E, $\overline{\Phi}$)
could give different π , but they differ only by a root of unity.
(b) * complex conjugation on $\Theta(\pi 1)$. As $\pi\pi^{*} \cdot 8$, $\sigma rd_{\nu}\pi + \sigma rd_{\nu}\pi^{*} = \sigma rd_{\nu} 8$.
Also $\sigma rd_{\nu}\pi^{*} = \sigma rd_{\nu} * \pi$ and $\overline{\Phi} \cap H_{\nu} * = \overline{\Phi} \cap H_{\nu}$. Thus
 $\frac{\sigma rd_{\nu}\pi}{\sigma rd_{\nu}8} + \frac{\sigma rd_{\nu}\pi^{*}}{\sigma rd_{\nu}9} = (\underline{\tilde{\Phi}} \cap H_{\nu}) + (\overline{\Phi} \cap H_{\nu}) = 1$.

$$(N_{m} \underset{k \neq q}{\mathsf{H}_{R}} \bigoplus)^{dw} = \prod_{q \in \mathbf{E}_{v}} (N_{m} \underset{k \neq q}{\mathsf{H}_{r}} \bigoplus \prod_{q \in \mathbf{E}_{v}} N_{m} \underset{k \neq q}{\mathsf{H}_{r}} \bigoplus (q^{-1} \underset{k \neq q}{\mathsf{H}_{r}} \bigoplus q^{-1} \underset{k \neq q}{\mathsf{H}_{r}} \varinjlim q^{-1} \underset{k \to$$

Claim
$$\dim \widehat{G}_{v} = |\overline{\Phi}_{v}|.$$

 $T[T(\widehat{G}_{v}) = T(\widehat{A}_{o}), T(\widehat{G}_{v}) : O \cap O_{Ev} \otimes_{Zp} O K_{w}$ component of $T(\widehat{A}_{o})$
 $v|_{P}$
 $as O \in \bigotimes_{Z} O K_{w} \cong O E, p \otimes_{Zp} O K_{w} - module. Compute the dimension at generic
fibre of spee O K_{w} and base change to \widehat{C}_{P} , $T_{o}(A_{\overline{C}}_{P}) \cong \prod_{\substack{q \in \overline{\Delta}\\ q \in \overline{\Delta}}} (\widehat{C}_{P})_{q}$
hence the dimension correspond to v component is exactly $|\overline{\Phi}_{v}|.$
Write $[E_{v}: G_{P}] = h, |\overline{\Phi}_{v}| = d, \frac{\operatorname{ord}_{v} \pi}{\operatorname{ord}_{v} \mathcal{B}} = \frac{d}{h} \iff \frac{\pi^{h}}{\mathfrak{F}^{d}}$ is a unit.
Consider the connected - etale sequence
 $o \longrightarrow G_{v}^{\circ} \longrightarrow G_{v} \longrightarrow G_{v}^{\circ T} \rightarrow o$$