

We call
$$(\Sigma(M)), (Der])_{\sigma \in \Sigma(M)})$$
 the numerical invariants of M .
F- alg: ring A containing F in center, finite dimensional co F-v.s.
Central F-alg: F-alg. A with center F
Sx.
(a) F alg. doked or finite, every central division alg. is item to F
(b) F=R, every central division alg. is item to F
(c) F p-adic fited, π uniformizer
 L/F unramified extension of dag n , σ frob generator of God(L/F)
 \forall $1 \le i \le n$, $D_{i,n} = Le_{0} \oplus \cdots \oplus Le_{n-1}$, $e_{j} \cdot c = \sigma^{L} \cdot e_{j}$, $c \in L$
 $e_{j} \cdot e_{l} = \begin{cases} e_{j+1} & i+l \ge n \\ \pi^{L}e_{j+l-n} & i+l \ge n \end{cases}$
 \exists $D_{i,n} = L \oplus La \oplus \cdots \oplus La^{n-1}$, $a^{n} = \pi^{i}$, $a \cdot c \cdot a^{-1} = \sigma(c)$
 \exists $D_{i,n}$ is central simple F-alg., and is division (z) Ci , $n > 1$
The ison, classes of central division / simple F-alg. firm a group $Br(F)$.

Ex.
(a) F alg. closed or finite,
$$Br(F) = 0$$

(b) $Br(R) = \pm 2/2$
(c) F p-adic field, $Br(F) = 0/2$
(d) F number field, V place, nnv_{V} , $Br(Fv) \rightarrow 0/2$
B central simple F-adg., $[Bog_{F}Fv]$ is trivial for all but finitely
many v and the sequence is exact
 $0 \rightarrow Br(F) \rightarrow \bigoplus Br(Fv) \xrightarrow{\sum inv_{V}} 0/2 \rightarrow 0$
B $\longmapsto [Bog_{F}Fv]$

Fast: $Br(F) \simeq H^2(F, G_m) = H^2(Gal(F^S/F), F^{S/X}).$

Ex. Let L be the completion of Qp (Breation fred of W(Fp)) and J be the automorphism of L inducing Field on residue freed. An iso onstal is a finite dimensional L-v.s. V with a σ -linear isom. $F: V \rightarrow V.$ The category 1 so c of iso crystalls is a semisimple (ap - category), $\Sigma(1 so c)^{=} (a)$ and $End(\lambda)$ is a division alg. E^{λ} over Gp with invariant λ . If λ_{70} , $\lambda = \frac{c}{s}$, (r, s) = 1, s_{70} , $E^{\lambda} = \Theta_{p} [T] / (T^{-} p^{s}) \otimes_{\Theta_{p}} L$ and if $\lambda < 0$, E^{λ} is the dual of $E^{-\lambda}$.

Abdian variables.
Well AV°(R) is a semisimple & category with simple AV as simple adjects.
A Well 3-integer TT is an alg. integer s.t. V P:
$$\mathfrak{Q}(\pi_3] \rightarrow \mathfrak{C}$$
, $|P(\pi)| = \sqrt{3}$.
Two Well 3-integer TT is an alg. integer s.t. V P: $\mathfrak{Q}(\pi_3] \rightarrow \mathfrak{Q}(\pi^3)$.
Two Well 9-integers TT, π' are conjugate if \exists isom. $\mathfrak{Q}(\pi_3) \rightarrow \mathfrak{Q}(\pi^3)$.
The map $A \longrightarrow \pi_A$ defines a bijection from $\Sigma(AV'(F_3))$ to the set
of conjugang classes of Well 8-integers. For any simple A , the anter of
 $P = \operatorname{End}^{*}A$ is $F = \mathfrak{Q}(\pi_{A})^{T}$ and for a prime \vee of F
 $\operatorname{recurr} (P) = \begin{cases} \frac{\pi}{2} & v \text{ real} \\ \frac{\pi}{\operatorname{red}} \sqrt{3} & (F_{V}:\mathfrak{G}) & v!P \\ 0 & \text{otherwise} \end{cases}$
Moreover 2 dow $A = \sqrt{[PF_3]} \cdot [F: \mathfrak{G}]$.
Let $w_{*}(\xi)$ be the set of Well 8-integers in $\overline{\mathfrak{Q}} \subset \mathfrak{C}$, then the theorem
gives a bijection $\overline{\Sigma}(Av'(F_3)) \longrightarrow \Gamma(w_{*}(\xi), \Gamma = \operatorname{Gel}(\overline{\mathfrak{Q}}/\mathfrak{G}).$
If T is Well Pⁿ-integer, $\overline{\pi}^{m}$ is Weill P^m-integer , so we have a
homomorphism $W_{*}(P^{n}) \rightarrow w_{*}(P^{m})$. Let $W_{*} = \lim_{n \to \infty} w_{*}(P^{n})$.
 $\pi \longrightarrow \pi^{m}$

For $T \in W_1$, define $Q \{T\}$ to be the field of smallest degree over Qgenerated by a representative of T.

Let A be a simple
$$AV / \overline{Fp}$$
, Ao a model of A over \overline{Fq} , then
 $S_A(v) = \frac{\operatorname{ord}_v(\pi_{A_0})}{\operatorname{ord}_v g}$ is independent of the choice of A. Moreover for any
 $P: G(\pi_{A_0} - 1) \longrightarrow \overline{O}$, the r-orbit of $\pi_A \in W_i$ represented by $P \pi_{A_0}$ depends
only on A.

Thm. The map
$$A \longrightarrow \Gamma \pi_A$$
 defines a bijention $\Sigma(AV^\circ(\overline{F}_P)) \longrightarrow \Gamma(W_1, \overline{F}_P)$
any simple A , the center of $D = \operatorname{End}^\circ A$ is $F = (Q \ge \pi_A)$ and for any v
prime of F

$$\frac{1}{2} \qquad v \text{ real}$$

$$S_{A}(v) \cdot C_{Fv} : \Theta_{P}] \qquad v \text{ lp}$$

$$O \qquad \text{othewise}$$

Ton and their representations.
Let F be a frield of one o,
$$T/F$$
 torus, split by L/F Galvis.
Write $\chi^{*}(T)$ the character group of $T_{\overline{F}}$. Then to give a rep. P of T
on $\overline{F} - V.S$. V amounts to give $V \otimes_{F} L = \bigoplus_{\substack{X \in \chi^{*}(T)}} V_{X} \quad S.t$. $\sigma V_{X} = V\sigma_{X}$ for
 $\chi \in Gal(L/F)$.

$$Rep(T): semismple (a - category with $\Sigma = r/N$, $N \neq g$, the Z-rand with
continuous Γ -action, but End are all commutative.
Prop. Let $\Gamma = Gral(\overline{F}/F)$. The category of rep. of T on $F \cdot v.s.$, $Rep(T)$.
Is semismple and $\Sigma(Rep(T)) = \Gamma \setminus X^{2}(T)$. If $V_{\Gamma K}$ is a simple algorithment
and $V_{\Gamma K}$ is the order of ΓK and $\underline{End}(V_{\Gamma K}) \simeq F(K)$ where $F(X)$ is
the fixed fitted of the subgroup $\Gamma(X)$ of Γ fixing X .
RMK, for any $X \in X^{2}(T)$, then $(F(X), \overline{F}) \simeq \Gamma/\Gamma(X)$ hence $X^{2}((Gm)F(X)/F)$
 $\equiv Z^{(\Gamma(X))}$ and the map $Z^{(\Gamma(X)} \longrightarrow X^{2}(T)$ defines a homomorphism
 $\overline{\varsigma} R_{F} \sigma \longrightarrow \overline{\varsigma} R_{F} \sigma X$
 $T \longrightarrow (Gm) F(X)/F$ hence $H^{2}(F, T) \longrightarrow H^{2}(F, (Gm)F(X)/F) \cong H^{2}(F(X), Gm)$
Affline extensions.
Let F be a fitch of there \circ , L/F Galins extension with Galos group Γ ,
 $G(F)$ alg group.
Consider catensions $I \longrightarrow G(L) \longrightarrow E \longrightarrow \Gamma \longrightarrow I$ where for each $\sigma \in \Gamma$,
 $Ro \in E$ mapping to σ , $\exists a \in G(L)$ s.t. $\forall g \in G(L)$, $er \in e^{-1} = a(\sigma g)a^{-1}$.
For example, the split extension $Eq = G(L) \times I \cap (g, x)(n, s)^{-1}(g(L)), to)$.
equivalently, $\exists fer S_{cer} \subset E$, $e\sigma$ maps to σ site γ and γ special section.
An extension S affine if for some open subgrp of Γ , the publical is split,
i.e. for some open subgrp Γ' , $\exists dfine \{er F_{I} \in e^{-1} = e^{-1}$.$$

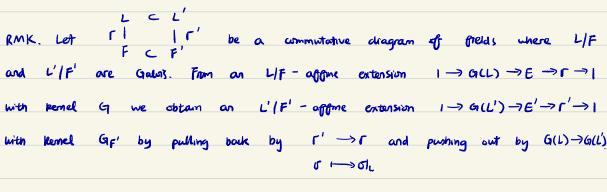
representations $\varphi_{\nu} \longrightarrow \varphi_{\omega}$ is just an L-Linear homomorphism $P: V \otimes L \to w \otimes L$ s.t. $\forall e \in E$, the aragram commutes

 $\widetilde{\psi}_{\omega}(g,\sigma) pv = \psi_{\omega}(g)(\sigma pv) = (\sigma \psi_{\omega})(g)(\sigma pv) = \sigma(\psi_{\omega}(\sigma^{\dagger}g) p(v))$

Hence ho defines a homomorphism of $\widetilde{arphi}_{
ho} \longrightarrow \widetilde{arphi}_{
ho}$.

Prop. Let E be an L/F affine extension whose vernel is a torus T split by L. Then the category $\operatorname{Rep}(E)$ is a semisimple F-category, $\underline{\Sigma}(\operatorname{Rep}(E)) = r \setminus \chi^{*}(T)$. Let V_{FK} be a simple representation, then $\operatorname{End}(V_{FK})$ has center F(X), and its class in $\operatorname{Br}(F(X))$ is the image of $\operatorname{L}(E)$ under the homan arphasim $\operatorname{H}^{2}(F,T) \xrightarrow{\rightarrow} \operatorname{H}^{2}(F(X), \operatorname{Gim})$.

(unside affine extensions with kennel being a protorus.
Let
$$T = \lim_{r \to \infty} T_i$$
, $\chi^*(T) = \lim_{r \to \infty} \chi^*(T_i)$, $T \xrightarrow{r} \chi^*(T)$ degrees an equivalence
of eategories $\{\text{proton}\}^{-} \rightarrow \{\text{torsion free } \mathbb{Z} - \text{mod with continuous } \Gamma - \text{autiun}\}$
Let $L = \overline{F}$. An affine extension with kennel T is an exact sequence
 $I \longrightarrow T(\overline{F}) \rightarrow E \rightarrow \Gamma \rightarrow I$
unose puolout by $T(\overline{F}) \rightarrow T_i(\overline{F}) : I \rightarrow T_i(\overline{F}) \rightarrow E_i \rightarrow \Gamma \rightarrow I$
is an affine extension.



Ex. Let Bp be a maximal unramified extension of Bp, Ln the subfield of Gp off degree n over Gp. In = Glad (Ln/Gp), PI.n the drivision algebra and $1 \rightarrow L_n^{\times} \rightarrow N(L_n^{\times}) \rightarrow \Gamma_n \rightarrow 1$ the corresponding extension where $N(L_n^*)$ is the normalizer off L_n^* in $P_{1,n}$, $N(L_n^*) = \coprod L_n^* a^{(1)}$ This is an Ln (Op - affine extension with kernel (m. Pull back by [-) [n and push out by $L_n^{\times} \rightarrow \Theta_p^{W,\times}$ we get a Θ_p^{W}/Ω_p - affine extension $1 \rightarrow \omega_p^{\omega, \star} \longrightarrow \mathcal{P}_n \longrightarrow (\text{gal}(\omega_p^{\omega}/\omega_p) \rightarrow)$ with kernel (gr From a representation $\rho: \mathcal{D}_n \longrightarrow \mathcal{E}_v = GL(V(\mathcal{G}_p^{\omega})) \times Gal(\mathcal{G}_p^{\omega}/\mathcal{G}_p)$ of \mathcal{D}_n we get a 6p - v.s. V equipped with a J-linear map F (p(1, a)=(F,J)). Tensor with the completion L of Op, we got an iso crystal which is a Sum off E^2 , $\lambda \in \frac{1}{n}\mathbb{Z}$. There is a canonical section to $N(L_n^{\times}) \rightarrow \Gamma_n$, $\sigma^{\vee} \mapsto a^{\vee}$, $\sigma \leq i \leq n-1$ giving rise to a canonical serium to Pn -> (There is a homomorphism Drim -> Dri whose restriction to the kernel is multiplication by m. The inverse limit D is a Gp/Gp - affine extension with kenel G = for Gm , X*(G) = lim + 2/2 = Q. There is a natural functor from Rep (D) to the category off iso crystals which is faithful, essentially surjective on objects but not full. D is called the Dieudonne alignme extension.

The affine extension B. Let $W(P^*)$ be the subgrp of \overline{W}^* generated by $W_i(P^*)$ and $W = \underbrace{h_{ij}}_{ij} W(P^*)$ Then W contams all nots of unity, and the quotient is a tursion free \mathbb{Z} -mod with a continuous action of $\Gamma = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. Let P be the corresponding pretorus over Q. For $\pi \in W$, let $\mathfrak{Q}(\pi)$ be the smallest field generated by a representative of π . If π is represented by $\pi_n \in W(p^n)$ and $|p(\pi_n)| = (p^n)^{\frac{m}{2}}$, we say π has weight m and for a place v|p of $(Q^{\dagger}\pi)$, let $S_{\pi}(v) = \frac{\operatorname{ord}_{v} \pi_{n}}{\operatorname{ord}_{v} P^{n}}$. Thm, There exists an affine extension $I \longrightarrow P(\overline{a}) \longrightarrow P(\overline{a}) \longrightarrow I$ s.t. · Rep\$ is a semisimple Q - category • Z(Rep B) = r\W • for $\pi \in W$, let $P(\pi) = End(V_{\Gamma\pi})$. Then $P(\pi)$ is isometor the division algebra P with center $G \{\pi\}$ and invariants $1mv_{v} P = \begin{cases} \frac{wt(\pi)}{2} & v \text{ real} \\ S_{\pi}(v) \cdot [\omega_{1}^{2}\pi_{1}]_{v} : \omega_{p}] & v|p \end{cases}$ otherwise Moreover B 13 unique up to Bomorphism. extend simple objects from r/w, to r/w ~~> rep. of (pro) torus keep endomorphism algebra the same firm as AV \longrightarrow $H^{2}(Q, P) \rightarrow T Br(Q \{ \pi \})$ extension of groups

We call a representation of G3 a gake motive over
$$\overline{Irp}$$
, and a gake AV iff
its simple summands correspond to $TT \in \Gamma \setminus W_i$. Then the contegory off gake AV is
a semisimple G2 - cotegory with the same numerical invariants as $AV^{\circ}(\overline{Irp})$.

Local form
$$\mathcal{B}(l)$$
 of \mathcal{B} .
Let l be a prime of \mathcal{B} , choose a prime we of \mathcal{B} dividing l . Let \mathcal{B}_l be
the alg. closure of \mathcal{B}_l in \mathcal{B}_{W_l} . Then $\Gamma_l = \operatorname{Gal}(\mathcal{B}_l/\mathcal{B}_l)$ is a closed subgrp
of Γ and we have a commutative diagram $\mathcal{B}_l - \mathcal{B}_l$ hence from \mathcal{B}_l
 $|\Gamma | \Gamma_l$
we get a $\mathcal{B}_l/\mathcal{B}_l - \operatorname{afffine}$ extension $\mathcal{B}_l(l)$.

Let l+p,
$$\infty$$
.

Prop. There exists a continuous homomorphism $\leq \ell$ splitting $\mathfrak{P}(\ell) \rightarrow \Gamma_{\ell}$

Let $p: P^{-} \to E_v$ be a flake motive, pull back by $re \to r$ and push out by

$$P(\overline{R}) \longrightarrow P(\overline{R}_{e})$$
 we get a representation $P(e)$; $\mathcal{B}(e) \longrightarrow \mathcal{GL}(V(\overline{R}_{e})) \land \Gamma_{e}$.
 $\downarrow \qquad \downarrow$
 $\mathcal{GL}(V(\overline{R}_{i})) \longrightarrow \mathcal{GL}(V(\overline{R}_{i}))$

This is a continuous action here
$$Ve(p) = V(\overline{u}_{e})^{\Gamma_{e}}$$
 is a $\overline{u}_{e} - \operatorname{structure} \operatorname{con} V(\overline{u}_{e})$
we get a flowtor i flowe motions $/\overline{v}_{p}$ is a $\overline{u}_{e} - \operatorname{structure} \operatorname{con} V(\overline{u}_{e})$
and we can have a fluctor i flowe motions $/\overline{v}_{p}$ is in $P \mapsto V_{e}(p)$
and we can have a fluctor i flowe motions $/\overline{v}_{p}$ is it $P_{e}(p)$
s.t. $Ve(p) = V_{g}^{e}(p) \otimes_{P_{g}^{e}} \otimes e$ for $e + p$, as.
Isocrastical of a flowe motione.
Chasse a prome wip of \overline{u} dividing p , take \overline{u}_{p}^{an} . Then
 $\Gamma p = \operatorname{Gal}(\overline{u}_{p}/\overline{u}_{p})$ is a closed subsprot f and $\Gamma p^{an} = \operatorname{Cincl}(\overline{u}_{p}^{an}/\overline{u}_{p})$ is a questiont
of Γp .
Rep.
(a) The affore extension $\overline{v}(e)$ arites by publical and produced flow a $\overline{u}_{p}^{an}/\overline{u}_{p}$ - extension $p = p \cdot p^{an}$.
(b) There is a homomorphism of $\mathbb{O}_{p}^{an}/\overline{u}_{p}$ - extensions $D \to p \cdot p^{an}$ whose restriction to
the prenets $\overline{u} \to \overline{v}_{p}^{an} \to 1$ $p \cdot \overline{v}_{p}^{an} \to 1$ $p \cdot \overline{v}_{p}^{an} \to 0$
 $(\to \overline{v}_{p}^{an}) \to D \to \Gamma_{p}^{an} \to 1$ $p \cdot \overline{v}_{p}^{an} \to 1$ $p \cdot \overline{v}_{p}^{an}$ of $\overline{v}_{p}^{an}(u_{p})$
 $(\to \overline{v}_{p}(\overline{u}_{p})) \to \overline{v}_{p}(\overline{u}_{p}) \to \Gamma_{p}^{an} \to 1$ $p \cdot \overline{v}_{p}^{an} \to 1$ $p \cdot \overline{v}_{p}^{an}(u_{p})$
 $(\to \overline{v}_{p}(\overline{u}_{p})) \to \overline{v}_{p}(\overline{v}_{p} \to \Gamma_{p}^{an} \to 1$ $p \cdot \overline{v}_{p}^{an} = \overline{v}_{p}^{an}$ of $\overline{v}_{p}^{an}(u_{p})$.

CM AV/
$$\overline{\alpha}$$
 gives AV/ $\overline{F_p}$ and gate AV.
Prop. Let T/Q be a torus split by a CM gread, let μ be a cocharanter off
T s.t. $\mu + \iota \mu$ is defined over ω (ι complex conjugation). Then there is
a homomorphism well defined up to isom. ψ_{μ} , $\gamma_{3} \longrightarrow E_{T}$.

Let A be AV of CM type
$$(E, \overline{\mathbf{x}})$$
 over $\overline{\mathbf{x}}$, $T = (G_m) E/k_{\overline{\mathbf{x}}}$,
 $\overline{\mathbf{x}}$ defines a cocharanter $\mu_{\overline{\mathbf{x}}}$ of T . $(T, \mu_{\overline{\mathbf{x}}})$ satisfies the anditation above.
Then $\exists \Phi: \mathcal{B} \rightarrow E_T$. Let $V = H_1(A, \mathcal{Q})$.
Rep. of T on $V = \mathcal{P}$ rep. ρ of E_T on $V = \mathcal{P} \circ \Phi$ is a fake AV and
 $Ve(\rho \circ \Phi) = H_1(A, \mathcal{Q}e)$, $P(\rho)$ is isom. to the Dieudomne module of the reduction
of A by Shimura-Taniyama formula.

$$k = \bar{kp}$$
, Mot(k) Q-semisimple category of numerical motives.
Take's conjecture + Girthenovicuk's Standard conjecture =) $\Sigma(Mot(k)) = \Gamma(W)$ and
endomorphism algebras have the same description as in Rep(B).
Mot(k) is Tannakian, a choice off a fibre functor over \bar{Q} identifies Mot(k)
with the category off rep. off an affire groupoid scheme.
Tannakian theory describes the remel P, fibre functors at all L (and a
polarization) determine the class off the groupoid scheme in $H^2(ke, P)$.
Longlands & Rapoport showed the framily off local cohomology classes arises from
a global class in $H^2(k, P)$, giving the existence off such groupoid scheme.
Under the equivalence off affire groupoid schemes and affire extensions, it is p_2 .