If $S V$ is moduli variety / \mathbb{C}, its canonical model $/ \bar{Q}$ should be the moduli-

The good reduction of Shimura varieties. variety of the same moduli porblem $/ \bar{Q}$. When SU 5 holds, the canonical model over $E(G, X)$ should be the moduli
Hyperspecial subgroups. variety of the same moduli problem over $E(G, X)$ even though $\operatorname{Sh}(E)=\phi$.

Def. Let G / Q_{p} reductive group, $K \subset G\left(Q_{p}\right)$ subgroup B called hyperspecial if \exists flat group scheme g / z_{p} sit.

1) $G_{Q p}=G$
2) I FP 13 connented reductive group
3) $g\left(z_{p}\right)=k$

Ex. Let $G=G S_{p}(V, \psi)$, \wedge a Z_{p}-lattice in $V\left(Q_{p}\right)$, K_{p} the Stabilizer of Λ. If the restriction ψ to $\Lambda \times \wedge$ takes values in \mathbb{z}_{p} and 13 perfect, then K_{p} is hypersperial.

Ex. In the PEL case, to have a hyperspecial group at p. B must be urramified above P, i.e. $B \otimes_{Q} Q_{P}$ is a product of matrix algebras over unramified extensions of O_{p}.

Tits 1979: there exists a nyperspecial subgroup in $G\left(\Theta_{p}\right) \Leftrightarrow G$ unranified over \mathbb{Q}_{p}, i.e. quasisplit over \mathbb{Q}_{p} and spelt over an unranified ext.

The good reduction of SV.

Fix nyperspecial subgroup $K_{p} \subset G\left(Q_{p}\right)$, write $\operatorname{Sh} p(G, x)$ for $\lim _{K^{p}} S_{h^{p}} K_{p}$.

Roughly speaking there are two reasons for SV to have bad reduction:

1) G may be ramified at P
2) p may divide the level.
\Rightarrow only consider $S h_{k} p_{K_{p}}$.

Thu. Let (G, X) be of abetian type, $K_{p} \subset G\left(Q_{p}\right)$ mpperspecial and $\operatorname{Shp}(G, x)$ the inverse system $\left(\operatorname{sh}_{k^{p} K_{p}}(G, x)\right)$ over $E(G, x)$. Then $\sin (G, x)$ has canonical good reduction at every $p \mid p$ of $E(G, x)$ unless P lies in a small set of primes depending on (G, X).

RMK. Let E_{p} be the completion, O_{p} ing of integers. $k(p)$ residue field. By $\operatorname{Sh}(G, X)$ having good reduction at p, we mean the inverse system ($S h_{K^{p}} K_{p}$) extends to an inverse system of flat schemes $S_{p}=\left(S_{K^{p}}\right)$ over O_{p} together with $G\left(A_{f}^{p}\right)$ - aution such that when modulo p, the reduction is an inverse system of smooth varieties ($\overline{\operatorname{sh}}_{k}{ }_{k} k_{p}$) over $k(p)$ with finite etale transition maps.

By $\operatorname{Shp}(G, X)$ hawing canonical good reduction at p we mean for any T over O_{p} formally smooth, the natural map

$$
\operatorname{Hom}_{O_{p}}\left(T,{\underset{k^{p}}{ }}_{\left.\lim _{k^{p}}\right)} S_{k^{p}} \quad \operatorname{Hom}_{E_{p}}\left(T_{E_{p}}, \underset{k^{p}}{\lim _{k^{p}}} S h_{k_{p}}\right)\right.
$$

is a bijection. This characterizes the model wriqualy.

RMK, In the Siegel cause, the theorem was proved by Mumford and $S_{K} P$, $\overline{S n}_{K} P_{K_{P}}$ are moduli schemes. For Hodge case, one takes the (normalization of) Zariski closure of $S_{k^{p} k_{p}} \longrightarrow S_{h^{p}} u_{p} \longrightarrow S_{u}{ }^{p}$ inside the embedding into the siegel case and the siegel integral model.

The Langlands - Rapuport Conjecture.

Let (G, X) be SD with SV 4,5.6 hold.
For $x \in X$, let $I(x)$ be the subgroup of $G(Q)$ fixing x and let

$$
S(x)=I(x) \backslash X^{p}(x) \times X_{p}(x), \quad X^{p}(x)=G\left(A_{f}^{p}\right), \quad X_{p}(x)=G\left(\mathbb{Q}_{p}\right) / K_{p} .
$$

Then there B a canonical bijection of $G\left(A_{f}^{P}\right)$ - sets

$$
\frac{11}{[x] \in G(\theta) \backslash x} S(x) \longrightarrow S h_{p}(\mathbb{C})=\underbrace{\lim _{m}}_{K^{p}} \operatorname{sh}_{K^{p} K_{p}}(\mathbb{C})
$$

The decomposition has a modular interpretation. In the Hodge type case, $S(x)$ classifies Boo. dashes $\left(A,\left(S_{i}\right), \eta K\right)$ with $\left(A,\left(S_{i}\right)\right)$ Bum. to a fixed pair. $x^{p}(x)$: prime to p level structure, $\quad x_{p}(x): p$ level struture

Langlands and Rapoport conjectured a similar description for $\overline{S h}_{p}\left(\overline{\mathbb{F}}_{p}\right)$.
Let $\phi: 8 \rightarrow E_{G}$ be a homomorphism. Such ϕ should be thought of as "prep fake abelian motives with tensors". Also recall ϕ and ϕ ' are isom. if $\quad \exists g \in G(\overline{\mathbb{Q}})$ s.t. $\phi^{\prime}=g \phi g^{-1}$.

Fix $\phi: \beta \rightarrow E_{G}$. Next we define the set $s(\phi)$.

- $I(\phi)$.

$$
I(\phi)=\{g \in G(\bar{Q}) \mid A d(g) \phi=\phi\} \quad I(\phi) \subset \text { Ant }(p \circ \phi)
$$

- $X^{P}(\phi)$.

Let $l \neq p, \infty$ be a prime. choose a pome we of \bar{Q} lying veer l and define \bar{Q}_{l} and $\Gamma_{l} \subset r_{l}$. Regard Γ_{l} as an \bar{Q}_{l} / Q_{l} - affine extension with trivial kernel and write $\xi_{l}: \Gamma_{l} \rightarrow E_{G}(l)=G_{l}\left(\bar{Q}_{l}\right) \times \Gamma_{l}$.

$$
\sigma \longmapsto(1, \sigma)
$$

Recall there B a homomorphism $S_{l}: \Gamma_{l} \rightarrow \beta(l)$. Compose it with $\phi(l): B(l) \rightarrow E_{G}(l)$ we get another homomorphism $r_{l} \rightarrow E_{G}(l)$.

Define $\quad x_{l}(\phi)=I_{\text {som }}\left(\xi_{l}, \phi(l) \cdot \zeta_{l}\right) . \quad x_{l}(\phi) \subset I_{\text {som }}\left(v\left(Q_{l}\right), V_{l}(\rho \circ \phi)\right)$
Clearly $A_{u}\left(\xi_{l}\right)=G\left(Q_{l}\right)$ ants on $X_{l}(\phi)$ on the right and $I(\phi)$ ants on the left. If $X_{l}(\phi)$ nonempty, $X_{l}(\phi)$ is a principal homogeneous spare for $G\left(Q_{l}\right)$. By choosing Be judiciously we get comport open subspaces of $x_{e}(\phi)$. Define $x^{P}(\phi)$ to be the restricted product.

- $x_{p}(\phi)$.

Choose prime w_{p} of \bar{Q} lying above p. Let L be the completion of $Q_{p}^{\text {un }}$ and O_{L} the ing of integers. Let s be the Frobenius automorphism of L aging as $x \longmapsto x^{p}$ on the residue field.
From ϕ we get $D \rightarrow \beta(p)^{\text {un }} \xrightarrow{\phi(p)^{\text {un }}} G\left(Q_{p}^{u n}\right) \times r_{p}^{\text {un }}$.
For some n, the composite factors through D_{n} and there is a canonical element in D_{n} mapping to v. Let (b, v) be its image in $G\left(Q_{p}^{u s}\right) \times r_{p}^{u n}$ and $b(\phi)$ the image of b in $G(L)$. If $b(\phi)^{\prime}$ also arse in this way then $b(\phi)^{\prime}=g^{-1} \cdot b(\phi) \cdot \sigma g . \quad D(\rho \circ \phi)=(V(L), F: v \mapsto \rho(b(\phi)) \sigma v)$

Recall $C(X)$ the well-defined $G(\bar{Q})$ - conj. doss of cochasarters of $G \bar{Q}$. By the hyperspecial condition, G splits over G_{p} un hence when transfering $L(X)$ to conj. class of cocharauters of $G \bar{Q}_{p}$, there 13 some μ defined over $Q_{p}^{\omega n}$. Let $\left.C_{p}=g\left(O_{L}\right) \cdot \mu L p\right) \cdot g\left(O_{L}\right), g$ as in nyperspecial condition. Define $x_{p}(\phi)=\left\{g \in G(L) / g\left(O_{L}\right) \mid g^{-1} \cdot b(\phi) \cdot g \in C_{p}\right\}$. I(ϕ) ats naturally on $\quad x p(\phi)$.

For $g \in X_{p}(\phi)$, define $\Phi(g)=b(\phi) \cdot v b(\phi) \cdots \sigma^{m-1} b(\phi) \cdot \sigma^{m} g, m=\left[E_{p}: \mathbb{Q}_{p}\right]$. - $S(\phi)$.

$$
S(\phi)=I(\phi) \backslash x^{p}(\phi) \times x_{p}(\phi)
$$

We shall only consider the admissible homomorphisms.

- ∞.

Let E_{∞} be the extension $1 \rightarrow \mathbb{C}^{x} \rightarrow E_{\infty} \rightarrow \Gamma_{\infty} \rightarrow 1$ associated with the quaternion algebra $H_{1}, \Gamma_{\infty}=G a l(\mathbb{C} \mid \mathbb{R}), E_{\infty}=\mathbb{C}^{x} \not \mathbb{C}^{x} ;$ and $j z j^{-1}=\bar{z}$. It B an affine extension with kernel G_{m}.

Take $1=\infty$ we get local form $\beta(\infty)$ of is:

$$
1 \rightarrow P(\mathbb{C}) \rightarrow 8(\infty) \rightarrow \Gamma_{\infty} \rightarrow 1 .
$$

Foul: there B a homomorphism $\zeta_{\infty}: E_{\infty} \rightarrow \beta(\infty)$ whose restriction to kernels $G_{m} \rightarrow P_{C}$ corresponds to the map on characters $\pi \longmapsto \omega t(\pi)$.

Note for $\forall x \in X, \quad \xi_{x}(z)=\left(\omega_{x}(z), 1\right), \quad \xi_{x}(j)=\left(\mu_{x}(-1)^{-1}, l\right)$ define a homomorphism $E_{\infty} \rightarrow E_{G}(\infty)$. Replace x with a different pout will replace the homomorphism with an Bomorphic one. Write ξ_{x} for the Boo. class.

The admusibility condition at ∞ is $\phi(\infty) \cdot \zeta_{\infty} \in \xi x$.

- $\ell \neq p$.
$X_{l}(\phi)$ nonempty.
- p
$x_{p}(\phi)$ nonempty.
- Global condition.

Let $\nu: G \rightarrow T$ be the quotient by $G^{d e r}$.
From X we get a conj. dares of cocharauters of G_{C}, hence a well defined cocharauter μ of T. As (G, X) satisfies $S V 4,5,6$, T B split by a CM field and $\mu+L \mu$ is defined over Q. Hence there is a homomorphism $\phi_{\mu}: 8 \rightarrow E_{T}$. We require $\nu \cdot \phi \simeq \phi \mu$.

Now let $\operatorname{LR}(G, x)=\perp \mathcal{L}(\phi)$ where the dujjent union 13 taken over a set of representatives for the isom. classes of admissible homomorphisms $\phi: \beta \rightarrow E_{G}$. There are commuting actions of $G\left(A_{f}^{p}\right)$ and Φ.

Conjecture. (Langlands - Rapoport. 1987)
Let (G, x) be SD satisfying SV 4,5,6, $G^{\text {der }}$ simply connected.
Let $K_{p} \subset G\left(Q_{p}\right)$ hyperspecial, $p \mid p$ pome of $E(G, x)$.
Assume Ship has good reduction at p.
Then there is a bijetion of sets $\operatorname{LR}(G, x) \rightarrow \overline{\operatorname{Sh}}(G, x)\left(\overline{\mathbb{F}}_{p}\right)$ compatible with $G\left(A_{f}^{P}\right)$ and Frobenius action.

RMS.
(a) SV5 and SV6 are for simplicity and can be removed.
(b) One can generdize to SD not satisfying SV 4 and $G^{\text {der not }}$
simply connetied.

