A formula for the number of points. Let (G, X) be SD satisfying SV 4, 5, 6, Kp C G(lep) hyperspecial. Assume Gen simply connected, Shp (G, X) has construct good reduction at a prime plp of E(G1, X). Write Ln unramified extension of Gp of day n. Consider triples (Yo, Y, S) where · Yo semisimple element of G(G) that is contained in an elliptic torus off GIR, i.e. a torus whose image in GIR is anisotropic. • $Y = (Y(L))_{l \neq P, \infty} \in G_1(A_f^P)$ s.t. for all l, Y(L) conjugate to Y_0 in $G_1(\overline{G_R})$. · SE G(Ln) s.t. NS = S. 58..... 5 5 conjugate to Yo in GLODP). Two triples (Y_0, Y, δ) and (Y_0', Y', δ') are equivalent iff Y_0 complete to Y_0' in G(le), Y(l) complete Y'(l) in $G(le_l)$, δ $U-complete \delta'$ in $G(L_n)$. Given (ro, r, s), let · 10 = Gy, contralizer of Yo in G · Los more form of Lo. R s.t. Los/Z(G) anisotropic · Le centralize of Y(L) in Gase · Ip more form of Geo s.t. Ip(Gp) = { x E G(Ln) | x⁷ · 8 · 0 x = 8 }.

(*) I more form I of Io s.t. Ine I le for all linduding p, 00.

Let dx be the Haar measure on
$$G(A_{f}^{P})$$
 s.t. K^{P} has volume 1. Choose a
Haar measure dif on $I(A_{f}^{P})$ that gives rational measure to compart open
subgroups of $I(A_{f}^{P})$ and use isoms $I_{QQ} \cong I_{Q}$ to transport it to a
measure on $G(A_{f}^{P})_{Y}$, the centralizer of Y in $G(A_{f}^{P})$. Write $d\overline{x}$ for
the quotient of dx by $d\overline{i}^{P}$. Let H_{K} be the Hecke algebra consisting of
locally constant K bi-invariant Q-valued gunctions on $G(A_{f})$. Let $f \in H_{K}$
and assume $f = f^{P}$ fp., f^{P} function on $G(A_{f}^{P})$ and $fp = \frac{1}{|K_{P}|} \frac{1}{K_{P}}$.
Define $O_{Y}(f^{P}) = \int f^{P}(x^{-1}Yx) d\overline{x}$.

Let dy be the your measure on G(Ln) 5.t. G(OLn) has volume 1. Choose a Haar measure dip on Z(Qp) that gives rational measure to compart open subgroups and use isom. $L_{Gp} \simeq L_p$ to transport the measure to $L_p(Gp)$. Write dy for the quotient of dy by dip, Choose a cocharacter M in c(X) defined over L_n and let $\varphi = 1 g(O_{L_n}) \mu(p) g(O_{L_n})$. Define $TO_{S}(\varphi) = \int \varphi(y^{-1}\delta \sigma(y)) dy$ 2(Qp) \G(Ln)

Since
$$1/2(G_1)$$
 anisotropic over IR and we assume SV 5, $1(G_1)$ is
ascrete in $1(A_f^P)$, we can define the volume off $1(G_1)/1(A_f^P)$. It is
a rational number by our assumption.
Define $1(Y_0, Y, \delta) = vol(1(G_1)/1(A_f^P)) \cdot O_X(1_{K^P}) \cdot TO_S(\Phi)$.
Then $(Y_0, Y, \delta) \sim (Y_0', Y', \delta') = 1(Y_0, Y, \delta) = 1(Y_0', Y', \delta')$.

An admissible pair (ϕ, r_{0}) is an admissible homomorphism $\phi: \beta \rightarrow Eq$ and YOE I(4) S.t. for some XEXp(4), YOX= EX, r= [K|P): Fp] An Born. of (ϕ, Y_0) and (ϕ', Y_0') is a $g \in G(\overline{a})$ s.t. $Ad(g)\phi = \phi'$ and Ad(g) Yo = Yo'

Let
$$(T, x) \subseteq (G, X)$$
 be a special pair. By our assumptions on (G, X) , the contarauter Ax of T defines a homomorphism $\varphi_X : \mathcal{B} \longrightarrow \mathcal{E}_T$. Langlonds and Rapoport showed that every admissible pour is ison, to a pair (φ_X, Y_o') with $Y_o' \in T(Q)$. For such a pair, $b(\varphi_X)$ is represented by some $\delta \in G(L_n)$.
Let Y be the image of Y_o' in $G(A_f^P)$. Then the triple (Y_o', T, δ) satisfies all the conditions. A triple of this form is called effective.
For any triple (Y_o, Y, δ) , the kernel of $H'(Q, I_o) \rightarrow H'(Q, Q) \oplus \prod_{k} H'(Q_{\ell}, I_o)$ is finite and denote its order by $C(Y_o)$.

myperspecial.
$$P|p$$
 prime of $E(G, X)$, Shp has canonical good reduction at p .

Then LR conj. Implies Kotthitz conj.