Hodge Structures and Their Classifying Spaces

Reductive groups and tensors
G reductive group over k, chock $=0$.
$\rho: G \longrightarrow G L(V)$ be a representation.
The dual rep. $p^{v}: G \rightarrow G L\left(v^{v}\right)$ is $\left(p^{v}(g) f\right) v=f\left(p\left(g^{-1}\right) v\right)$
P is coned selfdual if $p \simeq p^{v}$.
r tensor of $v, t: v^{\otimes r} \rightarrow k, \quad t \in\left(v^{\otimes r}\right)^{v}$
Let $G L(v)_{t}=\left\{g \in G L(v) \mid t\left(g v_{1}, \ldots, g v_{r}\right)=t\left(v_{1}, \ldots, v_{r}\right)\right\}$ algebraic subgroup

Prop. $P: G \rightarrow G L(v)$ faithful seefalual representation, $\exists T$ finite set of tensors s.t. $G=\cap G L(v)_{t}$.

Pf. Chevalhey's theorem $\Rightarrow \exists W$ rep. of $G L(v)$. LCW one-dim subspace s.t. $G=\{g \in G L(v) \mid g L \subset L\}$.

As rep. of reductive G in char $0, W$ is semisimple, $W=L \oplus W^{\prime}$.
Choose $0 \neq t \in L \otimes L^{v} \subset w \otimes w^{v}$, then $G=S t_{t}(G L(v))$. As $w \otimes w^{v}$ is a subrep. of $\sum v^{\otimes r} \otimes\left(v^{\circ}\right)^{\otimes S}$. which 13 just $\sum\left(v^{\otimes l}\right)^{v}$, hence $t=\Sigma t_{l}, t_{l} \in\left(v^{\Delta l}\right)^{v}$.

Prop. Let $\left.G=\bigcap_{T} G u v\right)_{t}$. Then $\operatorname{sic}^{\text {. } G}=\left\{g \in \operatorname{Endv} \mid \sum_{j} t\left(v_{1}, \ldots, g v_{j}, \ldots, v_{r}\right)=0, \forall t\right\}$

Flag Variety.
$V \quad n$-dim v.s. $/ K$.
$G_{d}(V)$ set of d-dim subspaces of $V, 0<d<n$.
$G_{d}(V) \longrightarrow \mathbb{P}^{\binom{n}{d}-1}$ closed immersion
$w \longmapsto n^{d} w$
$S \subset V$ dim $n-d$ subspace, $G_{d}(v)_{s}=\left\{w \in G_{d}(v) \mid w \cap S=\{0\}\right\}$
Fix $w_{0} \in G_{d}(V)_{s}, \quad V=w_{0} \oplus S$. Consider projection of $G_{d}(V)_{s}$ to w_{0}
\Rightarrow each $w \in G_{d(v) s}$ is the graph of $w_{0} \rightarrow s$

$$
\Rightarrow G_{d}(v)_{s} \simeq \operatorname{Hom}\left(w_{0}, s\right)
$$

$G_{d}(v)$ open subvariety of $G_{a}(v)$ is just affine $A\left(\operatorname{Hom}\left(w_{0}, s\right)\right)$
$\Rightarrow G_{a}(v)$ smooth. $\quad T_{w_{0}}\left(G_{a}(v)\right) \simeq \operatorname{Hom}\left(w_{0}, s\right) \simeq \operatorname{Hom}\left(w_{0}, v / w_{0}\right)$.

$$
\begin{aligned}
& d=\left(d_{1}, \ldots, d_{r}\right), n>d_{1}>\cdots>d_{r}>0 \\
& G_{d}(v)=\left\{F: v>v^{\prime}>\ldots>v^{r}>0 \mid \operatorname{dim}^{r} v^{i}=d_{i}\right\} \\
& \exists G_{d}(v) \longrightarrow \prod_{i} G_{d_{i}}(v) \subset \prod_{i} \mathbb{P}\left(\Lambda^{d_{i}} v\right) \quad \text { closed immersion } \\
& F \longmapsto\left(v^{i}\right)
\end{aligned}
$$

$\Rightarrow G_{d}(v)$ projective variety.

$$
T_{F} G_{d}(v)=\left\{\left(\varphi^{i}\right), \varphi^{i}: v^{i} \rightarrow v / v^{i},\left.\varphi^{i}\right|_{V^{i+1}} \equiv \varphi^{i+1} \bmod v^{i+1}\right\}
$$

F flag, $\left\{e_{i}\right\}$ bass of v s.t. $\left\langle e_{1}, \ldots, e_{d_{i}}\right\rangle=v^{i}$.
$G L(v)$ ants transitively on basis $\Rightarrow G L(v)$ ants transitively on $G_{d}(v)$
$P(F)=\operatorname{stab}_{F}(G L(v))$ algebraic subgroup, $G L(v) / P(F) \simeq G_{d}(v)$ projective
$\Rightarrow P(F)$ parabolic.

Hodge Structures
$V \quad \mathbb{R}$-v.s. complex conjugate on $V_{\mathbb{C}}=U \otimes_{\mathbb{R}} \mathbb{C}$ is defined by $\overline{V \otimes Z}=V \otimes \bar{Z}$.

A Hodge decomposition of $V B B \quad V_{\mathbb{C}}=\Theta v^{p, 8}$ s.t. $\overline{v^{p, 8}}=V^{8 . p}$.
A Hodge struture B a \mathbb{R}-v.s. with a Hodge decomposition. $\left\{(p, 8) \mid v^{p, 8} \neq 0\right\}$ is called type.
$V_{n}(\mathbb{C})=\bigoplus_{n} v^{p, 8}$ is stable under conjugate, hence $V_{n}(\mathbb{C})=V_{n}, \mathbb{C}$.
$V=\bigoplus_{n} V_{n}$ is called weight decomposition. If $V=V_{n}, V$ is said to have weight n
$A \mathbb{Z}$ or Q Hodge structure $i 3$ a free \mathbb{Z} or \mathbb{Q} module of finite rank with a Hodge decomposition of $V_{\mathbb{R}}$ s.t. the weight decomposition is defined over \mathbb{Q}.

Ex. J complex structure on $V, V^{-1,0}$ is i eigenspace of J on V_{Q}

$$
\Rightarrow V_{c}=v^{-1,0} \oplus v^{0,-1} . \quad v^{-1,0}=\{v \otimes 1-J v \otimes i, \quad v \in V\} .
$$

Conversely every real Hodge structure of this type arises from a unique complex structure. If $\quad v \otimes 1+v^{\prime} \otimes i \in v^{-1,0}$ then let $J v=-v^{\prime}$.

Rational Hodge structure of type $\{(-1,0),(0,-1)\}$ is the same as a $\mathbb{Q}_{\mathbb{C}}$-v.s. V with complex strutive on $V_{\mathbb{R}}$.

Hodge theory in complex geometry
Ex. X nonsingular projective algebraic variety over \mathbb{C}. consider $H^{n}=H^{n}(x(\mathbb{C}), \mathbb{C})$.

$$
H^{n}=\oplus H^{p-8} \quad \text { with } \quad H^{p-8} \simeq H^{8}\left(x(\mathbb{C}), \Omega^{p}\right)
$$

Ex. $Q(m)$ the unique Hodge structure of weight $-2 m, \quad V=(2 \pi i)^{m} Q$ and $Q(m)_{\mathbb{C}}=\mathbb{Q}(m)^{-m,-m}$. Similar for $\mathbb{R}(m), \mathbb{Z}(m)$.

Hodge filtration associated to a Hodge structure of weight n is

$$
\begin{aligned}
& F^{\bullet}: \cdots>F^{p}>F^{p+1}>\cdots, \quad F^{p}=\underset{r \geqslant p}{\oplus} U^{r, s} \\
& F^{p} \cap \overline{F^{8}}=V^{p, 8} \quad \text { if } p+8=n .
\end{aligned}
$$

Ex. Hodge struntwe of type $(-1,0),(0,-1)$

$$
F^{-1}>F^{0}>F^{1}=V_{\mathbb{C}}>V^{0,-1}>0
$$

the \mathbb{R} - linear Bon. $V \longrightarrow V \mathbb{C} / F^{0}$ defines the complex structure on V.

Let $\mathbb{S}=\operatorname{Res}_{\mathbb{C} / \mathbb{R}} G_{m}$ be the (algebraic) Deligne torus.

$$
S(\mathbb{R})=\mathbb{C}^{x} \text { and } S(\mathbb{C})=\mathbb{C}^{x} \times \mathbb{C}^{x} \text { with } \overline{\left(z_{1}, z_{2}\right)}=\left(\overline{z_{2}}, \overline{z_{1}}\right) \text {. }
$$

The weight homomorphism $\omega: G_{m} \rightarrow \Phi_{D}$ is the map sit. $\omega(\mathbb{R}): \mathbb{R}^{x} \rightarrow \mathbb{C}^{x}$

$$
r \longmapsto r^{-1}
$$

Next interpretation is important.
$S_{\mathbb{C}} \simeq G_{m} \times G_{m}$ and characters of $S_{\mathbb{C}}$ are hamomorpmins $\left(z_{1}, z_{2}\right) \longmapsto z_{1}^{r} z_{2}^{s}$.
Thus if V is a \mathbb{R}-rep. of $\$, h: S \rightarrow G L(U)$, consider

$$
v^{p, 8}=\left\{v \in v_{\mathbb{C}} \mid h_{\mathbb{C}}\left(z_{1}, z_{2}\right) v=z_{1}^{-p} z_{2}^{-8} v\right\}, \overline{v^{p, 8}}=v^{8, p}
$$

and $\quad V_{n}=\left\{v \in V \mid w_{n}(r) v=r^{n} v\right\}$. $w_{n}=$ how. $\left\{v_{n}\right\}$ gives the weight decomposition. If $\mu_{n}: \mathbb{C}^{x} \longrightarrow G L(v), \mu_{n}(z)=h_{\mathbb{C}}(z, 1)$ then the Hodge filtration

$$
F_{n}^{p} v=\left\{v \in v_{\mathbb{C}} \mid \mu_{n}(z) v=z^{-r} v, r \geqslant p\right\}
$$

Conversely given a Hodge strutwe V, one can construnt the representation $n_{v}: S \rightarrow G L(v)$. Thus \mathbb{R} Hodge structures are the same as \mathbb{R}-reps of \$. Similarly Hodge strutwes on Q-v.s. V are the same as homomorphisms
$n: S \rightarrow G L\left(V_{\mathbb{R}}\right)$ s.t. $w_{n} B$ defined over \mathbb{Q}.

Ex. A complex structure on $V B$ homomimplusm $h: \mathbb{C} \rightarrow$ End $_{\mathbb{R}} V$ of \mathbb{R}-algs. h gives $h: \mathbb{C}^{x} \rightarrow G L(V)$ is a Hodge structure of type $\{(-1,0),(0,-1)\}$ whose associated complex structure is defined by n.

The Hodge structure $G(n)$ corresponds to $h: S \rightarrow G_{m, \mathbb{R}}, h(z)=(z \bar{z})^{n}$.

For a Hedge struture $h: S \rightarrow G(v), C=h(i)$ is called the wail operator.
If V is of type $(-1,0),(0,-1)$ then C is the complex structure J.

Let V be a Hodge structure of weight 0 . Then V^{00} invariant under complex conjugate, so $V^{0,0}=V_{\mathbb{C}}^{00}$ where $V^{00}=V^{0,0} \cap V=\operatorname{Rer}\left(V \rightarrow V_{\mathbb{C}}\left(F^{0}\right)\right.$.

The tensor product of Hodge struntwes V and W of weight m, n is a Hodge strmiture of weight $m+n:(v \otimes w)^{p, 8}=\Theta v^{r, s} \otimes w^{r, s^{\prime}}$ $h_{\text {vow }}=h_{v}$ \& h_{w}.

A morphusm of Hodge structure is a linear map sending $v^{p, 8}$ to $w^{p, 8}$.i.e. is a morpluism of rep. of S.

In general (v, h) Hodge structure, $\left(v^{v}, h^{v}\right)$ 13 deal Hodge strutwe and $t \in v^{\otimes r} \otimes\left(v^{\otimes s}\right)^{v}$ s.t. \cdots
$\mathbb{R}=\mathbb{Z}, \mathbb{Q}, \mathbb{R},(v, h)$ be an R - Hodge structure of weight n. $t \in\left(v^{\otimes r}\right)^{v}$ is called a Hodge tensor if $V^{\otimes r} \rightarrow R\left(-\frac{n r}{2}\right)$ is a morphism of HS.

$$
\Leftrightarrow \quad t_{\mathbb{R}}\left(h(z) v_{1}, \ldots\right)=(z \bar{z})^{-\frac{n r}{2}} t_{\mathbb{R}}\left(v_{1}, \ldots\right), \quad z \in \mathbb{C}, \quad v_{i} \in v_{\mathbb{R}}
$$

\Leftrightarrow if $\sum P_{i} \neq \sum 8_{i}$ then $t_{\mathbb{C}}\left(v_{1}^{p_{1}, 8_{1}}, \cdots\right)=0, v_{i}^{p_{i}, 8_{i}} \in V^{p_{i}, 8_{i}}$.
In particular $t\left(C v_{1}, C v_{2}, \ldots\right)=t\left(v_{1}, v_{2}, \ldots\right)$.

Ex. (v, h) Hodge struture of type $(-1,0),(u,-1)$. $t \in\left(v^{(\otimes 2}\right)^{v}$ is Hodge tensor $\Leftrightarrow t(J u, J v)=t(u, v)$

Let (v, h) be a Hodge structure of weight n. A polarization of (v, h) is a Hodge tensor $\psi: V \times v \rightarrow \mathbb{R}(-n)$ s.t. $\psi_{c}(u, v)=(2 \pi i)^{n} \psi(u,(v)$ is symmetric and positive definite. Then

$$
\begin{aligned}
\psi(v, u)=\psi(c v, c u)=(2 \pi i)^{-n} \psi_{c}(c v, u)=(2 \pi i)^{-n} \psi_{c}(u, c v) & =\psi\left(u, c^{2} v\right) \\
& =(-1)^{n} \psi(u, v) .
\end{aligned}
$$

A Hodge struture is polarizable if it admits a polarization on each V_{n}.

Ex. (v, h) Hodge structure of type $(-1,0),(0,-1), J=h(i)$.
$\psi: V \times V \rightarrow 2 \pi i \mathbb{R}=\mathbb{R}(1)$ alternating bilinear form s.t.
$\psi(J n, J v)=\psi(u, v)$ and $\frac{1}{2 \pi i} \psi(u, J u)>0$ if $u \neq 0$.
X / \mathbb{C} nonsingular Prj variety, choose $x \longrightarrow \mathbb{P}^{N}$ determines a polarization on the primitive part of $H^{n}(x(\mathbb{C}), Q$) for each n. (Hodge-Riemann inequality)

Variation of Hodge struture.

Motivation. $\pi: V \rightarrow S$ nonsingular alg. var. $/ \mathbb{C}, V_{s}$ nonsingular prof. var. $H^{n}\left(V_{s}, \mathbb{Q}\right)$ local system of \mathbb{Q}-v.s. on $S(\mathbb{C})$, their Hodge decompositions vary continuously and Hodge piltrations vary holomorphically, satisfying Gif the transuersality.

Goal: realize HSD as moduli space for VHS.
S connected $p p$ mod, $V \mathbb{R}$-v.s.
For each $s \in S$, we have a Hodge strum. h_{s} on V of wt n.

$$
V_{s}^{p, 8}=V_{h_{s}}^{p, 8}, \quad F_{s}^{p}=F_{h_{s}}^{p} V .
$$

$\left\{h_{s}\right\}_{s \in S}$ is called cont. if $V_{s}^{p . B}$ varies cont. in s i.e. $d(p, 8)$ is constant and $S \rightarrow G_{d(p, 8)}\left(v_{c}\right)$ cont.

$$
s \longmapsto v_{5}^{p, 8}
$$

cont. $\{n s\}_{\text {sets }}$ is caned hole. if F_{s} varies nolo. in s. ice. φ hole

$$
\begin{aligned}
\varphi: S & \longrightarrow G_{d}\left(V_{\mathbb{C}}\right), d=(\cdots d(p) \cdots), d(p)=\sum_{r \geqslant p} d(r, 8) \\
s & \longmapsto F_{s}^{*}
\end{aligned}
$$

$\{\text { hs }\}_{s \in s}$ hols. $\Rightarrow d \varphi_{s}: T_{s} S \rightarrow T_{F_{s}} G_{d}\left(V_{\mathbb{C}}\right) \subset \Theta \operatorname{Hom}\left(F_{s}^{p}, V_{\mathbb{C}} / F_{s}^{P}\right)$ Girffiths transversality: $\quad \operatorname{Im} d \varphi_{s} \subset \oplus \operatorname{Hom}\left(F_{s}^{p}, F_{s}^{p-1} / F_{s}^{p}\right), \forall s$
$\left\{h_{s}\right\}_{S \in S}$ UHS if satisfying Grippiths transuersality.
$V \mathbb{R}$-v.S. T tensors on V inducing to nondegenerate bilinear.
$d: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{N}$ s.t. $\left\{\begin{array}{l}d(p, 8)=0 \quad \text { almost all }(p, 8) \\ d(p, q)=d(8, p) \\ d(p, 8)=0 \text { unless } p+8=n\end{array}\right.$
Define $S(d, T)$ set of all Hodge strutives n on V s.t.

- $\operatorname{dim} V_{h}^{p-8}=d(p, 8)$
- $\forall t \in T, \quad t$ Hodge tensor for h
- to is polarization for h.

Then $s(a, T)$ acquires topology as a subset of $\prod_{d(p, 8) \neq 0} G_{d(p, 8)}\left(V_{\mathbb{C}}\right)$.

Thu. S^{+}connetied component of $S(d, T)$.
(a) S^{+}has a crigue complex strut. for which $\left(n_{s}\right)$ is hole.
(b) $S^{+} B$ HSD if $\left(n_{s}\right)$ is UHS.
(C) Every irreducible HSD B of the form s^{+}for some V, d, T.

Pg.
(a)

Hodge filtration determines Hodge decomposition $\Rightarrow \varphi: S^{+} \longrightarrow G_{d}\left(V_{\mathbb{C}}\right)$ ing.
$G=\cap H, H \subset G L(V)$ algebraic subgroup sit. $h_{s}(S) \subset H, \forall S \in S^{+}$.
Choose $h_{0} \in S^{+}, \forall g \in G(\mathbb{R})^{+}$. ghog ${ }^{-1} \in S^{+}$and $\frac{G(\mathbb{R})^{+} \longrightarrow S^{+} \text {Deligne }}{9 \longmapsto g g_{0} g^{-1}}$

Ddigne: G / \mathbb{R} alg. $g \mathcal{P}, X$ conn. component of $\operatorname{Hom}(S, G)$ G. smallest $C G$ s.t. an $h \in X$ gator. Then X is

$$
\Rightarrow S^{+}=G(\mathbb{R})^{+} \cdot n_{0} .
$$ conn. component of $\operatorname{Hom}\left(\$, G_{1}\right)$. $\$$ torus, any two in X are conjugate. X B $G,(R)^{+}$-conjugally ass of

$\operatorname{Stab}_{h_{0}}\left(G(\mathbb{R})^{+}\right)=K_{0}$ closed $\Rightarrow S^{+}=\left(G(R)^{+} / K_{0}\right) \cdot h_{0} \simeq G(R)^{+} / K_{0}$ is smooth mfd. maps $\$$ to G.

$$
S=\text { Lie } G, G \longrightarrow G L(v) \Rightarrow g \longrightarrow \text { End }(v) \text {. }
$$

Ho makes the inclusion of Hodge struntwe of wt 0 .

$$
\begin{aligned}
& \Rightarrow \text { Lie } K_{0}=g^{00} \quad, \quad T_{h 0} S^{+}=9 / g^{00} \text {. } \\
& T_{n_{0}} s^{+} \simeq \xi / \xi^{\infty} \longrightarrow \text { End }(v) / E n d(v)^{\infty} \\
& 12 \\
& 12 \\
& g_{c} / F^{0} \longleftrightarrow E \operatorname{End}(v)_{\mathbb{C}} / F^{0} E_{\text {nd }}(v)_{c} \stackrel{(*)}{\simeq} T_{n_{0}} G_{d}\left(v_{\mathbb{c}}\right)
\end{aligned}
$$

the Bum. (*) B because End $v_{\mathbb{C}}^{r, s}=\left\{\varphi \in E n d V_{\mathbb{C}}, n\left(z_{1}, z_{2}\right) \varphi=z_{1}^{-r} z_{2}^{-s} \varphi\right\}$

$$
=\left\{\varphi \in E n d V_{\mathbb{C}}, \quad \varphi v^{p, 8} \subset v^{p+r, 8+s}\right\}
$$

and recall we have $G_{d}\left(V_{\mathbb{C}}\right) \simeq G L\left(V_{\mathbb{C}}\right) / P\left(F_{h_{0}}^{\cdot}\right)$, Lie $P\left(F_{h_{0}}^{\cdot}\right)_{\mathbb{C}}$ is exactly those in End $V)_{\text {© }}$ preserving Hedge filtration, i.e. F° End $(v) \mathbb{C}$.

The map from top left to bottom right is $(d \varphi)_{n_{0}}$, therefore maps $T_{n_{0}}\left(S^{+}\right)$ as a complex subspace of $T_{n_{0}}\left(G_{d} V_{\mathbb{C}}\right)$, hence φ identifies S^{+}with an almost complex submanifold of $G_{d} V_{C}$. It is integrable hence gives S^{+}the wrique complex strue. for φ to be nolo.
(b) Let $h, h_{0} \in S^{+}, h=g h_{0} g^{-1} . g \in G(\mathbb{R})^{+}$.
V_{n} has weight $n, n(r)$ ats r^{-n} on $v, r \in \mathbb{R}$.
Hence $g h_{0}(r) g^{-1}=h_{0}(r), h_{0}(r) \in Z(G)$.

Let $u_{0}: U_{1} \rightarrow G^{a d}=G / z(G)$ is wen-defined.

$$
z \longmapsto n_{0}(\sqrt{z})
$$

Then consider G_{0} be the alg. subgip of G fixing to. Clearly bo factors through $G_{0}^{a d}, u_{0}: U_{1} \rightarrow G_{0}^{a d}$. By Deligne again, $s^{+}=G_{0}^{a d}(\mathbb{R})^{+} \cdot u_{0}$

The $c=h_{0}(i)=u_{0}(-1)$ - polarization to implies that $A d\left(u_{0}(i)\right)$ is a cartan involution of $G_{0}^{a d}$. (In particular $G_{0}^{a d}$ reductive, center trivial \Rightarrow semisimple).

We have $\quad g / g^{\infty} \simeq T_{h_{0}} S^{+} \subset T_{h_{0}} G_{d} V_{\mathbb{C}} \simeq E_{n d} V_{C} / F^{0} E_{n} d V_{C}$ and the Girifititns transversality tells us $g / g^{00} \subset F^{-1} E_{n d} V_{\mathbb{C}} / F^{0} E_{n d} V_{\mathbb{C}}$, hence the action of U_{1} on SC only has chararters $1, z, z^{-1}$. Any compant factors of $G_{0}^{a d}$ can be disgarded. Hence $S^{+} B$ just the associated One can resolve this by allowing Hodge tensors Herm. Sym. Dom. to $\left(G_{0}^{a d}, u_{0}\right)$. live in $v^{\otimes r} \otimes\left(v^{v}\right)^{\otimes S}$.
(C) Let D be an irs. Herm. Sym. Dom. I, G the whnated adjoint group s.t. $G(\mathbb{R})^{+}=H 0 l(P)^{+}$. Choose a faithful self-dual rep. $G \rightarrow G L(V)$. As V self-dual, \exists nondegenerate bilinear form t_{0} on V fixed by G. We may find a set of tensors T containing to sit. G is the subgip of $G L(v)$ fixing $t \in T$. Let $h_{0}: S \longrightarrow U, \xrightarrow{u_{0}} G \quad G L(v)$

$$
z \longmapsto \frac{z}{\bar{z}}
$$

Then ho defines a Hodge strmuture on V for which T are Hodge tensors and to is a polarization. Then D is the connected component of $S(d, T)^{+}$containing h. .

RMK. $S^{+} \longrightarrow G_{d} V_{\mathbb{C}} B$ an embedding of smooth manifolds, Thyentue smooth maps that are ing. on tangent spaces and maps s^{+}homes. to its image. Hence if $T \xrightarrow{\beta} G_{Q} V_{C}, \beta$ smooth $\Rightarrow \alpha$ smooth β defined by nolo. Aamily of Hodge structure on $T \Rightarrow \alpha$ nolo.

RMK. Herm. Sym. Dom. can be autually realized as moduli varieties for Hodge struntwes (in complex manifolds). Also realiang Herm. Sym. Dom. as parameter spare for Hodge structures can be done using Tannakian point of view.

