

 X^+/X^- the set of positive / negative complex structures on V_R s.t. $\Psi(Ju, Jv) = \Psi(u, v), \quad X = X^{+} \amalg X^{-},$ G(R) and $x = 9 \cdot J = 9 \cdot J = 9 \cdot J^{-1}$, Stab_{G(R)} $(x^+) = \{9 \in G(R) \mid y \in 9 \cdot 7^{-2}\} = G(R)^+$ For $(P_{\pm i})$ sympletic basis of V, define $JP_{\pm i} = \pm P_{\pm i}$, then $J^2 = -1$ and JEX⁺, Lexi) 13 arthonormal basis for 4J. Conversely & JEX⁺ has this description. => S(R) and on X⁺ transitively =) G(IR) ants on X transitively as $ge_{\pm i} = e_{\pm i}$ interchanges X^{\dagger} and X^{-} . $J \in X$, $h_T : \mathbb{C}^{\times} \rightarrow G(\mathbb{R})$, $h_{g_{1}g^{-1}}(\mathbb{Z}) = gh_J(\mathbb{Z})g^{-1}$. $J \longrightarrow h_{I}$ identifies X with a G(R) - conjugary class of $h : \mathbb{C}^{\times} \longrightarrow G(\mathbb{R})$. We shall write $X(\Psi)$ and $x(\Psi)^{\dagger}$. RMK, $h \in X(\psi)$, $y(h(z)) = z\overline{z}$. dnm V = 29, a choice off symplectic basis for V identifies X^{\dagger} with Hg as Sp(4) - set.

(G(4), X(4)) Satisfies SV 1-6. SV I. $G(\Psi) \subset GL_v \times Gm$, Le $GR \subset \{(f, \lambda) \in End(V_R) \times R \mid \Psi(f(u), v) + \Psi(u, f(v)) = \lambda \cdot \Psi(u, v)\}$ The aution of $G(\mathbb{R})$ on the Gipe is by $g(f, \lambda) = (gfg^{\dagger}, \lambda)$. As $V_{\alpha} = V^{\dagger/\theta} \oplus V^{\circ/\dagger}$, $End(V_{\alpha}) = End(V_{\alpha})^{\circ/\theta} \oplus End(V_{\alpha})^{\dagger/\dagger} \oplus End(V_{\alpha})^{\dagger/\dagger}$ and correspondingly lie G a decomposes the same way. SV Z. $J^2 = -J \in Z(S)(R)$. Ψ is J-polarization for S_{IR} iff $J \in X^+$. Hence AdJ-1 Jex is Cartan involution for S => AdJ Cartan involution for S^{ad} = G^{ad}. SV 3. S = Sp(4) is a - simple and $G^{ad}(R)$ is not compart. SV 4. $r \in \mathbb{R}^{\times}$, $W_n(r)$ and $v^{1,\circ}$ and $v^{\circ,-1}$ by r^{-1} . Thus W_{\times} is the map $G_{\rm M,R} \rightarrow GL(V_{\rm R})$ which is defined over $Q_{\rm L}$ $r \mapsto r^{-1}$

SV 5.
Z(G) = G_{in}, G_{in}(G) = G^{*} detrote in
$$A_f^{*}$$
.
SV 6.
Z^{*}(G) = Z(G) already splits over G.
The siegel modular variety.
(G, X) = (G(4), X(4)) SD defined by Sp space (U, 4) over G.
The siegel modular variety Sh(G, X).
U(A_f) = V \otimes_{G} A_f, G(A_f) the group of A_f - linear auto. of U(A_f) preserving 4
up to A_f^{*} .
K C G(A_f) compart open, 11_K the set of triples ((W, h), S, qK) where
* (W, h) rehended Hudge structure of type (T, 0), (0, -1)
* S or -5 is a polarization for (W, h)
• QK is a K - orbit of A_f - linear ison U(A_f) -> W(A_f) under which 4
corresponds to an A_f^{*} - multiple of S.

An 13	iom. ((w, h)	, s. q⊭	.) ~ ((w' , h	'), s', q')	<) is	an	Bom.		
b: (w	ν, h) ~ >	Cw',	h')	of ranmal	Hodge	structures	sending	s	to	cs'	for
some	CEQX	ond	5.t.	boy = 1'	mod	K .					

The triple ((w,h),S, 7K) is the same as a sp. space (w,s) over (a, a complex structure on W that is positive or negative for S , and 9K. As dum V = dum W, (W, S) and (V, 4) are ison, choose $\alpha : W \xrightarrow{\sim} V$ s.t. Ψ corresponds to a $(a^{\prime} - multiple of S, then an : Z \longrightarrow a \cdot h(Z) \circ a^{-1}$ lies m X and V(Af) 1 w(Af) a V(Af) hes in G(Af). Any other such Bon. a' differs from a by some gEG(Q), a'= goa. Replacing a with a' replaces (ah, a. y) by (gah, ga. y). Thus we have well-defined map $H_{k} \longrightarrow G(Q) \setminus X \times G(A_{f}) / K$ · interpretation [an, and]k

Prop. The map above induces bijection $H_K/\simeq \longrightarrow G(G_X \times G(A_f)/K$.

$$\begin{split} M &\longmapsto H(M(G), 2) \\ \text{Stegen} : & A^{\nu}/C \iff \text{polasizable integral Hindge structure of type $(1, e), (e, -1)$
 $(\text{cmplex outdan varieties}). \\ & A \in \mathbb{C}^{n} \quad \text{letter}, \quad M = \mathbb{C}^{n}/A \quad . \\ & T_{1}(M, e) = H_{1}(M, Z) = A \quad , \quad H^{1}(M, Z) = Hom(A, Z). \\ & T_{2}(M, e) = H_{1}(M, Z) = A \quad , \quad H^{1}(M, Z) = Hom(A, Z). \\ & T_{2}(M, e) = H_{1}(M, Z) = A \quad Hom(A, Z) = A^{n}H^{1}(M, Z). \\ & T_{2}(M, e) = H_{1}(M, Z) = A^{n}Hom(A, Z) = A^{n}H^{1}(M, Z). \\ & T_{2}(M, e) = H^{n}(A, Z) = A^{n}Hom(A, Z) = A^{n}(M, Z) \\ & H^{n}(A^{n}, Z) = A^{n}Hom(A, Z) = H^{n}(M, Z) \\ & H^{n}(A^{n}, Z) = A^{n}Hom(A, Z) = H^{n}(M, Z) \\ & H^{n}(A^{n}, Z) = A^{n}Hom(A, Z) = H^{n}(M, Z) \\ & H^{n}(A^{n}, Z) = A^{n}Hom(A, Z) = H^{n}(M, Z) \\ & H^{n}(A^{n}, Z) = A^{n}Hom(A, Z) = H^{n}(M, Z) \\ & H^{n}(A^{n}, Z) = A^{n}Hom(A, Z) = H^{n}(M, Z) \\ & H^{n}(A^{n}, Z) = A^{n}Hom(A, Z) = H^{n}(M, Z) \\ & H^{n}(A^{n}, Z) = A^{n}Hom(A, Z) = H^{n}(M, Z) \\ & H^{n}(A^{n}, Z) = A^{n}Hom(A, Z) = H^{n}(M, Z) \\ & H^{n}(A^{n}, Z) = A^{n}Hom(A, Z) = H^{n}(M, Z) \\ & H^{n}(A^{n}, Z) = A^{n}Hom(A, Z) = H^{n}(M, Z) \\ & H^{n}(A^{n}, Z) = A^{n}Hom(A, Z) = A^{n}(M, Z) \\ & H^{n}(A^{n}, Z) = A^{n}(A^{n}, Z) \\ & H^{n}(A^{n}, Z) \\ & H^{n}(A^{n}, Z) = A^{n}(A^{n}, Z) \\ & H^{n}(A^{n}, Z) \\ & H$$$

Chow : polarizable complex torus is a projective algebraic variety and holds
maps belower than are regular.
Conversely the complex manifold ansociated with an obtainan variety is a complex
torus , exp. To (A)
$$\Rightarrow$$
 A(C) is surj. with remet lattice A , A(C)=To A/A.
M = C^A/A , A@Z R \cong C^A , A \cong Hi (M, Z) has integral. Hodge structure
of weight -1 , a Riemann form for M is a polarization for the Hodge structure
(Av/C] \Rightarrow { polarizable integral. Hodge structure of toppe (u, -1)}
PG
A ($i \rightarrow j$ polarizable complex tori) $i \rightarrow j$ polarizable integral. His ($i \rightarrow j$)
A ($i \rightarrow j$) polarizable complex tori) $i \rightarrow j$ polarizable integral. His ($i \rightarrow j$)
A ($i \rightarrow j$) $i \rightarrow j$ polarizable complex tori) $i \rightarrow j$ polarizable integral. His ($i \rightarrow j$)
A ($i \rightarrow j$) $i \rightarrow j$ polarizable complex tori) $i \rightarrow j$ polarizable integral. His ($i \rightarrow j$)
A ($i \rightarrow j$) $i \rightarrow j$ polarizable complex tori) $i \rightarrow j$ polarizable ($i \rightarrow j \rightarrow j$).
Av⁰ : Obj = Av/C , Homo (A, B) = Hom (A, B) @ Q
Cor. Av⁰ $i \rightarrow j$ polarizable rational Hodge structure of type ($i \neq i > j$).
To A = H, (A, R) = H, (A, C) / F⁰

A modular description of the points of the Siegel variety
A
$$A \vee (\mathcal{C}, T_{f}A = H_{1}(A, Z) \otimes_{Z}^{2} = \lim_{n} H_{1}(A, Z)/n H_{1}(A, Z)$$

 $\vee_{f}A = H_{1}(A, Q) \otimes_{Q}^{2}A_{f} = T_{f}A \otimes_{Z} Q$
 $T_{f}A$ free $\hat{Z} - mod$ of rank 2 dow A
 $A(C)_{n} = \ker(Cn], A(C) \rightarrow A(C))$
 $A(C) = C^{3}/\Lambda, H_{1}(A, Z) = \Lambda, A(C)_{n} = \frac{1}{n}\Lambda/\Lambda = \Lambda/n\Lambda, T_{f}A = \lim_{n} A(C)_{n}$
 $A = \Lambda \vee / K, chark = 0, T_{f}A = \lim_{n} A(K)_{n}, \vee_{f}A = T_{f}A \otimes_{Z} Q.$
 (V, Ψ) sp. space /(G, consider (A, S, qK))
 $\cdot A = A \vee / G$
 $\cdot S = attempting form on H_{1}(A, G) = s.t. S or -s is potenzectum on H_{1}(A, Q)$
 $\cdot q : V(A_{f}) \cong V_{f}A, \Psi$ corresponds to a multiple of S by A_{f}^{\times} , and $(A, S, qK) = M_{1}^{*} N_{1}^{*} N_$

Let
$$(G, X) = (GSp(V, 4), X(4))$$
, $S = G^{der} = Sp(4)$.
Suppose $\exists \mathbb{Z} - |aqtrice V(\mathbb{Z}) |n V s.t. 4 restricts to a pairing
 $V(\mathbb{Z}) \times V(\mathbb{Z}) \longrightarrow \mathbb{Z}$ with distiminant ± 1 . For $N \ni 3$, let
 $|K(N)^{=} \{9 \in G(A_{f}) \mid 9 \text{ preserves } V(\mathbb{Z}) \text{ and } ards as 1 \text{ on } V(\mathbb{Z})/NV(\mathbb{Z}) \}$
Let $S(\mathbb{Z})$ be the set of \Im in $S(\mathbb{Q})$ s.t. $9V(\mathbb{Z}) = V(\mathbb{Z})$. Then
 $|K(N) \cap S(\mathbb{Z})^{=} [CN)^{=} \{9 \in S(\mathbb{Z}) \mid 9 \text{ ards } as 1 \text{ on } V(\mathbb{Z})/NV(\mathbb{Z}) \}$
Write $V(\mathbb{Z}/N\mathbb{Z})$ for $V(\mathbb{Z})/NV(\mathbb{Z}) = V(\mathbb{Z})/NV(\mathbb{Z})$
Write $V(\mathbb{Z}/N\mathbb{Z})$ for $V(\mathbb{Z})/NV(\mathbb{Z}) = V(\mathbb{Z})/NV(\mathbb{Z})$
It is a free $\mathbb{Z}/N\mathbb{Z}$ - module of rank $\dim V$ with perfect pairing Ψ_N .
In this case $TT_0(Sh_{K(N)}(G, X)) = (\mathbb{Z}/N\mathbb{Z})^{\times}$.
Let (A, λ) be AV/\mathbb{C} of $\dim \frac{1}{2} \dim V$ and λ a principal polarization.
From λ we get a perfect alternating pairing
 $\mathbb{E}_{N}^{\Lambda} : A(\mathbb{C})[N] \times A(\mathbb{C})[N] \longrightarrow A_{N} \longrightarrow \mathbb{Z}/N\mathbb{Z}$
 $\mathbb{E}^{TT_{N}}$
A level N structure on A is an Born. $\eta : V(\mathbb{Z}/N\mathbb{Z}) \longrightarrow A(\mathbb{C})[N]$
Sending Ψ_N to some $(\mathbb{Z}/N\mathbb{Z})^{\times}$ - multiple of \mathbb{E}_{N}^{Λ} . Then the set $Sh_{K(N)}(\mathbb{C})$
classifiers isom. classes of $((A, \lambda), \eta)$. The connected component of a
pair $((A, \lambda), \eta)$ in $(\mathbb{Z}/N\mathbb{Z})^{\times}$ is just $\eta_*\Psi_N/\mathbb{E}_{N}^{\Lambda}$. The fibre ave
[1] consists of those $((A, \lambda), \eta)$ s.t. under η , Ψ_N and \mathbb{E}_{N}^{Λ} .$