Build SD from (V, ψ) sympleatic／Q
Siege SV classifies $A V+$ polarization＋level structure
The siegel modular variety．
$V \mathbb{R}$－V．S．，ψ nondegenerate bilinear alternating form on V ，J complex struc． on $\quad v . \quad \psi(J u, J v)=\psi(n, v) \Leftrightarrow \psi(z u, Z v)=|z|^{2} \psi(n, v), \forall z \in \mathbb{C}$ ．

$$
\Leftrightarrow \psi_{J}(u, v)=\psi\left(u, J_{v}\right) \text { is symmetric }
$$

and $\psi(J u, J v)=\psi(u, v), \psi_{J}$ positive definite $\Leftrightarrow \psi$ polarization of $\left(v, h_{J}\right)$

Eymplectic Spaces．
chark $\neq 2, \quad(v, \psi)$ sp．spare of dim $2 n, i . e . V$ K－v．s．of am $2 n$ and ψ nondegenerate alternating bilinear form．
wCV called totally Botropic if $\psi(w, w)=0$ ．
Symplatic baas of $v,\left\{e_{ \pm i}\right\}_{1 \leq i \leq n}$ s．t．$\psi\left(e_{i}, e_{-i}\right)=1, \psi\left(e_{i}, e_{j}\right)=0, i \neq \pm j$ ．

$$
\Rightarrow \psi=\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right)
$$

Lemma．WCV totally Botropic．Then every bass of w can be extended to a symplectic basis of V ．In particular V has symplatic basal and any two sp． space of same dimension are 13 omorptric．
cor．Every maximal totally Botropic subspace of v has dimension n ．They are called Lagrangians．
(V, ψ) nonzero symplectic spare, $G S_{p}(\psi)$ be the group of symplatic simititudes of
$(v, \psi), \quad G S p(\psi)(k)=\left\{g \in G L(v) \mid \psi(g n, g v)=\nu(g) \psi(n, v), \quad \nu(g) \in k^{x}\right\}$
$\nu: G S_{p}(\psi) \rightarrow G_{m}$ with kernel $S_{p}(\psi)=\operatorname{GS}_{p}(\psi)^{\text {der }}$. As before we have

$G_{m} \cap S_{p}(\psi)=\mu_{z}$.

Ex. $\quad \operatorname{dim} V=2 . \quad G S_{p}(\psi)=G L_{2}, \quad S_{p}(\psi)=S L_{2}$.
$\psi=\left(\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right)$ under symplatic bays, $\quad s_{p}(\psi)(k)=\left\{\left.g \in G L(v)\right|^{t} g \cdot \psi \cdot g=\psi\right\}$
Sp (ψ) ants simply transitively on sympletic bans.
(V, ψ) symplatic over $\mathbb{Q}, \quad G=G(\psi)=G S_{p}(\psi), \quad S=S(\psi)=S_{p}(\psi)=G^{\text {der }}$.
J complex struture on $V_{\mathbb{R}}$ s.t. $\psi(J u, J v)=\psi(u, v), J \in S(\mathbb{R})$.
$z \in \mathbb{C}^{x}, n_{J}(z) \in G(\mathbb{R})$ and if $z \in U_{1}, n_{J}(z) \in S(\mathbb{R})$.
J is called positive / negative if ψ_{J} is positive / negative definite.
x^{+} / x^{-}the set of positive / negative complex atrutures on $V_{\mathbb{R}}$ s.t.

$$
\psi(J u, J v)=\psi(u, v) . \quad x=x^{+} \Perp x^{-} .
$$

$G(\mathbb{R})$ ats on x by $g \cdot J=g J 9^{-1}, S_{G(a b}\left(\mathbb{R}^{+}\right)=\{g \in G(\mathbb{R}) \mid \nu(g)>0\}=G(\mathbb{R})^{+}$
For $\left(e_{ \pm i}\right)$ symplatic baels of V, define $J e_{ \pm i}= \pm e_{F i}$, then $J^{2}=-1$ and
$J \in X^{+},\left(e_{ \pm i}\right)$ is ortnonurnal basis for ψ_{J}. Conversely $\forall J \in X^{+}$has this description.

$$
\text { \{Symplatic bases \} } \longrightarrow x^{+} \quad S(\mathbb{R}) \text { - equivariant }
$$

$\Rightarrow S(\mathbb{R})$ outs on X^{+}transitively
$\Rightarrow G(\mathbb{R})$ auk on x transitively as $g e_{ \pm i}=e_{\mp i}$ interchanges x^{+}and x^{-}.
$J \in x, n_{J}: \mathbb{C}^{x} \rightarrow G(\mathbb{R}) \quad, n_{g J g^{-1}}(z)=g n_{J}(z) g^{-1}$.
$J \rightarrow h_{J}$ identifies X with a $G(\mathbb{R})$ - conjugacy class of $h: \mathbb{C}^{x} \rightarrow G(\mathbb{R})$. We shall write $x(\psi)$ and $x(\psi)^{+}$.

RMS. $\quad h \in X(\psi), \quad \nu(h(z))=z \bar{z}$.
$\operatorname{arm} V=29$, a choice of sympletic bays for V identifies X^{+}with Hg as $s_{p}(\psi)-$ set.
$(G(\psi), x(\psi))$ satisfies SV 1-6.

So 1.

$$
G(\psi) \subset G L_{v} \times \mathbb{G}_{m}, \quad \operatorname{lie}_{e} G_{\mathbb{R}} \subset\left\{(f, \lambda) \in E_{n d}\left(V_{\mathbb{R}}\right) \times \mathbb{R} \mid \psi(f(u), v)+\psi(u, f(v))=\lambda \cdot \psi(u, v)\right\}
$$

The caution of $G(\mathbb{R})$ on hie $G_{\mathbb{R}}$ is by $g(f, \lambda)=\left(g f g^{-1}, \lambda\right)$.
As $\quad V_{\mathbb{c}}=V^{-1,0} \oplus V^{0,-1}$, End $\left(V_{\mathbb{C}}\right)=E_{n d}\left(V_{\mathbb{C}}\right)^{0,0} \oplus$ End $\left(V_{\mathbb{C}}\right)^{1,-1} \oplus$ End $\left(V_{\mathbb{C}}\right)^{-1,1}$ and correspondingly sieGe decomposes the same way.

SN 2.
$J^{2}=-1 \in Z(S)(\mathbb{R})$. $\psi \quad B \quad J$-polarization for $S_{\mathbb{R}}$ if $J \in X^{+}$. Hence Ad J $-\psi$

$$
J \in x^{-}
$$

is Carton involution for $S \Rightarrow A d J$ Cartan involution for $S^{\text {ad }}=G^{\text {ad }}$.

SQ 3.
$S=S p(\psi)$ B \mathbb{Q} - simple and $G^{a d}(\mathbb{R})$ is not compact.
so 4.
$r \in \mathbb{R}^{x}$, $W_{n}(r)$ ats on $v^{-1,0}$ and v^{0-1} by r^{-1}. Thus w_{x} is the $\operatorname{map} G_{m, \mathbb{R}} \rightarrow G L\left(V_{\mathbb{R}}\right)$ which B defined over \mathbb{Q}.

$$
r \longmapsto r^{-1}
$$

SQ 5 .
$z(G)=G_{m}, G_{m}(\theta)=Q^{x}$ discrete in A_{f}^{x}.

SQ 6 .
$Z^{\circ}(G)=Z(G)$ already splits over \mathbb{Q}.

Thus is called the Siegel SD.

The siegel modular variety.
$(G, x)=(G(\psi), x(\psi))$ SD defined by sp. space (U, ψ) over \mathbb{Q}.
The siege modular variety $\operatorname{Sn}(G, x)$.
$V\left(A_{f}\right)=V \otimes_{Q} A_{f}, G\left(A_{f}\right)$ the group of A_{f}-linear auto. of $V\left(A_{f}\right)$ preserving ψ up to A_{f}^{x}.
$K \subset G\left(A_{f}\right)$ comport open. H_{k} the set of triples $((w, h), S, \eta k)$ where

- (w, h) rational Hodge strutive of type $(-1,0),(0,-1)$
- S or $-S$ is a polarization for (w, h)
- ηK is a K-orbit of A_{f}-linear Bum. $V\left(A_{f}\right) \rightarrow W\left(A_{f}\right)$ under which ψ corresponds to an A_{f}^{x}-multiple of s.

An Bum. $((w, h), s, \eta k) \xrightarrow{\sim}\left(\left(w^{\prime}, h^{\prime}\right), s^{\prime}, \eta^{\prime} k\right)$ is an Boa.
$b:(w, h) \xrightarrow{\sim}\left(w^{\prime}, h^{\prime}\right)$ of rational Hodge strutwes sending s to $c s^{\prime}$ for some $c \in Q^{x}$ and s.t. $b \circ \eta=\eta^{\prime} \bmod K$.

The triple $((w, h), s, \eta k)$ is the same as a sp. space (w, s) over \mathbb{Q}, a complex structure on W that is positive or negative for S, and ηK.

As $\operatorname{dim} v=\operatorname{dim} w, \quad(w, s)$ and (v, ψ) are Bum. Choose $a: w \xrightarrow{\sim} v$ s.t.
ψ corresponds to a Q^{x}-multiple of s, then $a n: z \longmapsto a \cdot h(z) \circ a^{-1}$ lies in X and $V\left(A_{f}\right) \xrightarrow{\eta} w\left(A_{f}\right) \xrightarrow{a} V\left(A_{f}\right)$ hies in $G\left(A_{f}\right)$.

Any other such Bum. a^{\prime} differs from a by some $q \in G(\mathbb{Q}), a^{\prime}=q \cdot a$. Replacing a with a^{\prime} replaces $(a h, a \circ \eta)$ by $(g a n, g a \circ \eta)$. Thus we have well-defined $\operatorname{map} \quad H_{K} \longrightarrow G(Q) \backslash \times \times G\left(A_{f}\right) / K$

- $\longmapsto[a h, a \cdot \eta]_{k}$

Prop. The map above induces bijection $H_{k} / \simeq \rightarrow G(Q) \backslash \times G\left(A_{f}\right) / K$.

$$
M \longmapsto H_{1}(M(\mathbb{C}), \mathbb{Z})
$$

Slogan: $A V / \mathbb{C} \longleftrightarrow$ polarizable integral Hodge strut we of type $(-1,0),(0,-1)$
complex abolian varieties.
$\wedge \subset \mathbb{C}^{n} \quad$ lattice, $M=\mathbb{C}^{n} / \wedge$.

$$
\pi_{1}(M, 0)=H_{1}(M, \mathbb{Z})=\Lambda, \quad H^{\prime}(M, \mathbb{Z})=\operatorname{Hom}(\Lambda, \mathbb{Z}) .
$$

Prop. $H^{n}(M, \mathbb{Z}) \simeq \operatorname{Hom}\left(\wedge^{n} \wedge, \mathbb{Z}\right)$.
pf. $\operatorname{Hom}\left(\Lambda^{n} \wedge, \mathbb{Z}\right)=\Lambda^{n} \operatorname{Hom}(\Lambda, \mathbb{Z})=\Lambda^{n} H^{\prime}(m, \mathbb{Z})$.
If $M=S^{\prime}, \Lambda^{n} H^{\prime}(M, \mathbb{Z})=H^{n}(M, \mathbb{Z})$
$M=\left(S^{\prime}\right)^{2 n}$. true by Kurneth.

Prop. A linear map $\alpha: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}, \alpha(\Lambda) \subset \Lambda^{\prime}$ induces a nolo. $\mathbb{C}^{n} / \Lambda \rightarrow \mathbb{C}^{m} / \Lambda^{\prime}$ sending 0 to 0 , and any nolo. $\mathbb{C}^{n} / \wedge \rightarrow \mathbb{C}^{m} / \wedge^{\prime}$ sending 0 to 0 asses in this way for some unique α.
$\mathbb{R} \otimes \wedge \simeq \mathbb{C}^{n}$ defines $\mathbb{C P}$ struc. J on $\mathbb{R} \otimes \cap$.
A Riemann form for M is $\psi: \Lambda \times \wedge \rightarrow \mathbb{Z}$ alternating s.t.

$$
\psi_{\mathbb{R}}(J u, J v)=\psi_{\mathbb{R}}(u, v), \quad \psi_{\mathbb{R}}(u, J u)>0 \text { if } u \neq 0 \text {. }
$$

M is canted polarizable if there is a Riemann form ψ.

Thy. $M B$ projative $\Leftrightarrow M$ is polarizable.
M projective $\Rightarrow M$ compar Kahler, $C_{1}(O(1) \mid x) \in H^{2}(x, \mathbb{Z})$ Riemann form
M polarizable $\Rightarrow \psi$ is Kancer form in $H^{2}(x, \mathbb{Z}) \cap H^{\prime \prime \prime}(X)$
$\Rightarrow \psi=C,(L)$ for some L positive $\stackrel{\text { Kodaira }}{\Longrightarrow} L$ ample.

Chow: polarizable complex torus is a projective algebraic variety and halo. maps between them are regular.

Conversely the complex manifold associated with an abelian variety is a complex torus, $\exp : T_{0}(A) \rightarrow A(\mathbb{C})$ B subj. with kennel lattice $\cap, A(\mathbb{C})=T_{0} A / \wedge$.
$M=\mathbb{C}^{n} \mid \wedge, \quad \wedge \otimes_{\mathbb{Z}} \mathbb{R} \simeq \mathbb{C}^{n}, \wedge \simeq H_{1}(M, \mathbb{Z})$ has integral Hodge structure of weight -1, a Riemann form for M is a polarization for the Hodge struc.

Thy. (Riemann) The functor $A \longmapsto H_{1}(A(\mathbb{C}), \mathbb{Z}) 13$ an equi. of categories. $\{A V / \mathbb{C}\} \rightarrow\{$ polarizable integral Hodge struc. of type $(0,-1)\}$

Po.
$\{A V / \mathbb{C}\} \xrightarrow{\text { an }}\left\{\right.$ polarizable complex tori\} ~ $\xrightarrow{H_{1}(-, 2)}\{$ polarizable integral $H S,(-1,0),(0,-1)\}$
 $M \longrightarrow H_{1}(M, Z)$
chow $\mathbb{C}^{n} / n \rightarrow \mathbb{C}^{m} / n^{\prime} \Leftrightarrow \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}, n \rightarrow n^{\prime}$.

$$
A V^{\circ}: O_{b j}=A V / \mathbb{C}, \quad \operatorname{Hom}_{0}(A, B)=\operatorname{Hom}(A, B) \otimes \mathbb{Q}
$$

$$
T_{0} A=H_{1}(A, \mathbb{R})=H_{1}(A, \mathbb{C}) / F^{\circ}
$$

A modular description of the points of the siegel variety
$A \quad A \cup / \mathbb{C}, \quad T_{f} A=H_{1}(A, \mathbb{Z}) \otimes_{\mathbb{Z}} \hat{\mathbb{Z}}=\lim _{n} H_{1}(A, \mathbb{Z}) / n H_{1}(A, \mathbb{Z})$

$$
V_{f} A=H_{1}(A, Q) \otimes_{Q} A_{f}=T_{f} A \otimes_{z} \mathbb{Q}
$$

$T_{f} A$ free $\hat{z}-\bmod$ of rank $2 \operatorname{dim} A$

$$
\begin{gathered}
A(\mathbb{C})_{n}=\operatorname{ker}([n]: A(\mathbb{C}) \rightarrow A(\mathbb{C})) \\
A(\mathbb{C})=\mathbb{C}^{g} / \wedge, \quad H_{1}(A, \mathbb{Z})=\wedge . A(\mathbb{C})_{n}=\frac{1}{n} \wedge / \wedge=\wedge / n \wedge . \quad T_{f} A=\lim A(\mathbb{C})_{n}
\end{gathered}
$$

$A \quad A V / K, \quad$ chark $=0, \quad T_{f} A=\lim A(\bar{k})_{n}, \quad V_{f} A=T_{f} A \otimes_{z} Q$.
(V, ψ) sp. space $/ Q$, consider $(A, S, \eta K)$

- A $A v / \mathbb{C}$
- s alternating form on $H_{1}(A, Q)$ s.t. s or $-s$ is polarization on $H_{1}(A, Q)$
- $\eta: V\left(A_{f}\right) \simeq V_{f} A, \psi$ corresponds to a multiple of s by A_{f}^{x}.
and $(A, S, \eta k) \simeq\left(A^{\prime}, S^{\prime}, \eta^{\prime} K\right)$ if $A \simeq A^{\prime}$ in $A V^{\circ}$ sending S to \mathbb{Q}^{*} - multiple of s^{\prime} and ηK to $\eta^{\prime} K$.
moduli?
The. ヨ natural bijection $\{(A, S, \eta k)\} / \simeq \longrightarrow \operatorname{Sh}_{k}(G(\psi), x(\psi))(\mathbb{C})$.

Let $(G, x)=\left(G S_{p}(v, \psi), x(\psi)\right), \quad S=G^{\text {der }}=\operatorname{Sp}(\psi)$.
suppose $\exists \mathbb{Z}$-lattice $v(\mathbb{Z})$ in v s.t. ψ restricts to a paining $v(\mathbb{Z}) \times v(\mathbb{Z}) \rightarrow \mathbb{Z}$ with discriminant ± 1. For $N \geqslant 3$, let $K(N)=\left\{g \in G\left(A_{f}\right) \mid g\right.$ preserves $v(\hat{\mathbb{Z}})$ and ants as 1 on $\left.v(\hat{\mathbb{z}}) / N v(\hat{\mathbb{Z}})\right\}$ Let $s(\mathbb{Z})$ be the set of g in $s(\mathbb{Q})$ s.t. $g v(\mathbb{Z})=v(\mathbb{Z})$. Then $K(N) \cap S(\mathbb{Z})=\Gamma(N)=\{g \in S(\mathbb{Z}) \mid g$ ants as 1 on $v(\mathbb{Z}) / N v(\mathbb{Z})\}$ Write $v(\mathbb{Z} / N \mathbb{Z})$ for $v(\mathbb{Z}) / N v(\mathbb{Z})=v(\hat{\mathbb{Z}}) / N v(\hat{\mathbb{}})$

It 13 a free $\mathbb{Z} / N \mathbb{Z}$ - module of rank $\operatorname{dim} V$ with perfect poising ψ_{N}. In this case $\pi_{0}\left(S h_{k(N)}(G, x)\right)=(\mathbb{Z} / N \mathbb{Z})^{x}$.

Let (A, λ) be $A V / \mathbb{C}$ of $\operatorname{dim} \frac{1}{2} \operatorname{dim} V$ and λ a principal polarization. From λ we get a perfect alternating pairing

$$
\begin{aligned}
e_{N}^{\lambda}: A(\mathbb{C})[N] \times A(\mathbb{C})[N] & \longrightarrow \mu_{N} \\
\sim e^{2 \pi i / N} & \longmapsto \mathbb{Z} / N \mathbb{Z}
\end{aligned}
$$

A level N structure on A is an Boo. $\eta: V(\mathbb{Z} / N \mathbb{Z}) \sim A(\mathbb{C})[N]$ serioning ψ_{N} to some $(\mathbb{Z} / N \mathbb{Z})^{x}$-multiple of e_{N}^{λ}. Then the set $S h_{k}(N)^{(\mathbb{C})}$ classifies 13 om . classes of $((A, \lambda), \eta)$. The conneated component of a pair $((A, \lambda), \eta)$ in $(Z / N Z)^{x}$ B just $\eta_{*} \psi_{N} / e_{N}^{\lambda}$. The fibre over [1] consists of those $((A, \lambda), \eta)$ s.t. under η, ψ_{N} and e_{n}^{λ} correspond exactly. AV/C always Bogerous to principally polarized AV

