Shimura varieties of Hodge type.

Hodge type if (G, x) 13.

nex, phex(4), yph(2)= 22.

GLY) frixing these ti.

G(4) framg these ti.

4 > V = V \ Q Q(1) G - equivariant.

v →> \(\bar{\pi}(v) = \psi(v, -)

Generalization of siegel modular varieties: -- + fixmy tensor condition.

Let $\nu: G \xrightarrow{P} G(\psi) \xrightarrow{\nu} G_m$, $G(\nu)$ the u.s. G on which G acts by ν' .

Jemma. 3 multilanear maps $ti: V \times \cdots \times V \longrightarrow Q(ri)$ s.t. G is the subgrp of

Pf. Onevalley's thm \Rightarrow 3 tensors the $V^{\otimes r} \otimes (V^r)^{\otimes s}$ s.t. G is the subgrap of

hex, (Qcr), Non) is rational Hodge structure of type (-r, -r).

 $\Phi(3v)(u) = \psi(9v, u) = \nu(9)\psi(v, 9^{7}u) = (9\Phi(v))(u)$

What kind of G has symplectic embeddings (in terms of Dynkin diagram)?

Deff. SD (G,X) is called off Hodge type iff A sp. space $(V,\psi)/\omega$ and

 $P: G \longrightarrow G(\Psi)$ injective carrying X into $X(\Psi)$. Sh(G,X) is said to be of

111

Surjectivity is clear.

Let $t: V^{\otimes m} \rightarrow \omega(r)$ fixed by G, $t(gv_1, ..., gv_m) = \nu(g)^r t(v_1, ..., v_m)$. $h \in X$, t defines a morphism of Hodge Structures $(V, h)^{\bigotimes m} \longrightarrow Q(r)$. If t to, m = 2r by comparing the weights.

A AV/C, $W = H_1(A, Q)$, $H^{m}(A, Q) \cong H_{m}(\Lambda^{m} W, Q)$.

 $(G,X) \longrightarrow (G(\Psi), X(\Psi)), G$ fixing $t_1, --, t_n$.

· Si Hodge tensors for A or powers of A

Let MK be the set of triples (A. (Si) of in 1/4) where

· So or -So polarization for the rational Hodge Structure (H.(A, G), h)

• $\eta K K$ - orbit of A_f - linear 130m. $V(A_f) \xrightarrow{\sim} V_f(A)$ sending ψ to A_f^* -

(**) \exists Bam. $a: H.(A, A) \xrightarrow{\sim} V$ sending so to Q^* -multiple of Ψ . Si to ti

An Ban. $(A, (S_i), q_k) \xrightarrow{\sim} (A', (S_i'), q'k)$ is an Bom. in $Av^{\circ} A \xrightarrow{\sim} A'$

sending so to Q'-multiple of so', si to si' and 1K to 1'K.

teH2r(A, Q) is called a Hodge tensor for A iff W2r -> 1/2rw -> Q(r) is

a marphism of Hodge Structures.

multiple of 50 and to to 50

and n to some element in X.

. A/C AV

satisfying

Thm. I natural bijection $M_K/2 \longrightarrow Sh_K(C)$.

RMK.
$$A(C) = C^{8}/\Lambda$$
, $H^{m}(A, Q) \simeq Hom(\Lambda^{m}\Lambda, Q)$

$$A \otimes C = T \oplus T , T = T_0 A ,$$

$$H^{P,8} = Hom(\Lambda^{P}T \otimes \Lambda^{8}T) C) = H^{8}(ACC), \Omega_{hoc}^{P}$$

A Hudge tensor on A is an element of
$$H^{2r}(A, \Theta) \cap H^{r/r} \subset H^{2r}(A, C)$$
.

lefschotz (1,1) thm: 0 -> 2 -> 0A (xp) OA ->0

 \Rightarrow $Pic(A) \rightarrow H^2(A, Z) \rightarrow H^2(A, O_A)$

then Im $Pic(A) = H^2(A, Z) \cap H^{1/1}$