
General Shima varieties
.

generalize : abelian varieties t abelian motives

Abelian motives.

Hod(R) category of polarizable rational Modge structures.

It is abelian subcate of the cat of all rational Hodge structures closed under

tensor products and duals
.

It is semisimple as the polarization allows to define complement to sub HS.
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The frector (V , 2 , m) 1- HCV, e , m) is a fructor from the category of

abdial motives AM to Hod(Q) commuting with 0
.

Q
, dual.

A rational US is called abelian if it lies in the essential image of this

functor , in particular it is polarizable.

R(K 12 M , CA , R) , A elliptic curve => &(1) abelian .

Hod
**

(Q) full subcate of abelian US in Hod(R).

Prop . Hod
*

(R) is the smallest strictly full subcate of Hod(@) containing H . CA ,R)

for each A AV/K and closed under dreat sun , subquotients , duals and tensor

products. U : AM ->Hod
*

(a) is an equivalence of cat.







classification of SV of abdian type.

Deligne : (G
,

X") Conn .
SD

, G Ample

gad is of type A
, B , < =) (G
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+

) abelian type

Gad is of type Eo . Ey =><G , X
* ) not abdian type as there

are no sympleatic embeddings

Gad is of type D
,

(G
, X

*
) may or may not be.

It is hoped that all Shimwa varieties with rational weight dadity isom · Classes

of motives with additional structure. For a rational rep. P : G -> GLr , we

have a family of US Preonsnex on V
. When the weight of (G

,
X)

is defined over
,

it is hoped that these Hodge structures always occur

in the cohomology of algebraic varieties.

Ex
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, nK) where A AV/ of dim =[F : R]

and i : F -> End(A)@Q and more
.




