Ti hang
$$2hu$$
: Counting points on SV , 1.
S. The notion of SV
Modular curves
 $H = \{x+iy \in C, y>0\}$
 G
 $SL_2(R)$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az+b}{cz+d}$
 U
 $T = \{\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(z) \mid \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod N \}$
 H/Γ is a Riemann surface
Adelic (anguage
 SL_2 \longrightarrow GL_2
 H \longrightarrow $X = C - R$
 $h_0: C^{X} \rightarrow GL_2(R)$
 $arbi \mapsto \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$

$$X = \mathbf{C} - \mathbf{R} \quad \longleftrightarrow \quad \mathsf{GL}_2(\mathbf{R}) - \mathsf{conj} \quad \mathsf{class} \quad \mathsf{off} \quad \mathsf{ho}$$

$$i \quad \longmapsto \quad \mathsf{ho}$$

$$\mathsf{K} \quad \mathsf{compaint} \quad \mathsf{open} \quad \mathsf{subgroup} \quad \mathsf{C} \quad \mathsf{GL}_2(\mathbf{A}_{\frac{r}{2}}) \quad, \quad \mathsf{A}_{\frac{r}{2}} = \prod^{\prime} \mathsf{Gp} \quad \mathsf{f}^{\mathsf{inver}}_{\mathsf{class}}$$

$$\mathsf{eg} \quad \mathsf{K} = \left\{ \mathfrak{I} \in \mathsf{GL}_2(\frac{1}{2}) = \prod^{\prime} \mathsf{GL}_2(\mathbf{Z}_p) \mid \left[\mathfrak{I} = \begin{pmatrix} \mathsf{I} & \circ \\ \circ & \mathsf{I} \end{pmatrix} \right] \mod N \right\}$$

$$\mathsf{adelac} \quad \mathsf{version} \quad \mathsf{off} \quad \mathsf{modular} \quad \mathsf{curve} :$$

$$\mathsf{Sh}_{\mathsf{K}} = \mathsf{GL}_2(\mathfrak{G}) \setminus \mathsf{X} \times \mathsf{GL}_2(\mathbf{A}_{\frac{r}{2}}) / \mathsf{K}$$

$$\mathsf{auss} \quad \mathsf{adeagmating} \quad \mathsf{auts} \quad \mathsf{onlg} \text{ on } \mathsf{GL}_2(\mathbf{A}_{\frac{r}{2}})$$

$$\mathsf{Sh}_{\mathsf{K}} \quad \mathsf{i3} \quad \mathsf{a} \quad \mathsf{one} - \mathsf{olun} \quad \mathsf{opx} \quad \mathsf{mfd} \quad \mathsf{with} \quad \mathsf{flurturg} \quad \mathsf{mong} \quad \mathsf{consteal} \quad \mathsf{compments}$$

$$\mathsf{Sh}_{\mathsf{K}} \quad \mathsf{i3} \quad \mathsf{a} \quad \mathsf{one} - \mathsf{olun} \quad \mathsf{opx} \quad \mathsf{mfd} \quad \mathsf{with} \quad \mathsf{flurturg} \quad \mathsf{mong} \quad \mathsf{consteal} \quad \mathsf{compments}$$

$$\mathsf{Sh}_{\mathsf{K}} \quad \mathsf{i3} \quad \mathsf{a} \quad \mathsf{one} - \mathsf{olun} \quad \mathsf{opx} \quad \mathsf{mfd} \quad \mathsf{with} \quad \mathsf{flurturg} \quad \mathsf{mong} \quad \mathsf{consteal} \quad \mathsf{compments}$$

$$\mathsf{Sh}_{\mathsf{K}} \quad \mathsf{i3} \quad \mathsf{a} \quad \mathsf{one} - \mathsf{olun} \quad \mathsf{opx} \quad \mathsf{mfd} \quad \mathsf{with} \quad \mathsf{flurturg} \quad \mathsf{mong} \quad \mathsf{consteal} \quad \mathsf{compments}$$

$$\mathsf{Sh}_{\mathsf{K}} \quad \mathsf{i3} \quad \mathsf{a} \quad \mathsf{oneduli} \quad \mathsf{space}$$

$$\forall (\mathsf{h}, \mathsf{g}) \in \mathsf{X} \times \mathsf{GL}_2(\mathbf{A}_{\frac{r}{2}})$$

$$\mathsf{h} : \quad \mathbb{C}^{\mathsf{A}} \longrightarrow \mathsf{GL}_2(\mathbf{R}) \quad =) \quad \mathbb{R}^{\mathsf{T}} \quad \mathsf{hos} \; \mathsf{a} \quad \mathsf{complex} \quad \mathsf{structure} \quad \mathsf{wa} \quad \mathsf{h}$$

$$\mathbb{R}^{\mathsf{T}}/\mathbb{Z}^{\mathsf{T}} = \mathbb{E} \quad \mathsf{i3} \quad \mathsf{an} \quad \mathsf{oduptic} \quad \mathsf{curve}$$

$$\mathsf{Rotioned} \quad \mathsf{Tate} \quad \mathsf{moduls} \quad \widehat{\mathcal{V}}(\mathbb{E}_{\mathsf{n}}) = \left(\underbrace{\mathbb{E}_{\mathsf{m}} \quad \mathbb{E}_{\mathsf{h}}(\mathcal{N})}_{\mathsf{N}} \otimes \underbrace{\mathbb{E}_{\mathsf{N}} \quad \mathsf{i5} \quad \mathsf{an} \quad \mathsf{fl}_{\frac{r}} \cdot \mathsf{mod}$$

$$\Rightarrow \quad \widehat{\mathcal{V}}(\mathbb{E}_{\mathsf{n}}) \cong \mathsf{A}_{\frac{r}{2}}^{\mathsf{T}}$$

$$\begin{array}{cccc} compase with g , & \sum h,g : \widehat{V}(Eh) \simeq h_{5}^{2} \xrightarrow{9} h_{7}^{2} \\ Upshot : & (h,g) \longrightarrow (Eh, \sum h,g) \\ up to taking up to K-ation \\ Bigging \\ \end{array}$$

$$\begin{array}{cccc} Sh_{K} \quad B \quad the module space of such pairs over C \\ \hline Canside same module poblem /Q , it is $rep'R$ by a quani-proj. \\ smooth variety /Q (assume K small enorgh) \\ \hline Thes is " canonical model" of Sh_{K} over Q . \\ \hline Iqbr's Shrowra found many generalizations to higher dum cases \\ \hline Nuclule space of AV + PEL \\ \hline Iq71 Delegne . More abstrat point of view \\ \hline SD (G, X) \\ \hline Q /R reductive group \\ \hline X \quad Q(R) - conj. class of some ho: S = Resciption \rightarrow G_{R} \\ \hline R - algebraic \\ \hline \end{array}$$

Most imperiodicly

$$S \xrightarrow{h_{0}} G_{IR} \xrightarrow{AA} G_{L} (he G_{R})$$
the resulting HS on the Gir has type $(-7,1), (a, a), (b, -1)$
"ho has to be minuscale"
Take K C G(A_f) compact open subgrp (Small enough)
Sh_K = G(G) $\times \times G(A_{f}) / K$ complex mfd
(complex structure
comes from accord)
Baily - Borel : Sh_K is quasi-proj. Vor. / C.
Thm. (Shimura, Deligne, Brown, Anilne)
Sh_K has a contrained over refiex field $E = E(G, \times)$.
e.g. $G_{I} = T$ tono . Sh_K(C) is a finite set
 $S \xrightarrow{h_{0}} T_{R} \xrightarrow{=} S_{C} \xrightarrow{-} T_{C}$
iii
 $A_{h_{0}} : G_{IR} \xrightarrow{-} S_{C} \xrightarrow{-} T_{C}$

As
$$G_{TM}$$
, $T/(Q_{n}, M_{h}, is defined over some number field E
(reflex field)
 $A_{E}^{\times}/E^{\times} \xrightarrow{M_{h}} T(A_{E})/T(E) \xrightarrow{N_{M}} T(A)/T(Q)$
 $T_{0}(A_{E}^{\times}/E^{\times}) \longrightarrow T_{0}(T(A)/T(G))$
 $12 (FT \qquad () \qquad Sh_{K}(C) = T(D))T(A_{F})/K$
 $12 (FT \qquad () \qquad Sh_{K}(C) = Sh_{K}(\overline{E}) \xrightarrow{(M_{H}, T(A))} deten
Gal(E^{Ob}/E) \qquad Sh_{K}(C) = Sh_{K}(\overline{E}) \xrightarrow{(M_{H}, T(A))} T_{0}$
By descent, we get zero dram var. $/E$
 $(T \sim) CM AV \sim) Shimure - Taniyana formula)$
In general, the continued models of SV are characterized by
1) $G = T$ torus, the model is as above
2) Require some functionality w.1.t. $(T, X_{T}) \rightarrow (G, X)$
e.g. Stegel modular variety
 (V, V) symplectic space $/Q$ of dram 22
 $G = GSP = {g \in GL(V) |g}$ preserves Y up to a scalar }$

$$dm \forall = 2 = 3 \quad GiSp = GL2$$

$$X = \begin{cases} h: S \longrightarrow GR \\ V_R \times V_R \longrightarrow R, \quad \forall (-, h(i)) =) \quad \text{symmetric} \end{cases}$$

$$Positive / negative definitive = 3t^{9, \pm}$$

$$E = E(G_1, \times) = Q$$

$$Sh_K \quad is \quad the module space off g-dim AV \quad with \quad polarization and lavel structure K$$

$$S \quad Haose - Weil \quad Zeta \quad Function \quad for \quad SV$$

$$X \quad smarth \quad proj. \quad Var. \quad / Q$$
for almost all p , could find $\neq_p \quad good \quad integral \quad nodel \quad / Z_p$

$$for \quad see C , \quad Res >> 0 , \quad S_p (\times, s) = \exp\left(\frac{2}{n+1} \# \times_p(F_pn), \frac{p^{-ns}}{n}\right)$$

$$Lefrenhete trace formula $det(1 - Frebp, T) \mid H_{of}^{1}(\times d_{a}, \Theta_{c}), \frac{q^{-ns}}{T=p^{-s}}$

$$\frac{3(x, s) = TT}{2}p(x, s) \quad (for \quad almost \quad all \quad p) , \quad Res >> 0$$

$$(Troub \quad aution \quad on \quad merica invasiont port of the cubin mology off generic fibre)$$$$

Ultimate canyature:
$$\overline{\zeta}(x,s)$$
 has meromorphic continuation to C
Thm. (Eichler - Shimura)
 $\chi = \chi_0(N)$ modular curve of $\Gamma_0(N)$ level
 $\overline{\zeta}(x,s) = \overline{\zeta}(s) \overline{\zeta}(s-1) \cdot \frac{g \cdot g(x)}{\Pi} L(fe,s)^{-1}$
 H^0 H^0 H^0
 $\{f_i\}$ eigenbacks of $S_2(\Gamma_0(N))$, $L(fe,s)$ L -function of fe
(Heike: $L(fe,s)$ has mere cont to C)
 $\overline{\zeta}(x,s)$ has mere cont to C (and solistly a functional equality)
 RMK . Replace $H^0_{eq}(X_{\overline{ch}}, Ge)$ by $H^0_{eq}(X_{\overline{ch}}, L)$ for L suitable local
system on X built from representations of $G = GL_2$, we will see
higher weight modular forms in analogue of $\overline{\zeta}(x,s)$.
Expert:
Hase-Weil Zeta of $Sh_E(G,x)$ (--) L -functions of automorphic forms on G

 UNIS	cuse,	IS	noncompan	20	lor	1, , ,	-c (O(m))	
. 1	2							

 $tr(f|L^{(q(Q_1)(A))})$ does not make sense without truncation.

RMK. Actually one wonts to understand the commuting action of
Gal(
$$\overline{E}/E$$
) x H($\mathbb{K} \setminus \mathbb{G}(\mathbb{A}_{f}^{-})/\mathbb{K}$) on H_{ef}^{c} ($Sh_{K,\overline{E}}$, G_{R}).
Fix $f \in H(\mathbb{K} \setminus \mathbb{G}(\mathbb{A}_{f}^{-})/\mathbb{K})$, need tr($f \times Fnb_{p}^{a} \mid H_{ef}^{c}$).
Assume $\mathbb{K} = \mathbb{K}^{p}\mathbb{K}_{p}$, $f = f^{p}f_{p}$, $f^{p} \in H(\mathbb{K}^{p} \mid \mathbb{G}(\mathbb{A}_{f}^{p}^{-})/\mathbb{K}^{p})$ and
 $fp = \mathbb{I}_{\mathbb{K}_{p}}$. By linearity, assume $f^{p} = \mathbb{I}_{\mathbb{K}_{p}^{q}}\mathbb{K}^{p}$. Then
 $\overline{\xi}(-1)^{c}$ tr($f \times Fnb_{p}^{a} \mid H_{ef}^{c}$) = # flixed points of the correspondence
 $S(\mathbb{K}^{p}ng^{-1}\mathbb{K}^{p}g)\mathbb{K}_{p}$ $\overline{S}(\mathbb{K}^{p}ng^{-1}\mathbb{K}^{p}g)\mathbb{K}_{p}$
 $g \downarrow$ $g \downarrow$
 $S\mathbb{K}^{p}\mathbb{K}_{p}$. $S_{\mathbb{K}_{p}^{p}\mathbb{K}_{p}$
Kottwitz's precise conjecture
(G, X) SD , $E = E(G_{1}, X)$.
For simplicity , assume $E = G$, G^{der} simply connected.
 $\mathbb{K} \subset G(\mathbb{A}_{f})$
 $fix p$ prime s.t. $\mathbb{K} = \mathbb{K}^{p}\mathbb{K}_{p}$, $\mathbb{K}^{p} \subset G(\mathbb{A}_{f}^{p})$
 $\mathbb{K}_{p} \subset G(\mathbb{B}_{p})$ hyperspecied
(five fixed \mathbb{K}_{r} all but pixitity many $(f e = \mathbb{F}_{p} - \mathbb{F}_{p} - \mathbb{F}_{p})$
 $\mathbb{K}_{p} = g_{p}(\mathbb{Z}_{p}) \subset G(\mathbb{G}_{p})$)

$$\begin{array}{rcl} \mbox{Cunj. For such p, Sh_K has a smooth "canonical" model $S_K / 2p$ and $$S_K^P_{Kp}$_{KP}$ is a finite etal system with an extended $G_1(AP_f^P)$- autium.
Conj. (Kottwitz) volume (twisted) orbital integral
$S_K (F_{p^n}) = $\sumes ((1), 7, 8) \cdots) \cdots) \cdots (1)_K^P (1)_{KP} \cdots TO_8 (f_{M,n}) (Y_0, 7, 8) \cdots) \cdots (1)_K^P (1)_{KP} \cdots TO_8 (f_{M,n}) (Y_0, 7, 8) \cdots) \cdots (1)_K^P ($$

•
$$(Y_0, Y, \delta)$$
 Kottwitz triple
Yo : Semisimple element in G(G) up to $G(\overline{G}) - conj$.
Yo is contained in an elliptic maximal torus in $G(R)$
compared after nod center
Y : element of $G(A_f^{c})$ up to $G(A_f^{c}) - conj$.
St. Y is conj. to Yo inside $G(A_f^{c} \otimes_{\overline{G}} \overline{G})$
 δ : element of $G(Q_{pn})$ up to $\overline{J} - conj$.
 \overline{J} Frob in $Gal(Gp^{n}/Gp)$
 $\overline{J} - conj$: $g \cdot \delta \cdot \sigma(g)^{-1}$, $g \in G(Gp^{n})$
S.t. $\delta \cdot \sigma \delta \cdot \cdots = \sigma^{n+1} \delta \in G(Gp^{n})$
Additional : a certain cohomological invariant defined by (Y_0, Y, δ)
Should vanish
(collect all local distributions coming from conj. / \overline{G} , \overline{Gp} , should come from
some global obstruition)

· ((Yo, Y, S) is a certain volume term

•
$$O_{Y}(1_{k}r) = \int_{C_{Y}(G(A_{f}^{P}))} G(A_{f}^{P}) \frac{1}{k^{p}(9^{T}Y9)} dg$$
 orbital integral $C_{Y}(G(A_{f}^{P}))$

•
$$TO_{\delta}(f_{\mu,n}) = \int_{\{g \in G(\mathcal{Q}_{p^n}), g \in \sigma(g)\}^2 = \delta\}} f_{\mu,n}(g^{\dagger} \in \sigma(g)) dg$$

$$f_{\mu,n}: G(Q_{p^n}) \longrightarrow \{0, 1\}$$
 does not depend on μ

charanteristic function of
$$\mathfrak{G}_p(\mathbb{Z}_{p^n}) \cdot \mu(\mathfrak{p}) \cdot \mathfrak{G}_p(\mathbb{Z}_{p^n}) \subset \mathfrak{G}(\mathfrak{Q}_{p^n})$$

where μ is a cocharanter $\mathfrak{G}_m \longrightarrow \mathfrak{G}_p$ defined over \mathbb{Z}_p

· trusted and untrusted orbital integral at the same time

•
$$O_{\gamma}(1_{k^{p}})$$
 depends on $G_{1}(A_{f}^{p})$ - ωm_{j} . dans of γ , not $G_{1}(A_{f}^{p} \otimes_{\mathbb{Q}} \bar{\mathbb{Q}})$ - ωm_{j} . dans

Def. A stable conj. class in
$$G_1(A_p^p) / G_1(B_v), G_1(A), G_1(A_p)$$

is the union of autual conj. classes which become conjugate after
base change to \overline{G}
Problem: RHS of Kettwitz is not based on stable orbital integrals
Thm. (Kettwitz, 1992)
 $\sum c(\gamma_{k}, \gamma, \delta) \cdot O_{\gamma}(\mathbf{1}_{k}^{p}) \cdot TO_{\delta}(f_{\mu,n})$
 $(\gamma_{k}, \gamma, \delta)$
 $= \sum \sum SO_{\gamma_{H}}(f^{H})$
 $H = \gamma_{H} - \sum SO_{\gamma_{H}}(f^{H})$
 $f^{H} = f_{P} \cdot f_{w_{0}} \cdot f^{H} \cdot P_{\gamma} \cdot w$
 $H(G_{P}) + H(R) + H(A_{F}^{p})$

