

$$\Rightarrow A \otimes^{t} B = P \otimes B$$
Rewrite mult $(P) = \chi (O_{X,P} \otimes^{t} O_{Y,P})$
 $\chi (O_X \otimes^{t} O_Y) = deg \chi \cdot deg Y$
This reformulation generalizes to arbitrary cases.
Ex. (self - mitersection).
 $C \subset CP^2$ of deg d - C A C.
Compute $\chi (O_C \otimes^{t} O_C)$.
Resolve O_C :
 $0 \rightarrow O(-C) \Rightarrow O \rightarrow O_C \rightarrow O$
 $\chi (O_C \otimes^{t} O_C) = \chi (O_C) - \chi (O(-C) \otimes O_C)$

$$= (1-g) - (-d^{2}-g+1) = d^{2}$$
Morel: for full generality of Bezont theorem, equip
set - theoretic inter. $X \wedge T$ with $O_{X} \otimes^{W} O_{T}$.
RMF. when A , B are algs. $/ R$, we an enhance
 R to get a commutative differential graded
alg. Structure (cdga):
(i) multiplications $P_{m} \otimes P_{n} \rightarrow P_{m+n} \longrightarrow \oplus P_{n}$
comm. graded
 $Xy = (-1)^{|X||y|} y_{X}$
(ii) differential $d: P_{n} \rightarrow P_{m-1}$

$$d(xy) = (dx)y + (-1)^{1\times 1} \times (dy)$$

$$= P \cdot \otimes B = A \otimes^{L} B \quad \text{inherits} \quad cdga \quad strue. \quad \begin{pmatrix} up & to \\ ntpy \end{pmatrix}$$

More precisely
$$\chi \longrightarrow \chi_{R} = Map_{cdga} (C_{dR}^{*}(x; G), Q)$$

is a rational httpy equivalence.
Reformulate : $\hat{\chi} = Spec (d_{R}(x; G)) d_{q}$ scheme
"schemetization of χ "
then $\chi_{R} = \hat{\chi}(Q)$ rational httpy equiv. to χ .
More generally $\forall \chi$, field k , the singular chain
 $CPx (f(x; K))$ has the struct of an Ew - alg./k
Thm. (Mandell) χ simply control $drom H^{*}(x, F_{P}) < \omega$
then the canonical map $\chi \rightarrow \chi_{P}^{2} = Map_{Ew}(C^{*}(x; F_{P}), F_{P})$
is an ison. on F_{P} - con. and $T_{R} \chi_{P}^{2} \simeq P$ - carc
completion of $T_{R} \chi$.

4. Derived Cat.
Fourier - Mukai transform

$$E/E$$
 elliptic cuive
 $E \times E$ $P:$ line bundle on $E \times E$
 $T. P = T. corresponding to
 $T. P = E$ $\Delta - \{e\} \times E - E \times \{e\}$
Consider $Q_{Con}(E) \rightarrow Q_{Con}(E)$
 $P \rightarrow T_{1*}(P \otimes T_{0}^{*}P)$
not exact and faithful
 m get improvement possing to derived cot.
 FM transform : $D(Q_{Con}(E) \rightarrow PQ_{Con}(E)$
 $P \rightarrow T_{1*}(P \otimes T_{0}^{*}P)$
gives an equivalence (close for AV).$

Thm. (Bondol -
$$O(bv)$$
) \times / \times sm. proj. var. Assume
 K_{X} ample or antriample, then X is determined by
 D^{b} con (x) C D (b (on (X)).
Base change theorem.