DA (1).		
V. Structured spaces.		
Gloal generolize the notion of local	y mged y	pares to the
derived setting.		
1. 00 - Tupoi.		
Idea: generalization of typological space	۵S	
1.1 Giraud's axioms.		
Deg An 00 - cat. X 13 called an	a - tupos	(f there
exists a small os-cat. C and a	an accessibl	e—left-exaut
licalization guarter $P(E) \rightarrow \chi$		
More intrinsic : HTT 6, 1.0.b		
00 - Cast. X 13 00 - tupos (=) X 9	Satisfies the	Gollowing
analogu	ne of Ain	and's axioms:
(i) V preventable		

In this case,
$$U^{\dagger}$$
 is called the Cech nerve of $U_0 \xrightarrow{u} U_1$
Def. A simplicial obj. U of $CD - Cast. E$ is called an
effective group vid if it can be extended to a colon diagram
 $U^{\dagger}: \mathcal{O}_{\pm}^{P} \longrightarrow E$ s.t. U^{\dagger} is a Cech nerve.
1.2. Gimtherpaieuk topologies and sheaves.
Def. C co-cat., a sieve on C is a full subcat.
 $\mathcal{E}_{C}^{(O)} \subset \mathcal{E}$ s.t. for any $D \in \mathcal{E}_{C}^{(D)}$, $f: \mathcal{E} \longrightarrow D$ in C.

we have
$$C \in C^{(0)}$$
.

Scatistigning:
(1)
$$\forall C \in C$$
, the sieve $C_{1C} \subset C_{1C}$ on C is a covering sieve
(2) $\forall f: C \rightarrow D$ in C , f^{*} preserves covering sieves
(3) $\forall C \in C$, covering sieve $C_{1C}^{(o)}$ on C , $C_{1C}^{(i)}$ on
arbitrary sieve on C . If our each $f: D \rightarrow C$ belonging
to $C_{1C}^{(o)}$, the pullback $f^{*}C_{1C}^{(i)}$ is a covering sieve on
 D then $C_{1C}^{(i)}$ is a covering sieve on C .
RMK. Givenencieck topology on C is essentially the same
as Givenencieck topology on hC.
Pape C or Cat , $C \in C$, $j: C \rightarrow P(C)$ formed a embedding
we have a bijection $\{suborbs \ of \ S(C)\} \rightarrow \{sieves \ on \ C\}$
 $(monomorphism (U \rightarrow s)C) \rightarrow C_{1C}(U)$
 $C_{1C}(U) \subset C_{1C}$ spanned by $f: D \rightarrow C$ s.t. $= jUD$ $\sum_{i=1}^{K} j(C)$

Deg.
$$\chi, y = \omega - tupoi$$
. A geom. marphism between χ and
 χ is a poir of adjoint Quarters $\chi \stackrel{f^*}{\longrightarrow} y$ s.t.
 f^* is left exact.
Define subcat. ITup, RTop C Catoo as follows:
(1) objs are $\omega - tupoi$
 $f^*: \chi \rightarrow y$ of $\omega - tupoi$ belong to ITup
(2) a functor $f^*: \chi \rightarrow y$ of $\omega - tupoi$ belong to ITup
(3) it preserves small colores and finite limits
it has a left exact left adjoint.
RMIK. ITop \simeq RTop op .
HTT $b.3.2 - 4$: ITup, RTup admit limits and colores.
(1) χ/U is $\omega - tupos$
(2) χ/U is $\omega - tupos$
(3) $T_1: \chi/U \rightarrow \chi$ has a right adjoint commuting usith
(4) $\chi/U \rightarrow \chi$ has a right adjoint commuting usith
(5) $T_1: \chi/U \rightarrow \chi$ has a right adjoint commuting usith

hence
$$\pi^*$$
 has a right adjoint $\pi_*: \chi_{/U} \rightarrow \chi$ and
 (π^*, π_*) gives a geom. morphism of ∞ - topor.
Deg. Such geom. morphisms are called etale morphisms.
HTT 6.3.5.13 : Let RTup_{et} C RTop spanned by all
 ∞ - topoi and etale geom. morphisms. Then RTup_{et} admits
small coloris, i.e. We can glue ∞ - topoi along etale
uper subsets.
2.1 Sheaves with values in an ∞ - cat.
"ringed space"
Deg. C ∞ - Cat. , χ ∞ - topoi, a C-valued sheaf on χ
is a guartar $\chi^{UP} \rightarrow C$ which pressues small lims.
Denote shire $(\chi) \subset Fur(\chi^{UP}, C)$ spanned by
 $r-valued$ sheaves on χ

Def. T is - cot. equipped with a Oriothenolicit topology.
C is - cot., a functor
$$O: T^{P} \rightarrow C$$
 is called a C-valued
shead on T if for every $X \in T$, covering sieve T_{1X}^{o}
the composite map $(T_{1X}^{o})^{d} \subset (T_{1X})^{d} \rightarrow T \xrightarrow{OP} C^{P}$ is
a color diagram in C^{P} .
Denote $Shv_{c}(T) \subset Fin(T^{P}, C)$.
Ex. $Shv(T) \cong Shv_{s}(T)$.
Rup. For T as above, $j: T \rightarrow P(T)$ Yoneda, we have
 $L: P(T) \rightarrow Shv(T)$ sheadification functor left adjoint to
the inclusion. C on-Cat. admitting small lings. Then the
composition with Log incluses equiv. of $oo-cat$.
 $Shv_{c}(Shv(T)) \cong Shv_{c}(T)$.

