DAG.
4. Examples.
00-cat. arise naturally by inverting a collection of morphisms
in an ord cat.
Given as - cat. C and collection of minphisms W in C
we can construct an α - α + $e[w]$ with
a: e -> e[w]] sometry white sal property
V 00 - cap. D, composition with a gives Bully
Jaitnful envedding
Fun (e[w]), D) -> Fun (e, D)
whose essential image consists of those functors which
carry mapping in w to an equily in \mathcal{D}

Sx.
1. Kan : col. of Kan qxes
w : collection of httpy equiv.

$$S = Kan[vi]^{+}]$$
 called the wo-cod. of spaces
2. VVKan: cot. of week Kan qxes
(model for ow wo-cod.)
W: collection of equiv. of wo-cot.
(at we with a filling of wo-cot.
5. Fibrations of wo-cot.
2. Vanta, we comes from model cot.
3. Fibrations of wo-cot.
2. Later want a framily of wo-cot. porametrized by an
wo-cot.

HTT 3.3.3.2 F: I -) Cate ~ Cart. fib. p. X -) I^P then lim F ~ Fun (I^{SP}, X) RHS denotes the full subcot. of $Fun_{1}p(I^{P}, X)$ spanned by functure sename every morphism of 2°P to a p-cart. murphism in X. SX Consider chiagrams of 00-casts. E 18 e fo un. —) Cart. fib. x = {e D E} J P {*, ~ *2 - *3?

By HTT 2.4.1.10, V CEC, dtD, eEE vue nove
$Map_{\mathcal{X}}(d,c) \simeq Map_{D}(d, fus)$
Map (d, e) ~ Map (d, g(es)
$Map_{\mathcal{X}}(c,d) \simeq Map_{\mathcal{X}}(e,d) \simeq Map_{\mathcal{X}}(c,e) \simeq \phi$
a section S of P consists of .
• $(= 5(*_1) \in C, d = s(*_2) \in D, e = s(*_3) \in E$
• $s(\alpha) : d \rightarrow c$ in \mathcal{X} , i.e. $d \rightarrow f(c)$ in \mathcal{D}
· s(B): d -> e in 7, i.e. d -> g(e) in D How (d'() ~ Map. (d', f(c))
s sends α, β to p -carl. =) f(c) $\simeq d \simeq g(e)$
=) (cort sentions s of p m) obj. in expE.

For colom we have
HTT 3.3.4.3. chapter
$$F: 1 \rightarrow Cot_w$$

 $\begin{array}{c} Un. \\ & \\ & \\ \end{array} \end{array}$ (occre gib. $P: X \rightarrow I$
Let vi be the collection of all p -colect in X
 $colom F \simeq X Cw^{-1}$].
Fib. of spaces.
Peg. A right/left fib is a Covt. / colect fib.
 $P: C \rightarrow D$ visce gibres are spaces (i.e. S,
 $St. & Un.$
HTT 2.2.1.2 C ∞ -cat. We have equiv. of
 $\omega - cot_{-}$ Func C^{op} , S) $\underset{st.}{\longleftrightarrow}$ (Costio)/C
where RHS is the subcol. of (Cotio)/C spanned by right fib.

$$C: \Delta^{\circ} \rightarrow C$$
, $id \in Hom(C_{lc}, C_{lc}) \rightarrow C$, $e_{lc} \neq \Delta^{\circ} = e_{lc}^{\circ} \rightarrow C$

HAG.	5.2.	-3.	The	(CUTO M'Cal	map			
	λ :	TwAn	·LC)	-> e,	k e ^{rp}	ßα	ngwt	fib
						C-0	sset)).
S t.	=) (unctur	Cx	e" [₽] →	5			
	and	get	Yoneda	ĵ∶ e	> Fu	ග (, 9)	
HTT	5,1.3.1	, 2						
	The Y	<i>oneda</i>	ĵЗ	ouly	Baitsgul	, pres	ering	04 (
small	long	m	e					
htt	5-1-5-	8						
	The T	<i>ioned</i> a	Ĵ	generates	p(C)	under	small	coloms.