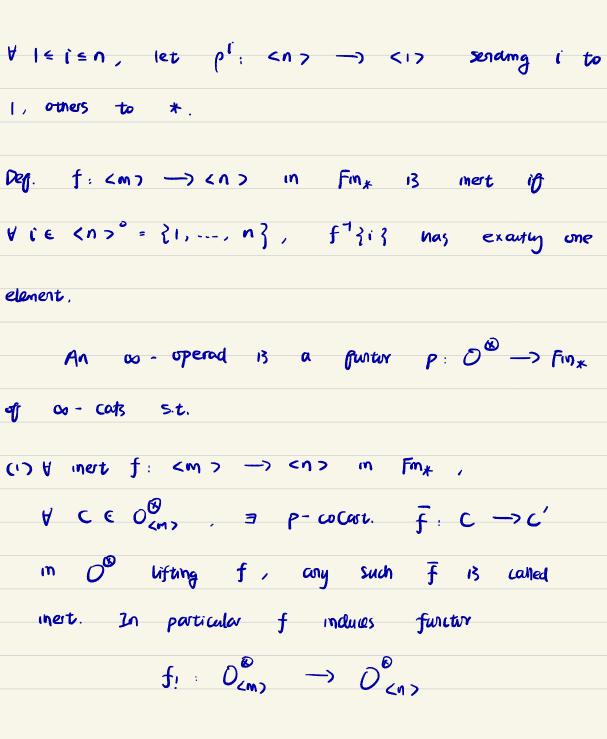
DAG II. Derived Rings. 1. ∞ - Operads Our language to make sense of commutativity and associationity up to htpy. Def. Segal's cat. Fing of pointed finite sets sej: <n> = {*,1,..., n} n70 Mor; α : < m > -> < n > preserving * * L 2 2 A m



(2) let
$$(f O_{2n3}^{\otimes}, C' \in O_{2n3}^{\otimes}, f: cm) \rightarrow cn 2.$$

Let $Map_{D^{\otimes}}^{f}(C, C') \subset Map_{D^{\otimes}}(C, C')$ be
which all conn. comp. lying over f .
Choose $p = coCorr.$ $C' \rightarrow C_{i}^{\prime}$ lying over inert
 $p': (n) \rightarrow (i)$ for $i \le i \le n$. Then the induced
map $Map_{D^{\otimes}}^{f}(C, C') \longrightarrow T_{i \le i \le n} Map_{D^{\otimes}}^{p' \cdot f}(C, C_{i}')$
is htpy equiv.
(3) $\forall n z^{o}$, the functors $\sum_{i \le i \le n} p_{i}^{i} : O_{n2}^{\otimes} \longrightarrow D = O_{n2}^{\otimes} \sum_{i \le i \le n} p_{i \le i \le n}$
determine an equiv. $df = co - Cat$, $\varphi: D_{n2}^{\otimes} \longrightarrow D^{\circ}$.
 $0 = O_{n2}^{\otimes}$ is called the underlying $co - cat$, $cf = D_{n2}^{\otimes}$.

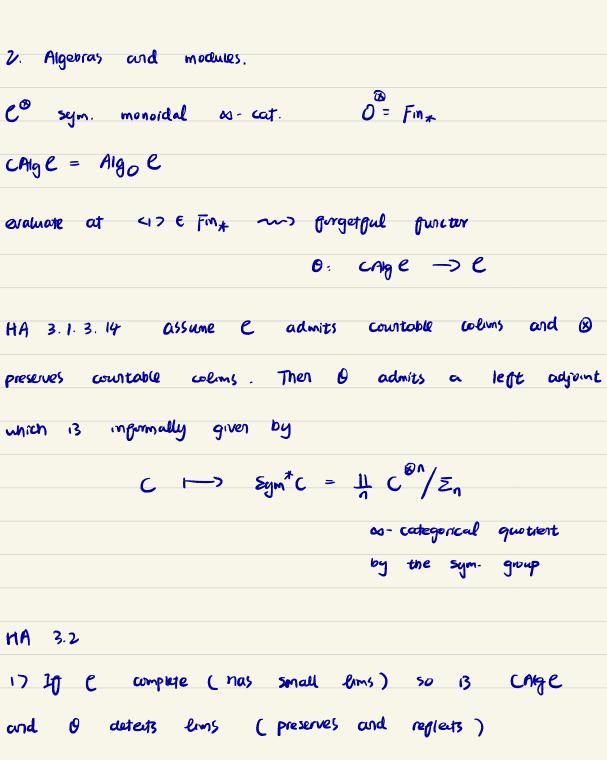
Given
$$\chi_1, ..., \chi_n, \gamma \in O$$
, let $Mul_O(\{\chi_i\}, \gamma)$ be
the union of components of $Mor_{O^{O}}(\chi, \textcircled{O} \dots \textcircled{O} \chi_n, \gamma)$
which lie over the unique $p: \langle n_i \gamma \dots \textcircled{O} \chi_n, \gamma \rangle$
 $p^{-1}\{\chi\} = \{\chi\}\}$.
Idea. We think of an ∞ -operad as a cot. O together
with "multi-minphisms" $Mul_O(\{\chi_i\}, \gamma)$ whose compositions
are associative up to httpy.
Sx. The commutative ∞ -operad $Gomm^{O} = Fin_{\chi} \stackrel{d}{\longrightarrow} Fin_{\chi}$.
Def. Let O^{O} , D^{-O} ∞ -operads. An ∞ -operad map
 β a punctor $f: O^{O} \longrightarrow D^{-O}$ of ∞ - cats over
 Fin_{χ} carrying inert more to inert more.

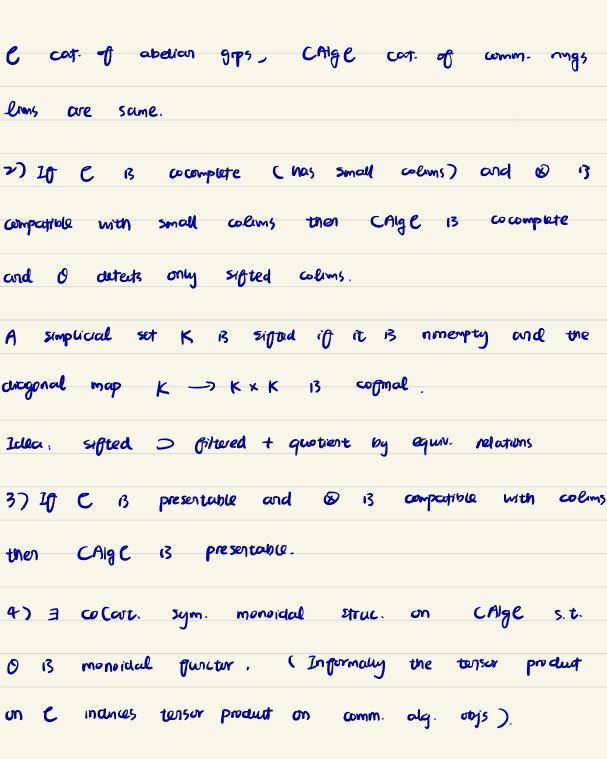
Let
$$Alg_{0}(0')$$
 denote the full subcot. of
Funt $(0^{\circ}, 0^{\circ})$ spanned by ∞ - operad maps.
More generally $\int_{0}^{\infty} 0^{\circ}$ $\int_{1}^{\infty} Alg_{0}/0''}(0')$.
 $\int_{0'^{\circ}}^{\sqrt{\circ}}$

Def.
$$0^{\otimes}$$
 or - operal, a cocart. fib. $P: C^{\otimes} \longrightarrow O^{\otimes}$ is
called a cocart. fib. of co-operads if the comp.
 $C^{\otimes} \longrightarrow O^{\otimes} \longrightarrow Fin_{+}$ is an operad and C is called
an O-monordal on - cat.
Idea. $\forall f \in Mulo(ixis, i)$, the cocart. fib. p
attermines a functor \bigotimes_{f} . $T \in C_{Xi} \longrightarrow C_{Y}$.

$$\begin{split} & \sum_{n \neq \infty} A_{n} = \sum_{n \neq$$

Def. C 20-cat., a sym. monoidal struc. on C 13
called Cart. if
• the writ sof. I e e is gral
• YC, DEC, the conomical maps
$C^{2}C^{0}e \leftarrow C^{0}O \rightarrow e^{0}D^{2}O$
exhibit COD as a product of C and D in E.
Pually we have coCart. Sym, monoidal struc.
HA 2.4.1. C vo-cost. codmitting finite products. Then E
admits a Cart. Sym. monoidal Struc. unique up to equiv
In this case, the co-cat. CAlge admits a mire
direct description in terms of monoids.





Def. Associative operad. Assoc.
It is a colored operad howing a single object Q.
If finite set I, the set of operations

$$Mul_{Assoc} (202_{i \in L}, ot)$$
 is the set of
linear orderings on I.
Composition of linear orderings.
 $minor orderings = minor orderings.$
 $minor orderings = minor orderings.$
 $10 \ C^{\otimes}$ as operad equipped with 0^{ib.} 8: $C^{\otimes} \rightarrow$ Assoc[®]
define AlgC = Alg_{(Assoc} © as operad sections of 8.
(alled as called as ordering of 8.
A monoidal as call is a colort. 6^{ib.} of an operads
 $e^{\emptyset} \rightarrow Assoc®$.

HA 4.1.1.14 Let
$$p: C^{\oplus} \rightarrow fin_{x}$$
 w-operad, then
 C^{\oplus} is a sym. monoridal ou-cat-if and only if
the included map $p': Association = Associations is$
a monoridal ou-cat.
Define Left module operad LM.
It is a colored operad LM.
It is a colored operad having two elements of . M
 $\forall \sigma typs \ \ x_i \ x_{i \in I}$ and Υ of LM
 $Mud_{LM}(\ \ x_{i} \ x_{i}, \ \Upsilon) = \begin{cases} x_{i} = T = at, collection of all linear
conclusings on I
 $\Upsilon = M$, exactly one $x_{i} = M$, collection of
linear orderings on L s.t.
the last is $x_{i} = m$
 $empty$ set all other cases
 $Mud = M^{\oplus}$.$

