$D A G$.

RMK. Using HTT 4.3.1.9 the above pullback diagram in $M^{\top}(e) 13$ equiv. to the pullback diagram in e

$$
\begin{array}{ll}
A^{\eta} & \longrightarrow A \\
\downarrow & \\
A & \longrightarrow d_{\eta} \\
& \rightarrow A \oplus M
\end{array}
$$

where $A \oplus M$ denotes the image of M wider the functor $\Omega^{\infty}: \operatorname{sp}\left(e_{/ A}\right) \rightarrow e$ and $d_{0} 13$ the section attached to the zero derivation.

The main source of square - zero extensions in the setting of $\overline{\mathbb{E}}_{\infty}$ - nogs $13 n$ - small extensions.

Def. For $n \geqslant 0$, a morphism $f: A \rightarrow B$ in CAll B called ar n-sisal extersion if $A \in L$ Alg en and
firs $f) \in\left(A g_{[n, 2 n]}\right.$ and the multiplication
$\operatorname{fib}(f) \otimes_{A} \operatorname{fib}(f) \rightarrow \operatorname{fib}(f)$ is nunnomotopic.
Denote FWorn-sm $\left(\Delta^{\prime}, C A l g\right) \subset$ Fun $\left(\Delta^{\prime}\right.$, CAlg) the ∞-cat generated by n-small extensions.

An $\operatorname{voj} . \quad\left(A, \eta: L_{A} \rightarrow M[1]\right) \in \operatorname{Der}($ Alg) $13 n$-small
if A is connative, and $M \in S P_{[n, 2 n]}$. Devote Der C $\operatorname{Der}(\mathrm{CAlg})$.

Thy. The functor $\Phi: \operatorname{Der}\left((A l g) \rightarrow \operatorname{Fun}\left(\Delta^{\prime}, L A l g\right)\right.$ induces

$$
(A, \eta) \rightarrow\left(A^{l} \rightarrow A\right)
$$

for each $n \geqslant 0$ ar equiv. of ∞-cat.

$$
\operatorname{Der}_{n-s_{m}} \simeq F_{u_{n-s m}}\left(\Delta^{\prime},(A \mid g) .\right.
$$

Cor.

1) every n-small exterion in CAlg is a square-zeoo ext.
2) for A ECAlg ${ }^{\text {an }}$, every map in the Postnikov tower

$$
\cdots \rightarrow \tau_{\leqslant 3} A \rightarrow \tau_{\leqslant 2} A \rightarrow \tau_{\leqslant 1} A \rightarrow \tau \leq 0 A
$$

13 a squave-zer extension.
Application: giver $A, B \in$ CAlgen, we car widerstard $^{\text {an }}$, we $\operatorname{Map}_{\text {call }}(A, B)$ as $\lim _{n} \operatorname{Map}_{\text {cAl }}(A, Z \leq n B)$. For $n=0$, $\operatorname{Map}_{\operatorname{Lig}}\left(A, \tau_{\leq 0} B\right) \simeq \operatorname{Hom}\left(\pi_{0} A, \pi_{0} B\right)$. For $n>0$, we nave a pullback square

$$
\begin{array}{cc}
\tau \leq n B & \rightarrow \tau \leq n-1 B \\
\downarrow & \downarrow \\
\tau_{\leq n-1} B & \rightarrow \\
& \rightarrow \tau \leq n-1 B \oplus\left(\pi_{n} B\right)[n+1]
\end{array}
$$

This reduces to the study of $\operatorname{Map}_{\text {Alg }}\left(A, \tau_{\leq n-1} B\right)$ and the linear problem of clerivations from A to $\left(\pi_{n} B\right)[n+1]$ which is controlled by the cotangent complex.
2.2 Deformation theory of \mathbb{E}_{∞}-songs.

Def. Let A be $\mathbb{E}_{\infty}-n n g$, \tilde{A} a square -zero extension of A by as A-mod M, for $B \in C A l g A$, a deformation of B to $\tilde{A} B$ a pair (\vec{B}, α) where $\tilde{B} \in \operatorname{CAlg} \tilde{A}$ and a an equiv. $\tilde{B} \otimes_{A} A \simeq A$ in $C A g_{A}$.

RMK. If A, M are connective, then \tilde{B} flat over \tilde{A} $\Leftrightarrow B$ flat over A.

Pf. "E" ETS for every discrete $\tilde{A}-\bmod N, \tilde{B} \otimes_{\widetilde{A}} N$ is discrete. Let $I=\operatorname{ker}\left(\pi_{0} \tilde{A} \rightarrow \pi_{0} A\right)$, we nave a s.e.s. $0 \rightarrow I N \rightarrow N \rightarrow N / I N \rightarrow 0$ as $\pi \cdot \tilde{A}-\bmod$ reduce to show $\widetilde{B}{\underset{\widetilde{A}}{ }} I N$ and $\tilde{B}_{\tilde{A}} N / I N$ discrete. Note that $I N, N / I N$ are annihilated by I hence the tensor factions through A.

Let $\operatorname{Der}=\operatorname{Der}($ CAlg) be the w-cat. of derivations in CAli. Define a subcat. Der' C Der:

- obis are derivations $\eta: A \rightarrow M[1]$ where both A, M are connective
- morptiions $f:(\eta: A \rightarrow M[1]) \rightarrow\left(\eta^{\prime}: B \rightarrow \sim[1]\right)$ s.t.

$$
B \otimes_{A} M \simeq N .
$$

Prop. A connective E_{∞}-ing, M connective $A-\bmod , \eta: A \rightarrow M[\overline{]}]$ a derivation. Then we have ar equiv. of w-cat.

$$
\begin{aligned}
& \mathrm{Der}_{\eta /}^{+} \xrightarrow{\sim} \quad \text { Alg }_{A^{\eta}}^{\text {n }} \\
& \eta^{\prime}: B \rightarrow N[1] \\
& B^{\eta^{\prime}}=\operatorname{pib}\left(\eta^{\prime}\right)
\end{aligned}
$$

Ilea: giving a claformation \tilde{B} of B over $\tilde{A} B$ equiv. to providing a factorization of $\eta_{B}: B \otimes_{A} L_{A} \rightarrow B \otimes_{A} M[1]$ as a composition $B \otimes_{A} L_{A} \rightarrow L_{B} \xrightarrow{\eta^{\prime}} B \otimes_{A} M[1]$ wend $\tilde{B}=B^{\eta^{\prime}}$

In particular B admits deformations over \tilde{A} $\Leftrightarrow \quad L_{B / A}[-1] \rightarrow B \otimes_{A} L_{A} \xrightarrow{\eta_{B}} B \otimes_{A} M[1]$ vasisnes
2.3 connetivity of the cotangent complex.

Thu. For $f: A \rightarrow B$ of \mathbb{E}_{∞}-nngs, if cofib(f) is η-connective for some $\eta \geqslant 0$ then there is a natural

Construction of Σ_{f} : we have $\eta: L_{B} \rightarrow L_{B / A}$ map of B-mods $\Rightarrow B^{2}$ square -zeno extersion of B by $\left.L_{B / A}[\rightarrow]\right]$. since η restricts to L_{A} being nullnomotopic, f factors as $A \xrightarrow{f^{\prime}} B^{2} \xrightarrow{f^{\prime \prime}} B$ so we get a map of A-mods $\operatorname{cofib}(f) \rightarrow$ cofib $\left(f^{\prime \prime}\right)$, nerve a map of B-mods

$$
\Sigma_{f}: B \underset{A}{\otimes} \operatorname{cofib}(f) \rightarrow \operatorname{cogib}\left(f^{\prime \prime}\right) \simeq L_{B / A}
$$

Cor. For $f ; A \rightarrow B$ of connective \mathbb{E}_{∞}-nags, if cofib(f) 13 n-connective for $n \geqslant 0$, then the relative cotangent px $L_{B / A}$ is n-conneutrue, the converse holds provided that f induces ar 130 m . $\pi_{0} A \leadsto \pi_{0} B$.

Po. fibre sequence of B-mods

$$
\operatorname{fib}\left(\varepsilon_{f}\right) \rightarrow B \otimes_{A} \operatorname{cofin}(f) \rightarrow L_{B / A} .
$$

Cor. A connective \mathbb{E}_{∞}-nog, the $L_{A} 13$ connective.
PO. Consider the whit map $S \rightarrow A$ in the case $n=0$ II
cor. $f: A \rightarrow B$ of connective \mathbb{E}_{∞}-nags, $L_{B / A}$ is conneative.
cor. $f: A \rightarrow B$ of connective \mathbb{E}_{∞}-nags. Then
$f B$ ar equiv. $\Leftrightarrow\left\{\begin{array}{l}f \text { indenes } 13 \mathrm{~cm} . \quad \pi_{0} A \simeq \pi_{0} B \\ L_{B / A} \simeq 0\end{array}\right.$

Cor. $f: A \rightarrow B$ of connective \mathbb{E}_{∞}-nags s.t. cofir(f) is n-connective for some $n \geq 0$ then the induced map
$L_{f}: L_{A} \rightarrow L_{B}$ has n-connective copiore. In particular the canonical map $\pi_{0} L_{A} \rightarrow \pi_{0} L_{\pi_{0}} A \quad B$ an isom.

Cor. $f: A \rightarrow B$ of connective \mathbb{E}_{∞}-nags sit. $\operatorname{cofir}(f) 13$ n-connatue for some $n \geq 0$ then there exists a canonical
$(2 n-1)$-connective map of A-mods $\operatorname{cofib}(f) \rightarrow L_{B} / A$.

Prop. For $f: A \rightarrow B$ of connective \mathbb{E}_{∞} - nogs, we nave $\pi_{0} L_{B / A} \stackrel{\sim}{ } \quad \Omega \pi_{0} B / \pi_{0} A$ as $\pi_{0} B-\operatorname{mods}$.

Po. By fibre sequence for $L_{B / A}$ and s.e.s. for Ω, reduce to absolute case: A aiscote \mathbb{E}_{∞} - ing, then $\pi_{0} L_{A} \xrightarrow{\sim} \Omega_{A}$ as discrete A-moas.

We snow $\pi_{0} L_{A}, \Omega_{A}$ copresent the same functor on the cat. of discrete A-mods.

For M chiscrete A-mod, we have

$$
\begin{aligned}
\operatorname{Map}_{\operatorname{Mod}_{A}}\left(\Pi_{0} L_{A}, M\right) & \simeq \operatorname{Map}_{\operatorname{Mod}_{A}}\left(L_{A}, M\right) \\
& \simeq \operatorname{Map}_{\operatorname{CAIg} / A}(A, A \oplus M) \\
& \simeq \operatorname{Map}_{\operatorname{Rings} / A}(A, A \oplus M)
\end{aligned}
$$

2.4 Finiteness of the cotangent complex.
$T_{n m}$. A connective $\mathbb{E}_{\infty}-n n g, B$ connective $\mathbb{E}_{\infty}-a l g . / A$.

1) if B almost B locally of O.P. over A then $L_{B / A}$ is almost B-mod. The converse holds provided $\pi_{0} B \quad B$
perfect B B.p. over $\pi_{0} A$.
3. Etale mosphisms.

Def. A map $\Phi: A \rightarrow B$ of E_{∞} - nings B caned etale if $\pi_{0} A \rightarrow T_{0} B$ is etale cond B flat as A-mod.

Thm. Let A be ar $\mathbb{E}_{\infty}-n n g$, every etale map of chiscrete comm. nings $\Pi . A \rightarrow \pi \circ B$ can De lifted (esser. wrique) to w etall $\phi: A \rightarrow B$ of \mathbb{E}_{∞}-nngs.

Cor. The relative cotcrigent complex of as etale morphism of \mathbb{E}_{∞}-nngs vanishes.

DAG VII 8.9. $A \rightarrow B$ of \mathbb{E}_{∞}-nngs s.t. $L_{B / A}$ varishes. TFAE.

1) $\pi_{0} B$ f.p. over $\pi_{0} A$
2) B f.p. over A
3) B almost f.p. over A
4) $A \rightarrow B$ etale.

HKR Thm ard derived de Rnam conomology.
Assume chark $=0$.

1. Reviens.
$x / k \quad \operatorname{sm} . \operatorname{var}$.

Thm. (Hochschild-Kostant-Rosenbery)

$$
\exists \text { quasi- Bom, } \quad \operatorname{Hr}(x)=\operatorname{Rr}\left(x, O_{x} \otimes_{O_{x a x}}^{\|} O_{x}\right) \simeq R \Gamma\left(x, \oplus_{i \geqslant 0} \Omega_{x / k}^{i}\right)
$$

When $x=$ specA apfine, the thm is saying

$$
\operatorname{Tov}_{i}^{A \otimes A}(A, A) \simeq \Omega_{A}^{i}
$$

Questions:

1. What nappers if we drop senoothness?
2. Cas we get a multiplucative statemert at the level of chan cpxes?

Look at $\bigoplus_{i \geqslant 0} \Omega_{x / k}^{i}[i]$ as chain cpx:
210
3. What about the de Rham differertials? Can we incorporate $d_{d R}$ in the statemert?

Recall: if x (dorived) schene, we nowe a notion of cotargent complex $L_{x} \in \underline{Q \operatorname{con}}(x)$ (the w-cat. of quasi-coherent sheques on x). If x is smooth, ther $L_{x} \simeq \Omega_{x}^{\prime} \quad\left(\right.$ in gereral $\left.\pi_{0} L_{x} \simeq \Omega_{x}^{\prime}\right)$.

How to compute cotargent complex in pratice?
$X=\operatorname{spec} A$, take $A \in S C R_{R}$ (has a model struc.)
take cofib. resolution \tilde{A} of A :

- $\tilde{A} \rightarrow A \quad$ gis.
- $\tilde{A} 13$ degree-vise polynomial nng
then $L_{\tilde{A}} \stackrel{g 13}{\simeq} L_{A}$.

RMMK. In the ∞-cat. Mod_{A}, for coly MEMOdA, we cal defone $\Lambda^{i} M=\operatorname{sym}^{i}(M[1])[-i]$ where
$M^{\otimes i} \in \operatorname{Fur}\left(B\left(\Sigma_{i}\right), \operatorname{Mod}_{A}\right), \sum_{i}$ sym. grp.
\downarrow colim $B\left(\bar{\Sigma}_{i}\right)$ the

Sym' $^{\prime} M \in \operatorname{Mod}_{A}$

Quess: $\bigoplus_{i \geqslant 0}^{\oplus} \Lambda^{i} L_{A}[i] \simeq \underset{A \otimes A}{\sim} A$ as \mathbb{E}_{∞}-rongs/cagas/ $S C R_{K}$

Strategy: pick resolutions and work, unsatisfautory as nord to geseralize to nur-agfine setung, and to Study furctoriality.

Idea: find some universal property.
RMS. $\bigoplus_{i \geq 0} \Lambda^{r} L_{A}[i] \simeq \operatorname{sym}_{A}\left(L_{A}[1]\right)$.

Car we get a wiversal property of this object that only depends on A?
L_{A} comes with a wivessal derivation $A \rightarrow L_{A}$.

Def. A mixed derived comm. ing is

$$
\left(A, d: A \rightarrow A[-1], d^{2} \simeq 0, d^{3} \simeq 0, \cdots\right)
$$

ntpy conererce data

Denote by ε-CAlgk the ∞-cat. of mixed algs. Then the forgetful furlter $u_{\varepsilon}: \varepsilon$-CAll \rightarrow CAlgk has a left adjunt L_{ε} s.t. $U_{\varepsilon}\left(L_{\varepsilon}(R)\right) \simeq \operatorname{Sym}_{R}\left(L_{R}[1]\right)$.

On the other side
recall $S^{\prime}=* \frac{11}{t+1 *} *=\sum\left(S^{\circ}\right)$
for ary presertable ∞-cat. $e, \exists \otimes: 5 \times e \rightarrow e$ characterzed by: $* \otimes x \simeq x, K \otimes x$ commutes with colins in K

$$
S^{\prime} \otimes A \simeq A \underset{A \otimes A}{ } A
$$

Denote $S^{\prime}-C A l g=F u r\left(B S^{\prime}, C A l g\right)$.

Thm. (Toen-Vettosi) \exists equiv. ϕ

$$
\begin{aligned}
& s^{\prime}-\text { CAlg }_{k} \xrightarrow{\downarrow} \varepsilon-\text { CAlg }_{k} \\
& L_{s^{\prime}}\left\lceil\|_{s^{\prime}} \quad L_{\varepsilon}\right\rceil / U_{\varepsilon} \\
& \text { CAlg }_{k}
\end{aligned}
$$

$$
L_{s^{\prime}}(R) \simeq R \underset{R \otimes R}{\otimes} R, L_{\varepsilon}(R) \simeq \operatorname{sym}_{R}\left(L_{R}[1]\right)
$$

s.t. ϕ commutes with both forgetgul fusctors and their legt adjoints.

Recall from HA (consequence of Barr-Beck)

$$
D^{\prime} \xrightarrow{F} D \quad \text { st. } u F=u^{\prime}
$$

$$
L^{\prime} T u^{\prime} T u^{\prime} u \quad \begin{aligned}
& u \cdot u^{\prime} \text { monadic } \\
& F L^{\prime} \rightarrow L u F L^{\prime} \simeq L u^{\prime} L^{\prime} \rightarrow L \text { equiv. }
\end{aligned}
$$

$\Rightarrow F$ equiv.
In ours setting, construction of ϕ will be difficult.
2. Mixed colas.

Def. Let $k[\varepsilon]=\operatorname{Sym}_{k}(k[1]) \quad\left(\right.$ self-intersetion of 0 in $\left.A^{\prime}\right)$
Speck[L] $\rightarrow 0$ Speck[s] has a group strut. nerve $\begin{array}{lll}\downarrow \\ 0 & \downarrow & \\ A^{\prime} & k[\varepsilon] \text { has a Hop derived comm. } \\ & \text { ing struc. }\end{array}$

Let mixed modules be the sym. monoid cat. Mod[with $M \underset{\varepsilon}{\otimes} N=\Delta_{*}\left(M \otimes_{k} N\right) \in \Delta_{*}\left(\operatorname{Mod}_{k[\varepsilon] \otimes_{k} k[\varepsilon]}\right)$

$$
=\operatorname{Mod}_{k[\varepsilon]}
$$

Let $\varepsilon-\left(A g_{k}=A l g_{\mathbb{E}_{\infty}}\left(\operatorname{Mod}_{k[\varepsilon]}, \otimes_{\varepsilon}\right)\right.$.
We have ar alternative description. Let $k[\eta]=\varepsilon_{y m_{k}}(k[-1])$ be a non-connettive alg.

In general for nom-connentive A.

$$
\underbrace{\cdots A^{2} \rightarrow A^{\prime} \rightarrow A_{\text {stacky information }}^{0} \rightarrow A^{-1} \rightarrow A^{-2}--}_{\begin{array}{c}
\text { infinitesimal } \\
\text { information }
\end{array}}
$$

$K[\eta]$ should be thought as $\operatorname{R\Gamma }\left(B A_{k}^{\prime}, O_{B A_{k}^{\prime}}\right) \simeq \operatorname{Rr}\left(B G_{a}, O_{B G_{a}}\right)$
$\Rightarrow \mathrm{k}[\eta]$ B Hope.

Tho. $\varepsilon-\left(A 1 g_{k} \xrightarrow{\sim} k[\eta]-\operatorname{comod}\left(\mathrm{CAlg}_{k}\right)\right.$

$$
u_{\varepsilon} \downarrow \underset{c A \lg _{k}}{\curvearrowright} \downarrow u_{\eta}
$$

Idea: $u_{\varepsilon} B$ string-monoidal $\Rightarrow u_{\varepsilon}$ is comonadic and compute the comonad. The follows from Bar-Beck.

Look at an obj．in $k[\eta]-\operatorname{comod}\left(C A g_{k}\right)$ ：
－$A \in C A l g_{k}$
－$A \xrightarrow{c} A \otimes_{k} k[\eta]$ coaction
－lots of ntpy conerences
counit：$A \xrightarrow{C} A \otimes_{K} k[\eta] \simeq A \oplus A[-1]$ split square－2eno extersion

So C by definition a derivation d of A into $A[-1]$ $\Leftrightarrow \quad L_{A}[1] \rightarrow A . \quad\left(\varepsilon^{2}=0 \Rightarrow a^{2} \simeq 0\right)$
dual．

$$
R[\varepsilon] \otimes A \rightarrow A \quad \Leftrightarrow A \rightarrow A \otimes R[\eta]
$$

BOla in char $p: B$（⿴囗十a$=\operatorname{colim}\left(\cdots \sigma_{a} \times \operatorname{O}_{a} \vec{\rightarrow} \mathbb{O}_{a} \rightarrow *\right)$
$\left.\Gamma(B)_{a}, O_{B G_{a}}\right)$ using lech con：

$$
\begin{aligned}
& k \rightarrow k[x] \Rightarrow k[x, y] \\
& \Downarrow D K \\
& K \xrightarrow{0} K[x] \rightarrow K[x, y] \ldots \\
& f(x) \longmapsto f(x)+f(y)-f(x+y)
\end{aligned}
$$

has lots of terms in chore.

Cor. The forgetful functor $U_{\varepsilon}: \varepsilon$-CAlgk $\rightarrow C$ Alg is both monadic ard comonadic. In particular it has both left and right adjoins.

Problem: characterize $U_{\varepsilon} \circ L_{\varepsilon}$ as $\operatorname{DR}(-)=\operatorname{sym}_{-}\left(L_{-}\left[_{1}\right]\right)$. RMS. $C \frac{L_{R}^{L}}{L_{R}^{L}} D \quad L-1 U H R \Rightarrow U L-1 O R$.

Observation: since $\varepsilon-\left(A l g_{k} \simeq k[\eta]-\operatorname{coMod}\left(\operatorname{CAlg}_{k}\right)\right.$, then $R_{\varepsilon}(A)=A \otimes k[\eta] \simeq A \oplus A[-1]$ split square-zero extension $U_{\varepsilon} R_{\varepsilon}(A)=A \oplus A[-1]$ with no extra struc.

Now need to widerstard le bt adjoint of $U_{\Sigma} R_{\varepsilon}$.

$$
\text { For } A, B \in C A l_{k}, \operatorname{Map}_{C A l_{k}}\left(A, O_{\varepsilon} R_{\varepsilon} B\right)
$$

11

$$
\operatorname{Map}_{\operatorname{CAg}_{k / B}}(A, B \oplus B[-1]) \subset \operatorname{Map}_{C A l g_{k}}(A, B \oplus B[-1])
$$

$$
\begin{aligned}
& \begin{array}{l}
\downarrow \\
\simeq f: A \rightarrow B\} \\
\simeq \\
\operatorname{Map} \mathcal{M i g}_{k} \\
\\
\operatorname{Der}(A, B) \\
\left.f_{*} B[-1]\right) \simeq \operatorname{Map}_{\operatorname{Mod}_{A}}\left(L_{A}, f_{*} B[\neg]\right)
\end{array}
\end{aligned}
$$

On the other side

$$
\operatorname{Map}_{\text {Alg }_{k} A}\left(\operatorname{Sym}_{A}\left(L_{A}[1]\right), B\right) \subset \operatorname{Map}_{\operatorname{MAlg}_{k}}\left(\operatorname{Sym}_{A}\left(L_{A}[1]\right), B\right)
$$

Note that there is a corronical map

$$
A \rightarrow \operatorname{sym}_{A}\left(L_{A}[1]\right) \oplus \operatorname{sym}_{A}\left(L_{A}[1]\right)[-1]
$$

11

$$
U_{\varepsilon} R_{\varepsilon}(D R(A))
$$

candidate wit map
\Rightarrow get map of fibre sequences

$$
\begin{array}{ccc}
\operatorname{Map}\left(L_{A}[1], f * B\right) & \rightarrow \operatorname{Map}(D R(A), B) & \rightarrow \operatorname{Map}(A, B) \\
\downarrow^{2} & \downarrow^{2} & \|
\end{array}
$$

$$
\operatorname{Map}\left(L_{A}[1], f_{*} B\right) \rightarrow \operatorname{Map}(A, B \oplus B[-1]) \rightarrow \operatorname{Map}(A, B)
$$

Condusion: ε-CAlgk has all the promised properties.
Finally compare ε-CAli and S^{\prime}-CAlgk.

$$
U_{\varepsilon} \underbrace{}_{\text {CAlgk }} \downarrow U_{s^{\prime}}
$$

U_{ε} monadic, $U_{S^{\prime}}$ monadic. Car we compute the monads?
ε-monad: $A \longmapsto D R(A), \quad S^{\prime}-\operatorname{monad}: A \longmapsto A \otimes A$ $A \otimes A$
not easy to compare $\operatorname{PR}(-)$ and $S^{\prime} \otimes-$, let alone with their monad struc.

Key observation: E-CAlgk is comonadic.

$$
K[\eta] \in \text { Colon }_{\mathbb{E}_{\infty}}\left(\text { CAlgk }_{k}\right) \text {. }
$$

RMK. For e^{\otimes} sym. monoidal ∞-cat. we howe sting monvidal functor $e \rightarrow$ End e

$$
\begin{gathered}
x \rightarrow x \otimes- \\
\Rightarrow \operatorname{comon}_{\mathbb{E}_{1}}(e) \rightarrow \text { common }_{\mathbb{E}_{1}}(l)=\operatorname{comonads}(l)
\end{gathered}
$$

Key point: the comonad of ε - $\mathrm{CAlgg}_{k} \rightarrow \mathrm{CAlgk}^{\prime} 13$ "representable" by $k[\eta]$ with its comultiptication.
$T h_{m} . S^{\prime}-C A \lg _{k} \simeq C^{*}\left(S^{\prime}\right)-\operatorname{coMad}\left(C A \lg _{k}\right)$
consider the functor $\underline{S}^{\prime}: d A O O^{\prime p} \rightarrow S$ etale sheafieication of the constart functur attached to S^{\prime}.

Ther $C^{*}\left(s^{\prime}\right)=\operatorname{Rr}\left(\underline{s^{\prime}}, U_{\underline{s}^{\prime}}\right)$.
concretely as a $K-\bmod \operatorname{th} 1313 \quad K \oplus \underset{K \oplus K}{ } K=K \oplus K[-1]$
with ning struc. $\underset{k}{\downarrow} \rightarrow \underset{k \times k}{\downarrow}, \quad C A l g \rightarrow S$ firgetgul
furctor creates lims.

$$
\begin{array}{cc}
\text { Summary: } & \mathcal{C} \mathcal{C l g}_{k} \\
\downarrow^{2} & S^{\prime}-C A \lg _{k} \\
k[q]-\operatorname{coMod}(C A \lg k) & \downarrow^{2} \\
& C^{*}\left(S^{\prime}\right)-\operatorname{comod}\left(C A \lg _{k}\right)
\end{array}
$$

elough to prove $k[\eta] \simeq c^{*}\left(s^{\prime}\right)$ as comonords.

To do this, work geometrically

$$
\text { contr } \underset{\sim}{\sim} \mathrm{BGHa}
$$

$\operatorname{spec}(K[])$

$$
\underline{S}^{\prime} \simeq B(\underline{\mathbb{L}})
$$

$\mathbb{Z} \rightarrow$ (Ia canonical map of groups
$\Rightarrow B(\mathbb{Z}) \rightarrow B G a$ map of groups
\Rightarrow pass to global seltums, $\operatorname{Rr}\left(B\left(H_{a}, O\right) \rightarrow \operatorname{Rr}\left(\underline{S}^{\prime}, V\right)\right.$
which has a canonical struc. of map of Hope algs.
\Rightarrow get Bum. $k[\eta] \xrightarrow{\sim} c^{*}\left(s^{\prime}\right)$ as Hope algs. by
combining computations above on choun apes.

