1. Notes on Dedekind Cuts

Definition 1.1. A subset $L \subset \mathbb{Q}$ of the rationals is called a **Dedekind cut** if

- (I) L is proper (i.e. $L \neq \emptyset, L \neq \mathbb{Q}$);
- (II) L has no maximal element;

(III) for all elements $a, b \in \mathbb{Q}$ with a < b, $b \in L \Longrightarrow a \in L$.

Example 1.2. (i) If $a \in \mathbb{Q}$, the open interval $L_a := (-\infty, a) \cap \mathbb{Q}$ is a Dedekind cut that we take to represent the rational number a.

(ii) Let $r_1 \leq r_2 \leq r_3 \leq \ldots$ be any non decreasing sequence of rational numbers such that

a) the sequence is bounded, i.e. $\exists M \in \mathbb{Q} \text{ s.t. } r_n < M, \ \forall n \in \mathbb{N}^+;$

(b) the sequence is not eventually constant, i.e. for all n_1 there is $n_2 > n_1$ with $r_{n_2} > r_{n_1}$. Then

$$L := \bigcup_{n \ge 1} (-\infty, r_n)$$

is a Dedekind cut. We need (a) for condition (I) and (b) for condition (II). Writing out a precise proof is on your HW for this week.

As the next lemma shows, there are many other ways to define a Dedekind cut.

Lemma 1.3. Let $M = \{x \in \mathbb{Q} \mid x \leq 0 \text{ or } x^2 < 2\}$. Then M is a Dedekind cut.

Proof. M satisfies (I) because $0 \in M$ (so $M \neq \emptyset$) and $3 \notin M$ because 3 > 0 and $3^2 > 2$.

To see that M satisfies (III) suppose that a < b and that $b \in M$. We must show that $a \in M$. If $a \leq 0$ then $a \in M$ by the definition of M. So suppose that a > 0. Then b > 0 as well and also $b^2 < 2$. Since 0 < a < b, we find $a^2 < b^2$. Therefore $a^2 < 2$ and so $a \in M$. Thus (III) holds.

To see that M satisfies (II), we must show that each element $a \in M$ is not a maximal element, i.e. there is $a' \in M$ with a' > a.

So consider $a \in M$. If $a \leq 1$ then we may take a' = 5/4.

Therefore we may suppose that a > 1. Since $(3/2)^2 > 2$, we know that a < 3/2. We want to show that there is a rational number y > 0 such that $(a + y)^2 < 2$. (For then we take a' = a + y.) Let us assume that y = 1/n for some integer n. Thus we need

$$a^{2} + 2ay + y^{2} < 2$$
, or $a^{2} + 2\frac{a}{n} + \frac{1}{n^{2}} < 2$

I simplified this inequality by noticing that since $a \ge 1$ and $n \ge 1$ we have $\frac{1}{n^2} \le \frac{1}{n} \le \frac{a}{n}$. Therefore

$$a^{2} + 2\frac{a}{n} + \frac{1}{n^{2}} < a^{2} + 2\frac{a}{n} + \frac{a}{n} = a^{2} + 3\frac{a}{n}$$

so that it suffices to find n so that $a^2 + 3\frac{a}{n} < 2$. But this we can immediately solve: we need $3\frac{a}{n} < 2 - a^2$, i.e. $n > 3\frac{a}{2-a^2}$.

Notice, that just as when we find $\delta = \delta(\epsilon)$ when proving continuity, there are many ways to do this estimate. But I think that what I did above is one of the most direct arguments.

Note: The last argument above is a version of the proof I gave in class that

the set $S := \{a \in \mathbb{Q} \mid a > 0 \text{ and } a^2 < 2\}$ has no least upper bound in \mathbb{Q} . Here are the details of that argument. **Step 1**: Suppose that $r \in \mathbb{Q}$ has the property that r > 0 and $r^2 > 2$. Then I claim that r is an upper bound for S but is not the least upper bound since we can always find a smaller upper bound. Here are the steps:

(i) to see that r is an upper bound:

If not there is $a \in S$ such that $a \ge r$ then $2 > a^2 \ge r^2 > 2$ which is impossible.

(ii) to see that there is a smaller upper bound than r:

We look for x < r such that $x^2 > 2$, where n is a large integer. (The is essentially the same calculation as above)

If r > 2 this is clear: just take x = 2. Otherwise we look for x of the form $x = r - \frac{1}{n}$. Then we want

$$x^{2} = r^{2} - 2\frac{r}{n} + \frac{1}{n^{2}} > 2, \quad i.e. \ 2\frac{r}{n} - \frac{1}{n^{2}} < r^{2} - 2.$$

But

$$\begin{aligned} & 2\frac{r}{n} - \frac{1}{n^2} < 4\frac{1}{n} - \frac{1}{n^2} & \text{since } r < 2 \\ & < 4\frac{1}{n} - \frac{1}{n} = \frac{3}{n}, & \text{since } \frac{1}{n^2} \leq \frac{1}{n}. \end{aligned}$$

Therefore it suffices to find n so that $\frac{1}{n} < r^2 - 2$, i.e. we need $n > \frac{1}{r^2 - 2}$.

Step 2: Suppose that $r \in \mathbb{Q}$ has the property that r > 0 and $r^2 < 2$. Then I claim that there is $x \in S$ such that x > r so that r is not an upper bound for S.

Now we look for x of the form $r + \frac{1}{n}$. The argument that we can choose suitable n is given in the proof of the lemma above.

Here is a useful result about Dedekind cuts.

Lemma 1.4. Let L be a Dedekind cut and $u \notin L$. Then u is an upper bound for L, i.e. every $a \in L$ satisfies a < u.

Proof. Let $a \in L$. Then $a \neq u$ because $u \notin L$ and $a \in L$. If a > u then $u \in L$ by (III), which is also impossible. Hence a < u.

Now let us define arithmetic operations on Dedekind cuts. We define addition here; one case of the product is on the HW.

Proposition 1.5. Given Dedekind cuts L, M define the subset L + M of \mathbb{Q} by

$$L + M = \{a + b \,| a \in L, \, b \in M\}.$$

Then L + M is a Dedekind cut.

Proof. I will divide this into lots of little steps. **Step 1:** $L + M \neq \emptyset$: *Proof.* There is $a_0 \in L, b_0 \in M$, which implies that $a_0 + b_0 \in L + M$. **Step 2:** $L + M \neq \mathbb{Q}$. *Proof.* Since L, M satisfy (I) there are elements u, v such that $u \notin L, \quad v \notin M$.

We show that $u + v \notin L + M$ by contradiction.

If $u + v \in L + M$ there are $a \in L, b \in M$ so that u + v = a + b. But Lemma ?? shows that a < u (since $a \in L, u \notin L$. Similarly b < v. Therefore a + b < u + v, which is impossible.

Steps 1 and 2 show that (I) holds for L + M. The next two steps show that it satisfies the other conditions.

Step 3: L + M has no maximal element.

Proof. Let $a + b \in L + M$. Since L has no maximal element there is $x \in L$ such that a < x. Then $x + b \in L + M$ and a + b < x + b. Therefore a + b is not maximal in L + M. Since this holds for all $a + b \in L + M$, the set L + M has no maximal element.

Step 4: L + M satisfies condition (III).

Proof. Suppose x < y where $y \in L + M$. Hence we can write y = a + b. Then x = a + b - (y - x) = a - (y - x) + b = a' + b where a' = a - (y - x) < a. Since $a \in L$ we know $a' \in L$ since L satisfies (III). Hence we may write x = a' + b as the sum of an element in L and an element in M. Therefore $x \in L + M$, as required.

With this notion of + the zero element is $L_0 := (-\infty, 0)$. In other words, I claim that:

Lemma 1.6. For any Dedekind cut M we have $M + L_0 = M$, where $L_0 = (-\infty, 0)$.

Proof. We must show $L_0 + M \subset M$ and $M \subset L_0 + M$. *Proof that* $L_0 + M \subset M$.

Since $\{L_0 + M = \{a + b : a \in L_0, b \in M\}$ we must show that every element of the form a + b where $a \in L_0, b \in M$ lies in M. But $a \in L_0$ implies a < 0. Hence a + b < b. Hence $a + b \in M$ by condition (III) for M.

Proof that $M \subset L_0 + M$.

Given any $m \in M$ we must find $a \in L_0, b \in M$ such that m = a + b. Notice that a < 0 so that we must have b > m. But there is $b > m \in M$ by condition 2. for a Dedekind cut. Therefore pick such b and then define a := m - b. Then $a \in \mathbb{Q}$ and a < 0 so that $a \in L_0$. Hence $m = (m - b) + b = a + b \in L_0 + M$, as required.

The Order relation We define $L \leq M$ if $L \subseteq M$. It is immediate that this is an order relation. Moreover, given any Dedekind cuts L, M we have either $L \subseteq M$ or $M \subseteq L$ (on HW). Finally notice that every set $S := \{L_s \mid s \in S\}$ that is bounded above has a least upper bound U; namely

$$U := \bigcup_{s \in S} L_s$$

Why do we require that a Dedekind cut has no maximal element?

A Dedekind cut is the left part of a partition of \mathbb{Q} into two pieces. Each rational number gives two possible partitions

$$(-\infty, a)_{\mathbb{Q}} \cup [a, \infty)_{\mathbb{Q}}, \text{ and } (-\infty, a]_{\mathbb{Q}} \cup (a, \infty)_{\mathbb{Q}},$$

(where I wrote $(a, b)_{\mathbb{Q}}$ to denote $(a, b) \cap \mathbb{Q}$). We need to choose one of these – either $(-\infty, a)_{\mathbb{Q}}$ or $(-\infty, a]_{\mathbb{Q}}$. Since there are partitions (such as those given by $\sqrt{2}$) that have no maximal element, it is most consistent to choose $(-\infty, a)_{\mathbb{Q}}$.

For those of you who are interested, here is how you define the negative -L of a Dedekind cut L.

The operation of multiplication by -1 reverses order and hence interchanges the two halves of the partitions, taking left to right and vice versa. The basic idea is that the negative -L of the cut L should consist of the negatives of the right partition: i.e. $ifL = (-\infty, a)_{\mathbb{Q}}$ then -L should be $\{-x \mid x \in (a, \infty)_{\mathbb{Q}}\}$. But the condition $x \in (a, \infty)$ is NOT simply $x \notin (-\infty, a)$ since $a \notin (-\infty, a)$. So if we start from L we have to make a more complicated definition that avoids this problem with endpoints.

Given L define $R_L := \{ u \in \mathbb{Q} \mid \exists v \in \mathbb{Q} v < u \text{ such that } v \notin L \}.$ One can prove the following: (i) if $L = (-\infty, a)$ for some $a \in \mathbb{Q}$ then $R_L = (a, \infty)$.

(ii) $-R_L := \{-u \mid u \in R\}$ is a Dedekind cut.

(iii) $L + (-R_L) = L_0 (:= (-\infty, 0))$. In other words, $-R_L$ represents the negative of L. Note that the definition of R_L has to be so complicated in order that its negative has no maximal element.