1. NOTES ON DEDEKIND CUTS

Definition 1.1. A subset L C Q of the rationals is called a Dedekind cut if
(I) L is proper (i.e. L #0,L # Q);

(IT1) L has no mazimal element;
(II1) for all elements a,b € Q witha <b, b€ L= a € L.

Example 1.2. (i) If a € Q, the open interval L, := (—00,a) N Q is a Dedekind cut that we take
to represent the rational number a.

(ii) Let r1 <19 <73 < ... be any non decreasing sequence of rational numbers such that

a) the sequence is bounded, i.e. M € Q s.t. r,, < M, Vn € NT;

(b) the sequence is not eventually constant, i.e. for all ny there is ng > ny with r,, > r,,. Then

L= U (—00,4)
n>1
is a Dedekind cut. We need (a) for condition (I) and (b) for condition (IT). Writing out a precise
proof is on your HW for this week.

As the next lemma shows, there are many other ways to define a Dedekind cut.
Lemma 1.3. Let M = {x € Q|x <0 or 22> < 2}. Then M is a Dedekind cut.

Proof. M satisfies (I) because 0 € M (so M # ) and 3 ¢ M because 3 > 0 and 32 > 2.

To see that M satisfies (III) suppose that a < b and that b € M. We must show that a € M.
If a < 0 then a € M by the definition of M. So suppose that a > 0. Then b > 0 as well and also
b? < 2. Since 0 < a < b, we find a® < b?. Therefore a? < 2 and so a € M. Thus (III) holds.

To see that M satisfies (II), we must show that each element a € M is not a maximal element,
i.e. there is ' € M with a’ > a.

So consider a € M. If a < 1 then we may take a’ = 5/4.

Therefore we may suppose that a > 1. Since (3/2)% > 2, we know that a < 3/2. We want to
show that there is a rational number y > 0 such that (a + y)? < 2. (For then we take a’ = a + y.)
Let us assume that y = 1/n for some integer n. Thus we need

a® 4+ 2ay +1y> <2, or a2+2%+#<2.

1 a
~ < & Therefore

I simplified this inequality by noticing that since a > 1 and n > 1 we have n% <
a’+22 + L <a®+2% + 2 =¢” 438
so that it suffices to find n so that a® + 37 < 2. But this we can immediately solve:
we need 3% < 2 — a?, ie. n> 35
Notice, that just as when we find § = §(e) when proving continuity, there are many ways to do
this estimate. But I think that what I did above is one of the most direct arguments. O

Note: The last argument above is a version of the proof I gave in class that
the set S :={a € Q } a >0 and a® < 2} has no least upper bound in Q.
Here are the details of that argument.
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Step 1: Suppose that r € Q has the property that » > 0 and 2 > 2. Then I claim that r is
an upper bound for S but is not the least upper bound since we can always find a smaller upper
bound. Here are the steps:

(i) to see that r is an upper bound:

If not there is a € S such that a > r then 2 > a2 > r2 > 2 which is impossible.
(ii) to see that there is a smaller upper bound than r:

We look for z < r such that 22 > 2, where n is a large integer. (The is essentially the same
calculation as above)

If » > 2 this is clear: just take x = 2. Otherwise we look for x of the form z =r — % Then we
want

=720 4+ L >2 e 25—#<r2—2.

n n2 n
But
r 1 1 1 .
E_ﬁ<4ﬁ oz since r < 2
1_1_3 ; 1 -1
<4d; -5 =5, since ;5 <.

1

Therefore it suffices to find n so that % <r?—2 ie weneed n > 5 -

<

Step 2: Suppose that r € Q has the property that 7 > 0 and 72 < 2. Then I claim that there is
x € S such that x > r so that r is not an upper bound for S.

Now we look for z of the form r + % The argument that we can choose suiatble n is given in
the proof of the lemma above.

Here is a useful result about Dedekind cuts.

Lemma 1.4. Let L be a Dedekind cut and w ¢ L. Then u is an upper bound for L, i.e. everya € L
satisfies a < u.

Proof. Let a € L. Then a # u because u ¢ L and a € L. If a > u then u € L by (III), which is
also impossible. Hence a < u. O

Now let us define arithmetic operations on Dedekind cuts. We define addition here; one case of
the product is on the HW.

Proposition 1.5. Given Dedekind cuts L, M define the subset L + M of Q by
L+M={a+blacL,be M}
Then L 4+ M s a Dedekind cut.

Proof. 1 will divide this into lots of little steps.
Step 1: L+ M # (:
Proof. There is ag € L,by € M, which implies that ag 4+ by € L + M.
Step 2: L+ M # Q.
Proof. Since L, M satisfy (I) there are elements u, v such that
ug¢ L, vé¢M.

We show that v+ v ¢ L 4+ M by contradiction.
Ifu4+v e L+ M there are a € L,b € M so that u+v = a+b. But Lemma 7?7 shows that a < u
(since a € L,u ¢ L. Similarly b < v. Therefore a + b < u + v, which is impossible.

Steps 1 and 2 show that (I) holds for L + M. The next two steps show that it satisfies the other
conditions.



Step 3: L + M has no mazximal element.

Proof. Let a+b€ L+ M. Since L has no maximal element there is x € L such that ¢ < z. Then
r+be L+ M anda+b<x+b. Therefore a + b is not maximal in L + M. Since this holds for
alla+b e L+ M, the set L + M has no maximal element.

Step 4: L + M satisfies condition (I1I).

Proof. Suppose x < y where y € L+ M. Hence we can write y = a+b. Thenz =a+b— (y—z) =
a—(y—xz)+b=a +bwhere d =a— (y—x) <a. Since a € L we know a’ € L since L satisfies
(III). Hence we may write z = a’ +b as the sum of an element in L and an element in M. Therefore
x € L+ M, as required. ]

With this notion of + the zero element is Ly := (—o0,0). In other words, I claim that:
Lemma 1.6. For any Dedekind cut M we have M + Ly = M, where Ly = (—00,0).

Proof. We must show Lo+ M C M and M C Ly + M.
Proof that Lo+ M C M.

Since {Lo+ M ={a+b:a € Lo,b € M} we must show that every element of the form a + b
where a € Lo, b € M lies in M. But a € Ly implies a < 0. Hence a + b < b. Hence a + b € M by
condition (III) for M.

Proof that M C Lo+ M.

Given any m € M we must find a € Lg,b € M such that m = a + b. Notice that a < 0
so that we must have b > m. But there is b > m € M by condition 2. for a Dedekind cut.
Therefore pick such b and then define a := m — b. Then a € Q and a < 0 so that a € Ly. Hence
m=(m-—>0b)+b=a+b¢e Lo+ M, as required. O

The Order relation We define L < M if L C M. It is immediate that this is an order relation.
Moreover, given any Dedekind cuts L, M we have either L C M or M C L (on HW). Finally notice
that every set S := {Ls ‘ s € S} that is bounded above has a least upper bound U; namely

U .= USGSLS'

Why do we require that a Dedekind cut has no maximal element?
A Dedekind cut is the left part of a partition of Q into two pieces. Each rational number gives
two possible partitions

(—o00,a)gUla,00)g, and (—o0,a]gU (a,00)q,

(where I wrote (a,b)g to denote (a,b) N Q). We need to choose one of these — either (—oo, a)qg or
(—00, alg. Since there are partitions (such as those given by v/2) that have no maximal element, it
is most consistent to choose (—o0, a)g.
For those of you who are interested, here is how you define the negative —L of a Dedekind cut L.
The operation of multiplication by —1 reverses order and hence interchanges the two halves of
the partitions, taking left to right and vice versa. The basic idea is that the negative —L of the cut
L should consist of the negatives of the right partition: i.e. ifL = (—00,a)g then —L should be
{—z ‘ x € (a,00)g}. But the condition = € (a,00) is NOT simply = ¢ (—o0, a) since a ¢ (—o0, a).
So if we start from L we have to make a more complicated definition that avoids this problem with
endpoints.

Given L define Ry, :={u € Q | Jv € Qu < u such that v ¢ L}.
One can prove the following: (i) if L = (—o0, a) for some a € Q then Ry, = (a,0).

(ii) —Rpr := {—u |u € R} is a Dedekind cut.
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(iii) L+ (—Rr) = Lo(:= (—00,0). In other words, — Ry, represents the negative of L.
Note that the definition of Ry has to be so complicated in order that its negative has no maximal
element.



