
1. Notes on Dedekind cuts

Definition 1.1. A subset L ⊂ Q of the rationals is called a Dedekind cut if

(I) L is proper (i.e. L 6= ∅, L 6= Q);

(II) L has no maximal element;

(III) for all elements a, b ∈ Q with a < b, b ∈ L =⇒ a ∈ L.

Example 1.2. (i) If a ∈ Q, the open interval La := (−∞, a) ∩ Q is a Dedekind cut that we take
to represent the rational number a.
(ii) Let r1 ≤ r2 ≤ r3 ≤ . . . be any non decreasing sequence of rational numbers such that
a) the sequence is bounded, i.e. ∃M ∈ Q s.t. rn < M, ∀n ∈ N+;
(b) the sequence is not eventually constant, i.e. for all n1 there is n2 > n1 with rn2 > rn1 . Then

L :=
⋃
n≥1

(−∞, rn)

is a Dedekind cut. We need (a) for condition (I) and (b) for condition (II). Writing out a precise
proof is on your HW for this week.

As the next lemma shows, there are many other ways to define a Dedekind cut.

Lemma 1.3. Let M = {x ∈ Q |x ≤ 0 or x2 < 2}. Then M is a Dedekind cut.

Proof. M satisfies (I) because 0 ∈M (so M 6= ∅) and 3 /∈M because 3 > 0 and 32 > 2.
To see that M satisfies (III) suppose that a < b and that b ∈ M . We must show that a ∈ M .

If a ≤ 0 then a ∈ M by the definition of M . So suppose that a > 0. Then b > 0 as well and also
b2 < 2. Since 0 < a < b, we find a2 < b2. Therefore a2 < 2 and so a ∈M . Thus (III) holds.

To see that M satisfies (II), we must show that each element a ∈ M is not a maximal element,
i.e. there is a′ ∈M with a′ > a.

So consider a ∈M . If a ≤ 1 then we may take a′ = 5/4.
Therefore we may suppose that a > 1. Since (3/2)2 > 2, we know that a < 3/2. We want to

show that there is a rational number y > 0 such that (a+ y)2 < 2. (For then we take a′ = a+ y.)
Let us assume that y = 1/n for some integer n. Thus we need

a2 + 2ay + y2 < 2, or a2 + 2 a
n + 1

n2 < 2.

I simplified this inequality by noticing that since a ≥ 1 and n ≥ 1 we have 1
n2 ≤ 1

n ≤
a
n . Therefore

a2 + 2 a
n + 1

n2 < a2 + 2 a
n + a

n = a2 + 3 a
n

so that it suffices to find n so that a2 + 3 a
n < 2. But this we can immediately solve:

we need 3 a
n < 2− a2, i.e. n > 3 a

2−a2 .

Notice, that just as when we find δ = δ(ε) when proving continuity, there are many ways to do
this estimate. But I think that what I did above is one of the most direct arguments. �

Note: The last argument above is a version of the proof I gave in class that
the set S := {a ∈ Q

∣∣ a > 0 and a2 < 2} has no least upper bound in Q.
Here are the details of that argument.
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Step 1: Suppose that r ∈ Q has the property that r > 0 and r2 > 2. Then I claim that r is
an upper bound for S but is not the least upper bound since we can always find a smaller upper
bound. Here are the steps:

(i) to see that r is an upper bound:
If not there is a ∈ S such that a ≥ r then 2 > a2 ≥ r2 > 2 which is impossible.

(ii) to see that there is a smaller upper bound than r:
We look for x < r such that x2 > 2, where n is a large integer. (The is essentially the same

calculation as above)
If r > 2 this is clear: just take x = 2. Otherwise we look for x of the form x = r − 1

n . Then we
want

x2 = r2 − 2 r
n + 1

n2 > 2, i.e. 2 r
n −

1
n2 < r2 − 2.

But

2 r
n −

1
n2 < 4 1

n −
1
n2 since r < 2

< 4 1
n −

1
n = 3

n , since 1
n2 ≤ 1

n .

Therefore it suffices to find n so that 1
n < r2 − 2, i.e. we need n > 1

r2−2 .

Step 2: Suppose that r ∈ Q has the property that r > 0 and r2 < 2. Then I claim that there is
x ∈ S such that x > r so that r is not an upper bound for S.

Now we look for x of the form r + 1
n . The argument that we can choose suiatble n is given in

the proof of the lemma above.

Here is a useful result about Dedekind cuts.

Lemma 1.4. Let L be a Dedekind cut and u /∈ L. Then u is an upper bound for L, i.e. every a ∈ L
satisfies a < u.

Proof. Let a ∈ L. Then a 6= u because u /∈ L and a ∈ L. If a > u then u ∈ L by (III), which is
also impossible. Hence a < u. �

Now let us define arithmetic operations on Dedekind cuts. We define addition here; one case of
the product is on the HW.

Proposition 1.5. Given Dedekind cuts L,M define the subset L+M of Q by

L+M = {a+ b |a ∈ L, b ∈M}.
Then L+M is a Dedekind cut.

Proof. I will divide this into lots of little steps.
Step 1: L+M 6= ∅:
Proof. There is a0 ∈ L, b0 ∈M , which implies that a0 + b0 ∈ L+M .

Step 2: L+M 6= Q.
Proof. Since L,M satisfy (I) there are elements u, v such that

u /∈ L, v /∈M.

We show that u+ v /∈ L+M by contradiction.
If u+ v ∈ L+M there are a ∈ L, b ∈M so that u+ v = a+ b. But Lemma ?? shows that a < u

(since a ∈ L, u /∈ L. Similarly b < v. Therefore a+ b < u+ v, which is impossible.

Steps 1 and 2 show that (I) holds for L+M . The next two steps show that it satisfies the other
conditions.
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Step 3: L+M has no maximal element.
Proof. Let a+ b ∈ L+M . Since L has no maximal element there is x ∈ L such that a < x. Then
x + b ∈ L + M and a + b < x + b. Therefore a + b is not maximal in L + M . Since this holds for
all a+ b ∈ L+M , the set L+M has no maximal element.

Step 4: L+M satisfies condition (III).
Proof. Suppose x < y where y ∈ L+M . Hence we can write y = a+ b. Then x = a+ b− (y−x) =
a− (y − x) + b = a′ + b where a′ = a− (y − x) < a. Since a ∈ L we know a′ ∈ L since L satisfies
(III). Hence we may write x = a′+b as the sum of an element in L and an element in M . Therefore
x ∈ L+M , as required. �

With this notion of + the zero element is L0 := (−∞, 0). In other words, I claim that:

Lemma 1.6. For any Dedekind cut M we have M + L0 = M , where L0 = (−∞, 0).

Proof. We must show L0 +M ⊂M and M ⊂ L0 +M .
Proof that L0 +M ⊂M .

Since {L0 + M = {a + b : a ∈ L0, b ∈ M} we must show that every element of the form a + b
where a ∈ L0, b ∈ M lies in M . But a ∈ L0 implies a < 0. Hence a + b < b. Hence a + b ∈ M by
condition (III) for M .

Proof that M ⊂ L0 +M .
Given any m ∈ M we must find a ∈ L0, b ∈ M such that m = a + b. Notice that a < 0

so that we must have b > m. But there is b > m ∈ M by condition 2. for a Dedekind cut.
Therefore pick such b and then define a := m − b. Then a ∈ Q and a < 0 so that a ∈ L0. Hence
m = (m− b) + b = a+ b ∈ L0 +M , as required. �

The Order relation We define L ≤ M if L ⊆ M . It is immediate that this is an order relation.
Moreover, given any Dedekind cuts L,M we have either L ⊆M or M ⊆ L (on HW). Finally notice
that every set S := {Ls

∣∣ s ∈ S} that is bounded above has a least upper bound U ; namely

U := ∪s∈SLs.

Why do we require that a Dedekind cut has no maximal element?
A Dedekind cut is the left part of a partition of Q into two pieces. Each rational number gives

two possible partitions

(−∞, a)Q ∪ [a,∞)Q, and (−∞, a]Q ∪ (a,∞)Q,

(where I wrote (a, b)Q to denote (a, b) ∩ Q). We need to choose one of these – either (−∞, a)Q or

(−∞, a]Q. Since there are partitions (such as those given by
√

2) that have no maximal element, it
is most consistent to choose (−∞, a)Q.
For those of you who are interested, here is how you define the negative −L of a Dedekind cut L.

The operation of multiplication by −1 reverses order and hence interchanges the two halves of
the partitions, taking left to right and vice versa. The basic idea is that the negative −L of the cut
L should consist of the negatives of the right partition: i.e. ifL = (−∞, a)Q then −L should be
{−x

∣∣ x ∈ (a,∞)Q}. But the condition x ∈ (a,∞) is NOT simply x /∈ (−∞, a) since a /∈ (−∞, a).
So if we start from L we have to make a more complicated definition that avoids this problem with
endpoints.

Given L define RL := {u ∈ Q | ∃v ∈ Qv < u such that v /∈ L}.
One can prove the following: (i) if L = (−∞, a) for some a ∈ Q then RL = (a,∞).

(ii) −RL := {−u |u ∈ R} is a Dedekind cut.
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(iii) L+ (−RL) = L0(:= (−∞, 0). In other words, −RL represents the negative of L.
Note that the definition of RL has to be so complicated in order that its negative has no maximal
element.


