## 1. Notes on Dedekind cuts

Definition 1.1. A subset $L \subset \mathbb{Q}$ of the rationals is called a Dedekind cut if
(I) $L$ is proper (i.e. $L \neq \emptyset, L \neq \mathbb{Q}$ );
(II) L has no maximal element;
(III) for all elements $a, b \in \mathbb{Q}$ with $a<b, \quad b \in L \Longrightarrow a \in L$.

Example 1.2. (i) If $a \in \mathbb{Q}$, the open interval $L_{a}:=(-\infty, a) \cap \mathbb{Q}$ is a Dedekind cut that we take to represent the rational number $a$.
(ii) Let $r_{1} \leq r_{2} \leq r_{3} \leq \ldots$ be any non decreasing sequence of rational numbers such that
a) the sequence is bounded, i.e. $\exists M \in \mathbb{Q}$ s.t. $r_{n}<M, \forall n \in \mathbb{N}^{+}$;
(b) the sequence is not eventually constant, i.e. for all $n_{1}$ there is $n_{2}>n_{1}$ with $r_{n_{2}}>r_{n_{1}}$. Then

$$
L:=\bigcup_{n \geq 1}\left(-\infty, r_{n}\right)
$$

is a Dedekind cut. We need (a) for condition (I) and (b) for condition (II). Writing out a precise proof is on your HW for this week.

As the next lemma shows, there are many other ways to define a Dedekind cut.
Lemma 1.3. Let $M=\left\{x \in \mathbb{Q} \mid x \leq 0\right.$ or $\left.x^{2}<2\right\}$. Then $M$ is a Dedekind cut.
Proof. $M$ satisfies (I) because $0 \in M$ (so $M \neq \emptyset$ ) and $3 \notin M$ because $3>0$ and $3^{2}>2$.
To see that $M$ satisfies (III) suppose that $a<b$ and that $b \in M$. We must show that $a \in M$. If $a \leq 0$ then $a \in M$ by the definition of $M$. So suppose that $a>0$. Then $b>0$ as well and also $b^{2}<2$. Since $0<a<b$, we find $a^{2}<b^{2}$. Therefore $a^{2}<2$ and so $a \in M$. Thus (III) holds.

To see that $M$ satisfies (II), we must show that each element $a \in M$ is not a maximal element, i.e. there is $a^{\prime} \in M$ with $a^{\prime}>a$.

So consider $a \in M$. If $a \leq 1$ then we may take $a^{\prime}=5 / 4$.
Therefore we may suppose that $a>1$. Since $(3 / 2)^{2}>2$, we know that $a<3 / 2$. We want to show that there is a rational number $y>0$ such that $(a+y)^{2}<2$. (For then we take $a^{\prime}=a+y$.) Let us assume that $y=1 / n$ for some integer $n$. Thus we need

$$
a^{2}+2 a y+y^{2}<2, \quad \text { or } \quad a^{2}+2 \frac{a}{n}+\frac{1}{n^{2}}<2 .
$$

I simplified this inequality by noticing that since $a \geq 1$ and $n \geq 1$ we have $\frac{1}{n^{2}} \leq \frac{1}{n} \leq \frac{a}{n}$. Therefore

$$
a^{2}+2 \frac{a}{n}+\frac{1}{n^{2}}<a^{2}+2 \frac{a}{n}+\frac{a}{n}=a^{2}+3 \frac{a}{n}
$$

so that it suffices to find $n$ so that $a^{2}+3 \frac{a}{n}<2$. But this we can immediately solve: we need $3 \frac{a}{n}<2-a^{2}$, i.e. $n>3 \frac{a}{2-a^{2}}$.

Notice, that just as when we find $\delta=\delta(\epsilon)$ when proving continuity, there are many ways to do this estimate. But I think that what I did above is one of the most direct arguments.

Note: The last argument above is a version of the proof I gave in class that
the set $S:=\left\{a \in \mathbb{Q} \mid a>0\right.$ and $\left.a^{2}<2\right\}$ has no least upper bound in $\mathbb{Q}$.
Here are the details of that argument.

Step 1: Suppose that $r \in \mathbb{Q}$ has the property that $r>0$ and $r^{2}>2$. Then I claim that $r$ is an upper bound for $S$ but is not the least upper bound since we can always find a smaller upper bound. Here are the steps:
(i) to see that $r$ is an upper bound:

If not there is $a \in S$ such that $a \geq r$ then $2>a^{2} \geq r^{2}>2$ which is impossible.
(ii) to see that there is a smaller upper bound than $r$ :

We look for $x<r$ such that $x^{2}>2$, where $n$ is a large integer. (The is essentially the same calculation as above)

If $r>2$ this is clear: just take $x=2$. Otherwise we look for $x$ of the form $x=r-\frac{1}{n}$. Then we want

$$
x^{2}=r^{2}-2 \frac{r}{n}+\frac{1}{n^{2}}>2, \quad \text { i.e. } 2 \frac{r}{n}-\frac{1}{n^{2}}<r^{2}-2 .
$$

But

$$
\begin{aligned}
2 \frac{r}{n}-\frac{1}{n^{2}} & <4 \frac{1}{n}-\frac{1}{n^{2}} \quad \text { since } \quad r<2 \\
& <4 \frac{1}{n}-\frac{1}{n}=\frac{3}{n}, \quad \text { since } \frac{1}{n^{2}} \leq \frac{1}{n} .
\end{aligned}
$$

Therefore it suffices to find $n$ so that $\frac{1}{n}<r^{2}-2$, i.e. we need $n>\frac{1}{r^{2}-2}$.
Step 2: Suppose that $r \in \mathbb{Q}$ has the property that $r>0$ and $r^{2}<2$. Then I claim that there is $x \in S$ such that $x>r$ so that $r$ is not an upper bound for $S$.

Now we look for $x$ of the form $r+\frac{1}{n}$. The argument that we can choose suiatble $n$ is given in the proof of the lemma above.

Here is a useful result about Dedekind cuts.
Lemma 1.4. Let $L$ be a Dedekind cut and $u \notin L$. Then $u$ is an upper bound for $L$, i.e. every $a \in L$ satisfies $a<u$.
Proof. Let $a \in L$. Then $a \neq u$ because $u \notin L$ and $a \in L$. If $a>u$ then $u \in L$ by (III), which is also impossible. Hence $a<u$.

Now let us define arithmetic operations on Dedekind cuts. We define addition here; one case of the product is on the HW.

Proposition 1.5. Given Dedekind cuts $L, M$ define the subset $L+M$ of $\mathbb{Q}$ by

$$
L+M=\{a+b \mid a \in L, b \in M\} .
$$

Then $L+M$ is a Dedekind cut.
Proof. I will divide this into lots of little steps.
Step 1: $L+M \neq \emptyset$ :
Proof. There is $a_{0} \in L, b_{0} \in M$, which implies that $a_{0}+b_{0} \in L+M$.
Step 2: $L+M \neq \mathbb{Q}$.
Proof. Since $L, M$ satisfy (I) there are elements $u, v$ such that

$$
u \notin L, \quad v \notin M .
$$

We show that $u+v \notin L+M$ by contradiction.
If $u+v \in L+M$ there are $a \in L, b \in M$ so that $u+v=a+b$. But Lemma ?? shows that $a<u$ (since $a \in L, u \notin L$. Similarly $b<v$. Therefore $a+b<u+v$, which is impossible.

Steps 1 and 2 show that (I) holds for $L+M$. The next two steps show that it satisfies the other conditions.

Step 3: $L+M$ has no maximal element.
Proof. Let $a+b \in L+M$. Since $L$ has no maximal element there is $x \in L$ such that $a<x$. Then $x+b \in L+M$ and $a+b<x+b$. Therefore $a+b$ is not maximal in $L+M$. Since this holds for all $a+b \in L+M$, the set $L+M$ has no maximal element.
Step 4: $L+M$ satisfies condition (III).
Proof. Suppose $x<y$ where $y \in L+M$. Hence we can write $y=a+b$. Then $x=a+b-(y-x)=$ $a-(y-x)+b=a^{\prime}+b$ where $a^{\prime}=a-(y-x)<a$. Since $a \in L$ we know $a^{\prime} \in L$ since $L$ satisfies (III). Hence we may write $x=a^{\prime}+b$ as the sum of an element in $L$ and an element in $M$. Therefore $x \in L+M$, as required.

With this notion of + the zero element is $L_{0}:=(-\infty, 0)$. In other words, I claim that:
Lemma 1.6. For any Dedekind cut $M$ we have $M+L_{0}=M$, where $L_{0}=(-\infty, 0)$.
Proof. We must show $L_{0}+M \subset M$ and $M \subset L_{0}+M$.
Proof that $L_{0}+M \subset M$.
Since $\left\{L_{0}+M=\left\{a+b: a \in L_{0}, b \in M\right\}\right.$ we must show that every element of the form $a+b$ where $a \in L_{0}, b \in M$ lies in $M$. But $a \in L_{0}$ implies $a<0$. Hence $a+b<b$. Hence $a+b \in M$ by condition (III) for $M$.

Proof that $M \subset L_{0}+M$.
Given any $m \in M$ we must find $a \in L_{0}, b \in M$ such that $m=a+b$. Notice that $a<0$ so that we must have $b>m$. But there is $b>m \in M$ by condition 2. for a Dedekind cut. Therefore pick such $b$ and then define $a:=m-b$. Then $a \in \mathbb{Q}$ and $a<0$ so that $a \in L_{0}$. Hence $m=(m-b)+b=a+b \in L_{0}+M$, as required.

The Order relation We define $L \leq M$ if $L \subseteq M$. It is immediate that this is an order relation. Moreover, given any Dedekind cuts $L, M$ we have either $L \subseteq M$ or $M \subseteq L$ (on HW). Finally notice that every set $S:=\left\{L_{s} \mid s \in S\right\}$ that is bounded above has a least upper bound $U$; namely

$$
U:=\cup_{s \in S} L_{s} .
$$

Why do we require that a Dedekind cut has no maximal element?
A Dedekind cut is the left part of a partition of $\mathbb{Q}$ into two pieces. Each rational number gives two possible partitions

$$
(-\infty, a)_{\mathbb{Q}} \cup[a, \infty)_{\mathbb{Q}}, \quad \text { and } \quad(-\infty, a]_{\mathbb{Q}} \cup(a, \infty)_{\mathbb{Q}},
$$

(where I wrote $(a, b)_{\mathbb{Q}}$ to denote $\left.(a, b) \cap \mathbb{Q}\right)$. We need to choose one of these - either $(-\infty, a)_{\mathbb{Q}}$ or $(-\infty, a]_{\mathbb{Q}}$. Since there are partitions (such as those given by $\sqrt{2}$ ) that have no maximal element, it is most consistent to choose $(-\infty, a)_{\mathbb{Q}}$.
For those of you who are interested, here is how you define the negative $-L$ of a Dedekind cut $L$.
The operation of multiplication by -1 reverses order and hence interchanges the two halves of the partitions, taking left to right and vice versa. The basic idea is that the negative $-L$ of the cut $L$ should consist of the negatives of the right partition: i.e. if $L=(-\infty, a)_{\mathbb{Q}}$ then $-L$ should be $\{-x \mid x \in(a, \infty) \mathbb{Q}\}$. But the condition $x \in(a, \infty)$ is NOT simply $x \notin(-\infty, a)$ since $a \notin(-\infty, a)$. So if we start from $L$ we have to make a more complicated definition that avoids this problem with endpoints.

Given $L$ define $R_{L}:=\{u \in \mathbb{Q} \mid \exists v \in \mathbb{Q} v<u$ such that $v \notin L\}$.
One can prove the following: (i) if $L=(-\infty, a)$ for some $a \in \mathbb{Q}$ then $R_{L}=(a, \infty)$.
(ii) $-R_{L}:=\{-u \mid u \in R\}$ is a Dedekind cut.
(iii) $L+\left(-R_{L}\right)=L_{0}\left(:=(-\infty, 0)\right.$. In other words, $-R_{L}$ represents the negative of $L$.

Note that the definition of $R_{L}$ has to be so complicated in order that its negative has no maximal element.

