
SHIMURA VARIETIES

Lecture 1: Moduli of Elliptic Curves

One useful feature of Shimura varieties is that they translate problems in moduli
theory to problems in linear algebra. The linear algebra is rather complicated,
because it involves real/complex vector spaces as well as p-adic vector spaces for
all p, together with some compatibility among them, but it apparently makes the
issues in moduli theory much less complicated. For this reason, it rarely works;
not so many varieties can be described completely in terms of linear algebra. The
ones that can are abelian varieties, because, over C at least, they are quotients
of complex vector spaces by lattices, with some additional properties to guarantee
algebraicity. Surprisingly (or not), abelian varieties over finite fields can also be
recovered from linear algebra, together with some rather subtle Galois cohomology.

So before we can talk about Shimura varieties, we need to talk about abelian va-
rieties. I’ll begin with elliptic curves, for which most of the theory is straightforward
and intuitive.

Over C, an elliptic curve E is given as a quotient C/Λ, where Λ ∼−→ Z2 is a
lattice in C. More precisely, any smooth projective curve of genus 1 over any field
is a group. Over C it is a topological group, so its universal cover is a simply-
connected complex manifold of dimension 1 which is also a group, and therefore
must be C; then Λ = π1(E) = H1(E, Z). There are more insightful ways to see
this, but I’ll remain briefly at this level.

Now if Λ and Λ′ are two lattices, the elliptic curves C/Λ and C/Λ′ are isomorphic
as complex algebraic varieties if and only if they are isomorphic as groups. In other
words, any holomorphic automorphism φ of C that takes Λ to Λ′ such that φ(0) = 0
is a homomorphism of groups.

Exercise. Prove this fact using only complex analysis. Prove it again using only
algebraic geometry.

Every holomorphic group automorphism of C is given by multiplication by an
element α ∈ C×. Indeed, any continuous group automorphism of a real vector
space is necessarily a linear map, and one checks that φ(a + bi) = aα1 + bαi is
holomorphic if and only if αi = iα1. So C/Λ and C/Λ′ if and only if Λ′ = αΛ for
some α ∈ C×. Now we orient C, as real vector space, so that (1, i) is a positive
orientation. The set Ω of pairs (ω, ω′) of positively oriented R-bases of C can be
identified, in the basis {1, i}, with

GL(2, R)+ = {g ∈ GL(2, R) | det(g) > 0},

but we’re not yet ready for this. However, the group SL(2, Z) acts on Ω via(
a b
c d

)
(ω, ω′) = (aω + bω′, cω + dω′).
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This action fixes the lattice Zω + Zω′ ⊂ C, and the quotient SL(2, Z)\Ω is thus
identified with the set of all lattices in C. Thus the set of complex elliptic curves is
in one-to-one correspondence with the double coset space

SL(2, Z)\Ω/C×

where α ∈ C× takes (ω, ω′) to (αω, αω′), or equivalently takes the lattice Λ to αΛ.
The next step might be to observe that the map

(ω, ω′) 7→ ω′/ω

identifies Ω/C× with the upper half plane H ⊂ C:

H = {x + iy ∈ C | y > 0}.

Under the identification of Ω with GL(2, R)+, this map takes the identity matrix
to the point i ∈ H. Moreover, the map is equivariant for the tautological left
action of GL(2, R)+ on Ω/C×, if we let GL(2, R)+ act on H by linear fractional
transformations: (

a b
c d

)
z =

az + b

cz + d
.

Thus the set of complex elliptic curves is in one-to-one correspondence with
the quotient SL(2, Z)\H, where SL(2, Z) acts via linear fractional transformations.
And we can then go on to develop the classical theory of the j-function, which is
a holomorphic map from H to C, invariant and bijective modulo SL(2, Z), and in
this way make the connection with the algebraic theory of elliptic curves. However,
this doesn’t generalize to higher dimensions, and instead we will do something that
brings us closer to the group theory.

In the above discussion, C was treated as fixed and the lattice Λ was moving
around in C. It is much more clever to fix Λ = Z2 and let C change. More precisely,
an inclusion Z2 ⊂ C identifies C with R2; we fix R2 and its canonical lattice Z2,
and let the complex structure vary.

Definition. A complex structure on R2 is a homomorphism h : C×→GL(2, R) =
Aut(R2) such that the eigenvalues of h(z) ∈ C× on R2 are z and z̄. In other words,
it is a homomorphism of groups that extends to a homomorphism of R-algebras
C→M(2, R).

Choosing the base point e0 = (1, 0) ∈ R2, we see that any complex structure h
defines an isomorphism ih : R2→C of complex vector spaces, via i−1

h (z) = h(z) · e0.
And thus C/ih(Z2) is an elliptic curve. We will view this in another way.

Example. Let V = Q2, and let h : C×→Aut(R2) be a complex structure. Then
for any z ∈ C, z /∈ R, h(z) has two eigenvalues on VC, namely z and z̄. We let
w = −1 and let V −1,0 = V −1,0

h , resp. V 0,−1 = V 0,−1
h , denote the z-eigenspace, resp.

the z̄-eigenspace, for h(z) on VC. For example, we can define a complex structure

by the homomorphism h0 : C×→GL(2, R) such that h0(x + iy) =
(

x y
−y x

)
; this

obviously satisfies the hypothesis, with V −1,0 = C · v0, V 0,−1 = C · v′0, where

v0 =
(
−i
1

)
, v′0 =

(
i
1

)
.
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(Check this by hand, and note carefully the signs!) For general h, since C× is a
commutative group, it is easy to see that the decomposition VC = V −1,0 ⊕ V 0,−1

does not depend on the choice of z; indeed, each V p,q is an eigenspace for the action
of h(C×). Furthermore, because h(z) acts by R-linear transformations, it is easy
to see that

V −1,0 = V̄ 0,−1.

Verification: Let z = x + iy ∈ C×, y 6= 0. For example, take z = i. Incidentally,
this choice is not completely innocent: there are two choices of

√
−1 ∈ C and a

priori the constructions that follow depend on the choice. Anyway, there is a basis
v, v′ of V ⊗C such that h(i)v = iv, h(i)v′ = −iv′. Thus V −1,0 = C·v, V 0,−1 = C·v′.
On the other hand, h(i) ∈ Aut(R2) = GL(2, R) is a real matrix with eigenvalues i,
−i, hence there is a real matrix γ such that

γ−1h(i)γ =
(

0 −1
1 0

)
= h0(i).

Then we see that, with v0 and v′0 as above, we have γC ·v0 = V −1,0
h , resp. γC ·v′0 =

V 0,−1
h ; in other words there are non-zero complex scalars λ, λ′ such that

v = λγv0, v
′ = λ′γv′0.

Say γ =
(

a b
c d

)
. Then

v = λ

(
−ai + b
−ci + d

)
, v′ = λ′

(
ai + b
ci + d

)
Since c and d are real, ±ci + d 6= 0, hence we can normalize v (resp. v′) by taking
λ = (−ci + d)−1, (resp. λ′ = (ci + d)−1. Let τh = γ(i) = ai+b

ci+d . Then

v′ =
(

τh

1

)
; v =

(
τ̄h

1

)
= v̄′.

From this it follows that V −1,0 = V̄ 0,−1, as claimed.
Indeed, it would have sufficed to carry out this verification for h0, then to derive

the corresponding fact for h from the fact that γ is a real matrix. However, we
have obtained a side benefit. Let H± = C − R, the union of the upper and lower
half planes. The group GL(2, R) acts by fractional linear transformations on H±

as above. The complex number τh = γ(i) then belongs to H±. Moreover we can
define a map

π : {complex structures } → H±

by π(h) = τh. This map may appear to depend on the choice of the matrix γ
such that h(i) = γh0(i)γ−1. We write τh(γ) to take provisional account of this
dependence. Note first of all that h0 and h both extend to algebra homomorphisms
C→M(2, R), and since i generates C as R-algebra it follows that γh0γ

−1 = h. If
γ′ is another choice, then k = γ′,−1γ belongs to the centralizer in M(2, R) of h0,
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i.e. to the centralizer of h0(C), which is just h0(C). Thus k ∈ h0(C×), and if

k =
(

x y
−y x

)
we have

τh(γ) = γ(i) = γ′k(i) = γ′(k(i)) = γ′(
xi + y

−yi + x
) = γ′(i) = τh(γ′),

so there is no dependence. In other words, letting K∞ = h0(C×) ⊂ GL(2, R), there
is a sequence of identifications

{complex structures } ∼−→ GL(2, R)/K∞
∼−→ H±.

The significance of this is that the final term has an obvious complex structure,
hence so do the first two terms. Moreover, this complex structure is GL(2, R)-
invariant.

There is more. The function associating the normalized vector v′ = v′h ∈ V 0,−1

to h. is compatible with the complex structure. Now V 0,−1
h ⊂ VC is a variable

line in VC, hence defines a variable point ph ∈ P(VC) = P1(C). If
(

α
β

)
is the

homogeneous coordinate of a point in P1, we use the standard inhomogeneous
coordinate α

β . Then the inhomogeneous coordinate of V 0,−1
h is just τh. We thus

have a holomorphic embedding

{complex structures } ∼−→ GL(2, R)/K∞ ↪→ P(VC)

obtained by associating the subspace V 0,−1
h to h.

Later we will ignore the coordinates and use the embedding in P(VC) to define
the complex structure. Meanwhile, it is time to return to our family of elliptic
curves Eh = ih(Z2)\C, where h is a variable complex structure. The pertinent
question is: what is the C in the numerator? Recall the formula for ih : R2 ∼−→ C:

ih(h(z)e0) = z = z · ih(e0).

The map ih extends by linearity to a surjective homomorphism

R2 ⊗ C = VC → C.

The left hand side is V −1,0⊕V 0,−1, and since the formula shows that ih commutes
with the action of C× on both sides, it follows that the map VC → C is the projection
VC → VC/V 0,−1. In other words, the C in the numerator is identified with V −1,0,
and we have the formula

Eh = Z2\VC/V 0,−1
h .

It can also be verified by hand from the above formulas that ih(Z2) = Z ⊕ Z · τh.
Indeed, (

0
1

)
= −τh

(
1
0

)
+

(
τh

1

)
= τhe0 + v′h,

and since ih(v′h) = 0 it follows that ih(
(

0
1

)
) = −τh.
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(Question: why is ih orientation-reversing?)
The family E of Eh is parametrized by the set of complex structures h, or

by GL(2, R)/K∞, or by H±. But as we saw above, elliptic curves over C are
parametrized by SL(2, Z)\H = GL(2, Z)\H±. The family E/H± does not admit a
quotient by GL(2, Z). More precisely, there is an action of GL(2, Z) on the family
{Eh = VC/V 0,−1

h } covering the action on H±, and preserving the subgroup Z2; we
simply let g ∈ GL(2, Z) = Aut(Z2) act naturally on Z2 ⊂ VC and by conjugation
on h. However, the element −I2 ∈ GL(2, Z) acts as −1 on each Eh and the quo-
tient is no longer a family of elliptic curves; and there are other elliptic fixed points
in H± whose stabilizers define automorphisms of the corresponding elliptic curves.
However, the principal congruence subgroup

ΓN = {g ∈ GL(2, Z) | g ≡ I2 (mod N)}
has no fixed points in H± for any integer N ≥ 3. We can see this as follows: if
g(z) = z for some z ∈ H±, then g is necessarily of finite order. If in addition g has
integral coefficients, then Z[g] is isomorphic to a subring of the ring of algebraic
integers in the field Q[g], which is necessarily of degree ≤ 2. Then g is a root of
unity in a field of degree ≤ 2, hence a root of unity of order 2, 3, 4, or 6. Hence g
cannot be congruent to 1 modulo N for N ≥ 3.

It follows that the quotient ΓN\E is a family of elliptic curves over the open
modular curve Y (N) = ΓN\H±. The classical theory of modular forms shows that
we can compactify Y (N) to a projective modular curve X(N), and in particular
Y (N) carries a natural structure of complex algebraic curve. Since ΓN fixes the
group N−1Z2/Z2, the basis of points of order N in Eh defined by the generators(

1
0

)
and

(
0
1

)
modulo N is fixed for all hinH±. In this way we can show that Y (N)

is a connected component of the moduli space over C parametrizing pairs (E,αN )
where E is an elliptic curve and αN : (Z/NZ)2 ∼−→ E[N ] is a level N structure.
This will later be treated correctly, in more generality, in the adelic setting, so I
will not pursue the point here, especially since I have not explained what I mean
by a moduli space. Instead I will explain how to generalize the constructions in
pure linear algebra underlying the above discussion.

Definition. Let V be a finite-dimensional vector space over Q, VC = V ⊗ C. Let
w ∈ Z. A Hodge structure on V , pure of weight w, is a decomposition

VC = ⊕p+q=wV p,q

such that V̄ p,q = V q,p. A Hodge structure on V is a decomposition V = ⊕w∈ZVw

of rational vector spaces, together with a pure Hodge structure of weight w on each
Vw. Alternatively, it is a decomposition

VC = ⊕V p,q

such that V̄ p,q = V q,p and such that, for each w ∈ Z, the sum ⊕p+q=wV p,q is the
complexification of a rational subspace Vw of V .

Here V̄ p,q is the complex conjugate of V p,q for the R-structure on VC, which is
all that remains of the Q-structure for the moment.

We can define a category (Hodge), whose objects are Q-vector spaces V with
Hodge structures, and whose morphisms are linear maps V→V ′ whose complex-
ifications respect the p, q-decomposition. The direct sum of two objects in this
category is again in this category. This is a simple construction in linear algebra.
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Proposition. There is an equivalence of categories between pairs (V, h : C×→Aut(VR)),
where V is a rational vector space and h is a homomorphism of real algebraic groups,
and Hodge structures.

Proof. Let V be a rational vector space with a Hodge structure. Define h :
C×→Aut(VC) by letting h(z) act as z−pz̄−q on V p,q (this is the convention). One
then has to check that h is a homomorphism of real algebraic groups. Concretely,
this means that we need to check that h(z̄) = ¯h(z), and this is obvious.

Given a pure Hodge structure of weight w, we can define an apparently coarser
object, the Hodge filtration

V = F aV ⊃ · · · ⊃ F jV ⊃ F j+1V · · · ⊃ F bV = 0.

This is defined by setting

F pV = ⊕p′≥pV
p′,w−p′

.

The individual V p,q are recovered using the formula

V p,q = F pV ∩ F qV ,

which follows easily from the basic property of a Hodge structure.


