Problem 1

1.

True. Using classification theorem for finite abelian groups, there are
precisely three isomorphism classes for an abelian group of order p?:
L, Loy X L2, Loy X Loy X Ly

False. From classification of finite abelian groups there is only one of
them which is Z,, = Z, X Z,.

False. WLOG say ¢ < p. By Sylow’s theorem it has a p-Sylow subgroup
of index ¢. Therefore because n,|q and n, =1 mod p we have n, =1,
so the p-Sylow subgroup is normal. Therefore any group of order pq
cannot be simple.

. True. The 5-Sylow subgroup has order 125 and index 8. Now n;|8 and

=1 mod 5, so it has to be 1.

Problem 2

(a)

Conjugacy classes in Sg corresponds to partitions of {1,2,3,4,5,6}, or equiv-
alently by different types of disjoint cycles. Elements from each conjugacy
class and their centralizer are given by

1.

2.

e : Sg of size 6! and index 1.

(1 2): {everything that does not contain (1 2)}x((1 2)) of size 48 and
index 15.

(1 2 3): {everything that does not contain (1 2 3)}x{(1 2 3)) of size 18
and index 40.

12)(34): ((56), (13)(24),(12),(34)) of size 16 and index 45.

(

(1234): ((56), (1234)) of size 8 and index 90.
(123)(45): ((123),(45)) of size 6 and index 120.
(

1234)(56): ((1234),(56)) of size 8 and index 90.



8. (12345): ((12345)) of size 5 and index 144.
9. (123456): ((123456)) of size 6 and index 120.

10. (123)(456): ((123),(456), (14)(25)(36)) of size 18 and index
40.

11. (12)(34)(56): ((13)(24), (15)(26), (35)(46), (135)(246)) of size
48 and index 15.

Z(Sg) = {e} has size one. Combined we have
1+ 15440+ 45490 + 120 4+ 90 + 144 4 120 + 40 4 15 = 720 = 6!.

(b)

{e}, (123),(12)(34),(1234)(56), (123)(456) are conjugacy classes
in Ag. (1234 5)is not because (123 4 5) and (1 35 2 4) belong to two
different conjugacy classes in Ag.

Problem 3
(a)

Indeed, from high school algebra knowledge we know |zw| = |z||w]| so this is

a homomorphism. The image is R>?, the set of positive real numbers and
the kernel is U(1) or the unit circle or {z € C* | |z| = 1}.

(b)
Take any G C C* finite and g € G. Then ¢ has finite order, say ¢" = 1.
Then |g"| = |g|" = 1 and |g| € R™Y, s0 |g| = 1.

(c)
Since G C C* is finite and from (b) G C U(1). Say G = {g1,..., gm }. Now
every element g; € G has finite order, say n;, and g; = € for some ¢ € R.

24
Since g;"* = 1 we deduce that ¢ = pi—’: for some integer p, and g; € (e ).
247 Fp
Therefore G C |J* (e ) = (e*) where n = lemn;. So we deduce that G
K3

is a subgroup of a cyclic group, so it is cyclic.
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Problesn 4 (a) Qg= 1), Fi 155k} wnder mulliphicakion guen oy
L*:'f:k"‘: ijk= -1.
Nebe tnak fov g, b 21, ghg™ bt = qu(--W) = (V1.
Th g=11, then fov any W€, ghgth ™= W= L.
Se, D(Rg) is the SM\oa'e'\AP of Qg ame\(o:te) L\d T

D(Qg)= ii\] = cac\ic grovp of oxdexr 2
Since 'D(Qg) )s oJoeJ.IM, 'Dl(Qg)= {\1 trivial.

(6) D(S4) ntuins all elements & Yac t\dfc a\ma"\,\" where
gh € Sy Se, DI onteins ca(h) W o ol WES,
w\yaaua Jass &),
We know that the Conywgacy clasce & o pexmubakion
ntains alk pevmu bakions of s e tt“)e. Ao, the
inverse of & Permul:nh&n has the same oacle_ Bype-
Thic means that D ($4) s goneraldd by elaments
wheve o and &5 have the same f,a(,\(_ Bipe. Sudn o
NS alwaag even (sian ta- sign &), so DS € Ay,
On the other hand, entry 3-c,dc,\e, Ca.\o() (o«b) (Lc) is In
QO...W\e oao\e shage
D (). Sine My s generabed by 3-cycles, we gek Ay €D,
So, D(SY)= Ay,

Now we wank D(Ay). Fov disin ab.cd, the 3-¢yde
(o) ond produdk & ah&jffm\: troncpositions (a\o) (<d) ave in Ae, .
(a%O)- (%) (cd)- ((aLQB—\ ( (2] (Uﬁ)—l
= (2 (D) (aD) (W () = (a)(cd) (b (cd)
= (a9 (bd).
So, DAY wontaing (13, (1D QW) and (D (22). Noke
thak eadn 6F these hag order 2 and (1D (DR (1)



s, L0, (126D, (D0, (DEDT is o sdgpoup &
DAy and Ay isomophic to Ky, Tnfak, b is a normal
Qu\oava Since 1t wontoins the entive (mrl‘)vxaacq Adass S (12)3) .
lAL,\: f';_; 12 Se, AL’/K:, has order 3 and s Cheredo
o0dolian (e §roup éf‘m!w?). Then KL’ must Comein D (AD).
Rk Ky, € DAY, Thus | D>(5)= D(A) = Ky,

Problem S Lek g6, nEN- Sine Nis geneshid by S, W=S,s,- s, for

some §; €S, Then

3“5‘: 945,82 - v g
- (3597 (3529 - (g5 .

Gine S is & wn;)vﬁalﬁ dass every as;a" ES. S, 3“3" obove

is %enexo.l:d by dements SF S and liec in N

For oy %EC’, aNa" CN D N i anormal svxloa}\s-u‘:

Problem 6 (&) Non- aboeli an growp of ovder 21:
No\;& ok sine T is a prime, Aux CZ:}) = 2;—— ;?j:: ?DWJ:L
7[,} conkeins 4 OU(,“L group df ordev 3 s a SMLOIQM.').
G = {IJ a0y Z; = Auk (l:r)
o +— |2
So, there s & SUMiohfed: P‘mo\u.d: 'Z,?_ X C3 0{' ovdex 2)
This is not obelian:
(€0, Q) (00, &) = ((0+ 00, &)= (32 1)
F (a0, &= (0D (D, &) ((51.)

(L) Non- aboels on grov o} ovder 55
We have Auk ('Z“) = 'Z“x—— Gdic group ot ovder 10. Thew is

o howo wwr(:\'tism

G=Ladata] - 7.1- Ak (2)
o — [L,]



whidh leads to & sami-diveck Pmdu,r_,{; 7&," ¥ (s of,
ovdev 55. This is not aboelion *

( (1, a) ([‘], ﬁl) = ([|]+ (501, )= ([5] ﬁ)
#; ((.a%) (N, &)= (m v [e)(V), ) ((6), &

Problem T |k G be o ooup o order 56=8xF= 2°xF. Then G containc
A S\dlow* T S\»‘-‘oa\‘eu? of ovder 7. The numbes 6F sudh
Su‘aﬁmuf; divides 56 and is wnaruenl'- to | modwo 7. The
only  livisers 6 5¢ whidh ave lmed F are | and &
Th thee s o‘n\a ome Sylow-7F su\ogmuf, then b mutt be novwmal
ond @ camot e simple.
Swppose that G has & Jdiskinck Sylows 7- su\oanufs. Eadh of
these  subgroups is isowmerphic B 2 3. So eadn has € daments  of
ovdev F . Moveover, any bwo of these S‘*“’S“"‘FS inkevseck \;ygmaua_
T, G hoas ak \east $x6= k8 olomemts 6} ovder 7. Then
the rumaini«\a 8 dements 6F G must forwm the unique
g\d\ow—Z sub group st G (We know ek & hos ab least ome
Sytow= 2 subgroup & orxder 8 and sudh 2 S\&L&'H)\AP comnot
contwin an clement oF ovder F MNow we deont towe enouwgh
doments to fovm moe thoan one Sylow-2 suLOmf)

“Then the Salom! 25u\:3m13 must be novwaal and G cannot
be siw\e.



Problem 8

(a). Let G be a group of order p?. By the class equation, every p-group has nontrivial center, so the
center Z(G) of G is nontrivial. Its order can be either p? or p. If its order is p?, then G = Z(G), and
therefore G is abelian. If its order is p, then the quotient G/Z(G) has order p, so G/Z(G) is cyclic.
This implies that G is abelian, so G = Z(G), which is impossible since we assumed that |Z(G)| has
order p. Thus, G is abelian.

(b). Consider the Heisenburg group modulo p, consisting of matrices of the form

1 =z vy
01 =1,
0 0 1

where x,y,2 € Zy. It is easy to check that this group satisfies the group axioms, since it is closed
under multiplication, contains the identity matrix, and that

-1

1 =z vy 1 —z 22—y
01 =z =10 1 —Zz ,
0 01 0 O 1

which belongs to the Heisenberg group modulo p. Moreover, this group clearly has order p?, and it
is nonabelian because

1 00 1 10 11

01 1 0 1 =10 1 1],

0 1 0 01 0
whereas

1 0 1 0 1 1

1 0 1 1| = 1 1

0 1 0 0 1 0 01

Problem 9

We prove a stronger statement: the size of any conjugacy class of G must divide n. For any g € G,
let Cl(g) be its conjugacy class. Recall that |Cl(g)| = [G : Ci(g)], where C(g) is the centralizer of
g. Because Z is a subgroup of Cg(g), we have

n=IG:Z]=[G:Cac9)llCaly) : Z].

In particular, we get that [G : Cg(g)] divides n. Hence, |Cl(g)| divides n.

Problem 10

The Klein group K} is isomorphic to Zo x Zy. We can think of this as a vector space over Zo, and
any autmorphism on Zs X Zs is an invertible linear map, represented by the matrix

(¢ o)



where a, b, c,d € Zs. There are exactly 6 such matrices:

10 11 11 0 1 10 01
0 1/°\0 1)’\1 0/’\1 0)’\1 1/°\1 1)°
Therefore, Aut(K4) contains 6 elements. Alternatively, we can think of K, as
K ={id, (1,2)(3,4),(1,3)(2,4),(1,4)(2,3) }.

Any automorphism of K4 must fix the identity and permute the rest of the three elements, so
Aut(K4) = S3, which contains 6 elements.



