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1 Problem 1

By the classification of finite abelian groups, the isomorphism classes abelian groups of the following
orders 27, 200, 605, 720 are:

e Order 27:

—ZgXZgXZg
_Z3XZQ
— Loy

e Order 200:

— Zg X Zos

— Do X Ly X Zios

— Lo X Ly X Ly X Zios

— Zg X L5 X Zs

— Lo X Ly X L X 75

— Do X Ly X Dy X L5 X L

e Order 605:

— Zs x Zn21
— Zs x Z11 X Z11

e Order 720:

— Zg X Zs X Zg

— Do X Zig X L5 X Zg

— iy X Ly X Zis X Zg

— Lo X Ly X Ly X L5 X Zg

— Do X Ly X Ly X iy X Lig X Lg
— Zg X Zs X 73 X Zs3



— Do X Zg X g X L3 X L3

— 2y X Ly X Lis X Lz X L3

— Do X Ly X Ly X L5 X Ly X L3

— Do X Ly X Lo X iy X Zig X Lz X L3

2 Problem 2

2.1 Judson Section 13.4 Exercise 6

By the Fundamental theorem of finite abelian groups, we have
GgZp? XZPQQ X oeee XZp;k

where m = pi'p3?---p;¥, and pi,--- ,py are primes (not necessarily distinct). Since n|m, we can
write

n=pi'py’ - prr,
where 0 < s; < r; for all 1 < i < k. For each 4, pick a; € Zp:i with order |a;| = pfl Then the
element a = ajaz - - - a € G has order pi'p5* - - - p;* = n. The subgroup of G generated by a is then

a subgroup of order n.

2.2 Judson Section 14.3 Exercise 8
By the Fundamental Theorem of finitely generated abelian group, we know that the groups G, H, K

are of the form
a
G = 7% X Lpyar X Lipyas X -+ L, an,
~d
~ 7b
H=7x Zq1b1 X ZQQbQ
K= Zc X chl X ZT262 X - 'chla

X Ly by

where the p;, g;,r;’s are primes (not necessarily distinct). Since G x H = G x K, we have

Zaer X Zp1a1 X e -anan X qubl X e 'qubk = 79F¢ x Zp1a1 X .- -anan X Zrlq X .- 'Zrlcl.
Since the Fundamental theorem of finitely generated abelian group provides a unique (up to per-
mutation of terms) representation for a finitely generated abelian group, we must have that b = c,
and the prime powers qll’l, e ,qZ’“ match up with r{*,---r’, up to permutation. After reordering of
terms, we get H = K, as desired.

Note that this result is not true for general abelian groups. For example, let G = [[;2, Z be a
product of infinite copies of Z, H = Z and K = Z x Z. Then we have

GxH%ﬁZ%GxK,

=1

but H % K.



3 Problem 3

For n = 43,44, note that there are two isomorphism classes of Zy4: Z4 X Z11 and Zg X Zo X Z11. For
n = 45, there are two isomorphism classes of Z,5: Zg X Z5 and Z3 X Zs3 x Zs. When n = 46, there is
exactly one isomorphism class of Zyg, since Zgg = Zo X Zs3, and one isomorphism class of Z,7, since
47 is prime. Therefore, the smallest n > 42 that satisfies the given condition is n = 46.

4 Problem 4

(a). The map o g : Zy X Ly — Ly X Ly, is defined as

Oéa’d((l', y)) = (ax, dy),

for all (z,y) € Zyp X Zy,. Its kernel is the set of (z,y) such that ax = 0 in Z,, and dy = 0 in Z,,.
Noting that ged(a,n) = ged(d, m) = 1, we conclude that a = d = 1; in other words, the kernel of
Qqq is trivial, so o4 is injective. Moreover, since ged(a,n) = ged(d,m) = 1, there exists integers
x,y such that ax =1 in Z,, and dy = 1 in Z,,. In particular, we have

Oéa,d(xao) = (170)7 aa,d(07y) = (07 1)'

Since (1,0) and (0,1) span the codomain, g g is surjective. It remains to check that o, 4 is a group
homomorphism. Indeed, for (z1,y1), (z2,y2) € Zn X Zy,, we have

aad((z1,y1) + (22,92)) = aaq((®1 + T2, 91 + Y2))
= (a(r1 + 22),d(y1 + y2))
= (ax1,dyr) + (axe, dys)
= ag,d((z1,91)) + agal(z2,92)).

(b). Since ged(n,m) = 1, we may identify Z,,, with Z, X Z,, via the isomorphism [z], +
([x]n, []m). From now on, we denote the congruence class [x] by z if the context is clear. Let
Ap ={(7,y) € Ln X L, : y = 0}, (1)
Am ={(x,y) € Zp, X Zp, : x = 0}. (2)

It is clear that A,, A, are subgroups of Z, X Z,, of order n, m, repsectively. We want to show that
they are unique subgroups with such order.
Let (a,b) € Ay, C Zy, X Zyy,. Since A, has order n, we have

(0,0) = n(a,b) = (na,ndb) € Zy X L,

which gives us nb = 0 in Z,,. Given that ged(n,m) = 1, we conclude that b = 0 in Z,,. Therefore,
A,, must take the form in . Similarly, we conclude that A,, must take the form in .
Finally, we define a map f : A, X Ay, — Zpm by

f((av 0)7 (07 b)) = (a7 b)



One may easily check that f is a bijective group homomorphism, and therefore a group isomorphism.

(c). Let f: Zyp X Ly, — Zp, X Ly, be an automorphism. Let f((1,0)) = (a,b), f((0,1)) = (¢,d). This
determines the entire map f. Indeed, since f is a group homomorphism, we have

f((z,y)) = f(2(1,0) +y(0,1)) = xf(1,0) + yf(0,1) = (az + cy, bx + dy),

for any (z,y) € Zy, X Zp,. We want to show that b = ¢ = 0, and that ged(a,n) = ged(d,m) = 1.
Observe that
(0,0) = £(0,0) = (n,0) = nf(1,0) = (na, nb),

which tells us that nb = 0 in Z,,. Since ged(n,m) = 1, we have that b = 0. By a similar argument,
we know that ¢ = 0.
Next, suppose for the sake of contradiction that ged(a,n) =k > 1. Then
n n a
f(=,0) = Ef(l,O) = E(a,b) = (n-%,O) =(0,0) € Zy, X Zp,.
We then have f(0,0) = (0,0) = f(%,0) and (%,0) # (0,0). This contradicts with the surjectivity of
f. Hence, we must have ged(a,n) = 1. By a similar argument, we also have ged(d,m) = 1. This
concludes the proof.

>3

(d) Define f : Zg X Zg — Zg X Zg by

f(.%', y) = (.’E, 3z + Z/)

The map f is not of the form 4. We want to show that f is an autmorphism. In particular, we
check that

e f is injective: if f(x,y) = f(a',y), then (z,y + 3z) = (¢/,y 4+ 3z),s0 z =2’ and y = ¢/.

e f is surjective: for all (z1,22) € Zs X Zg, there exists (21,22 — 321) € Zs X Zgy such that
f(z1,22 = 321) = (21, 22).

e fis a homomorphism: for all (x,y), (¢/,vy") € Zs x Zg, we have
fl@, )+ y) = f(z+a’,y+y) = (z+2, 3 +a)+y+y') = (2, 32+y)+(2', 32" +y) = f(z,y)+f ().
Therefore, f is an automorphism that is not of the form ay 4.
(e) Since M(z,y) = (ax + by, cx + dy), the matrix representation of M is
a b
v=(c a)

and so M is an automorphism if and only if the determinant of M is nonzero, that is, ad — bc # 0.
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